langwatch-scenario 0.2.0__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,363 @@
1
+ Metadata-Version: 2.4
2
+ Name: langwatch-scenario
3
+ Version: 0.4.0
4
+ Summary: The end-to-end agent testing library
5
+ Author-email: LangWatch Team <support@langwatch.ai>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/langwatch/scenario
8
+ Project-URL: Bug Tracker, https://github.com/langwatch/scenario/issues
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Requires-Python: >=3.9
18
+ Description-Content-Type: text/markdown
19
+ Requires-Dist: pytest>=8.1.1
20
+ Requires-Dist: litellm>=1.49.0
21
+ Requires-Dist: python-dotenv>=1.0.1
22
+ Requires-Dist: termcolor>=2.4.0
23
+ Requires-Dist: pydantic>=2.7.0
24
+ Requires-Dist: joblib>=1.4.2
25
+ Requires-Dist: wrapt>=1.17.2
26
+ Requires-Dist: pytest-asyncio>=0.26.0
27
+ Requires-Dist: rich<15.0.0,>=13.3.3
28
+ Requires-Dist: pksuid>=1.1.2
29
+ Provides-Extra: dev
30
+ Requires-Dist: black; extra == "dev"
31
+ Requires-Dist: isort; extra == "dev"
32
+ Requires-Dist: pytest-cov; extra == "dev"
33
+ Requires-Dist: pre-commit; extra == "dev"
34
+ Requires-Dist: commitizen; extra == "dev"
35
+ Requires-Dist: pyright; extra == "dev"
36
+ Requires-Dist: pydantic-ai; extra == "dev"
37
+ Requires-Dist: function-schema; extra == "dev"
38
+
39
+ ![scenario](https://github.com/langwatch/scenario/raw/main/assets/scenario-wide.webp)
40
+
41
+ <div align="center">
42
+ <!-- Discord, PyPI, Docs, etc links -->
43
+ </div>
44
+
45
+ # Scenario
46
+
47
+ Scenario is an Agent Testing Framework for testing AI agents through Simulation Testing.
48
+
49
+ You define the conversation scenario and let it play out, it will keep chatting back and forth with _your_ agent until it reaches the desired goal or detects an unexpected behavior based on the criteria you defined.
50
+
51
+ - Test your agents end-to-end conversations with specified scenarios to capture both happy paths and edge cases
52
+ - Full flexibility of how much you want to guide the conversation, from fully scripted scenarios to completely automated simulations
53
+ - Run evaluations at any point of the conversation, designed for multi-turn
54
+ - Works in combination with any testing and LLM evaluation frameworks, completely agnostic
55
+ - Works with any LLM and Agent Framework, easy integration
56
+
57
+ [📺 Video Tutorial](https://www.youtube.com/watch?v=f8NLpkY0Av4)
58
+
59
+ ### See also
60
+
61
+ - [Scenario TypeScript](https://github.com/langwatch/scenario-ts/)
62
+ - [Scenario Go](https://github.com/langwatch/scenario-go/)
63
+
64
+ ## Example
65
+
66
+ ```python
67
+ @pytest.mark.agent_test
68
+ @pytest.mark.asyncio
69
+ async def test_weather_agent():
70
+ # Integrate with your agent
71
+ class WeatherAgent(scenario.AgentAdapter):
72
+ async def call(self, input: scenario.AgentInput) -> scenario.AgentReturnTypes:
73
+ return weather_agent(input.messages)
74
+
75
+ # Define any custom assertions
76
+ def check_for_weather_tool_call(state: scenario.ScenarioState):
77
+ assert state.has_tool_call("get_current_weather")
78
+
79
+ # Run the scenario
80
+ result = await scenario.run(
81
+ name="checking the weather",
82
+ description="""
83
+ The user is planning a boat trip from Barcelona to Rome,
84
+ and is wondering what the weather will be like.
85
+ """,
86
+ agents=[
87
+ WeatherAgent(),
88
+ scenario.UserSimulatorAgent(model="openai/gpt-4.1-mini"),
89
+ ],
90
+ script=[
91
+ scenario.user(),
92
+ scenario.agent(),
93
+ check_for_weather_tool_call, # check for tool call after the first agent response
94
+ scenario.succeed(),
95
+ ],
96
+ )
97
+
98
+ # Assert the simulation was successful
99
+ assert result.success
100
+ ```
101
+
102
+ > [!NOTE]
103
+ > This is a very basic example, keep reading to see how to run a simulation completely script-free, using a Judge Agent to evaluate in real-time.
104
+
105
+ Check out more examples in the [examples folder](./examples/).
106
+
107
+ ## Getting Started
108
+
109
+ Install pytest and scenario:
110
+
111
+ ```bash
112
+ pip install pytest langwatch-scenario
113
+ ```
114
+
115
+ Now create your first scenario and save it as `tests/test_vegetarian_recipe_agent.py`, copy the full working example below:
116
+
117
+ ```python
118
+ import pytest
119
+ import scenario
120
+ import litellm
121
+
122
+ scenario.configure(default_model="openai/gpt-4.1-mini")
123
+
124
+
125
+ @pytest.mark.agent_test
126
+ @pytest.mark.asyncio
127
+ async def test_vegetarian_recipe_agent():
128
+ class Agent(scenario.AgentAdapter):
129
+ async def call(self, input: scenario.AgentInput) -> scenario.AgentReturnTypes:
130
+ return vegetarian_recipe_agent(input.messages)
131
+
132
+ # Run a simulation scenario
133
+ result = await scenario.run(
134
+ name="dinner idea",
135
+ description="""
136
+ It's saturday evening, the user is very hungry and tired,
137
+ but have no money to order out, so they are looking for a recipe.
138
+ """,
139
+ agents=[
140
+ Agent(),
141
+ scenario.UserSimulatorAgent(),
142
+ scenario.JudgeAgent(
143
+ criteria=[
144
+ "Agent should not ask more than two follow-up questions",
145
+ "Agent should generate a recipe",
146
+ "Recipe should include a list of ingredients",
147
+ "Recipe should include step-by-step cooking instructions",
148
+ "Recipe should be vegetarian and not include any sort of meat",
149
+ ]
150
+ ),
151
+ ],
152
+ )
153
+
154
+ # Assert for pytest to know whether the test passed
155
+ assert result.success
156
+
157
+
158
+ # Example agent implementation
159
+ import litellm
160
+
161
+
162
+ @scenario.cache()
163
+ def vegetarian_recipe_agent(messages) -> scenario.AgentReturnTypes:
164
+ response = litellm.completion(
165
+ model="openai/gpt-4.1-mini",
166
+ messages=[
167
+ {
168
+ "role": "system",
169
+ "content": """
170
+ You are a vegetarian recipe agent.
171
+ Given the user request, ask AT MOST ONE follow-up question,
172
+ then provide a complete recipe. Keep your responses concise and focused.
173
+ """,
174
+ },
175
+ *messages,
176
+ ],
177
+ )
178
+
179
+ return response.choices[0].message # type: ignore
180
+ ```
181
+
182
+ Create a `.env` file and put your OpenAI API key in it:
183
+
184
+ ```bash
185
+ OPENAI_API_KEY=<your-api-key>
186
+ ```
187
+
188
+ Now run it with pytest:
189
+
190
+ ```bash
191
+ pytest -s tests/test_vegetarian_recipe_agent.py
192
+ ```
193
+
194
+ This is how it will look like:
195
+
196
+ [![asciicast](https://asciinema.org/a/nvO5GWGzqKTTCd8gtNSezQw11.svg)](https://asciinema.org/a/nvO5GWGzqKTTCd8gtNSezQw11)
197
+
198
+ You can find the same code example in [examples/test_vegetarian_recipe_agent.py](examples/test_vegetarian_recipe_agent.py).
199
+
200
+ ## Script-free Simulation
201
+
202
+ By providing a User Simulator Agent and a description of the Scenario, the simulated user will automatically generate messages to the agent until the scenario is successful or the maximum number of turns is reached.
203
+
204
+ You can then use a Judge Agent to evaluate the scenario in real-time given certain criteria, at every turn, the Judge Agent will decide if it should let the simulation proceed or end it with a verdict.
205
+
206
+ You can combine it with a script, to control for example the beginning of the conversation, or simply let it run scriptless, this is very useful to test an open case like a vibe coding assistant:
207
+
208
+ ```python
209
+ result = await scenario.run(
210
+ name="dog walking startup landing page",
211
+ description="""
212
+ the user wants to create a new landing page for their dog walking startup
213
+
214
+ send the first message to generate the landing page, then a single follow up request to extend it, then give your final verdict
215
+ """,
216
+ agents=[
217
+ LovableAgentAdapter(template_path=template_path),
218
+ scenario.UserSimulatorAgent(),
219
+ scenario.JudgeAgent(
220
+ criteria=[
221
+ "agent reads the files before go and making changes",
222
+ "agent modified the index.css file, not only the Index.tsx file",
223
+ "agent created a comprehensive landing page",
224
+ "agent extended the landing page with a new section",
225
+ "agent should NOT say it can't read the file",
226
+ "agent should NOT produce incomplete code or be too lazy to finish",
227
+ ],
228
+ ),
229
+ ],
230
+ max_turns=5, # optional
231
+ )
232
+ ```
233
+
234
+ Check out the fully working Lovable Clone example in [examples/test_lovable_clone.py](examples/test_lovable_clone.py).
235
+
236
+ ## Full Control of the Conversation
237
+
238
+ You can specify a script for guiding the scenario by passing a list of steps to the `script` field, those steps are simply arbitrary functions that take the current state of the scenario as an argument, so you can do things like:
239
+
240
+ - Control what the user says, or let it be generated automatically
241
+ - Control what the agent says, or let it be generated automatically
242
+ - Add custom assertions, for example making sure a tool was called
243
+ - Add a custom evaluation, from an external library
244
+ - Let the simulation proceed for a certain number of turns, and evaluate at each new turn
245
+ - Trigger the judge agent to decide on a verdict
246
+ - Add arbitrary messages like mock tool calls in the middle of the conversation
247
+
248
+ Everything is possible, using the same simple structure:
249
+
250
+ ```python
251
+ @pytest.mark.agent_test
252
+ @pytest.mark.asyncio
253
+ async def test_ai_assistant_agent():
254
+ scenario = Scenario(
255
+ name="false assumptions",
256
+ description="""
257
+ The agent makes false assumption that the user is talking about an ATM bank, and user corrects it that they actually mean river banks
258
+ """,
259
+ agent=AiAssistantAgentAdapter,
260
+ criteria=[
261
+ "user should get good recommendations on river crossing",
262
+ "agent should NOT follow up about ATM recommendation after user has corrected them they are just hiking",
263
+ ],
264
+ max_turns=5,
265
+ )
266
+
267
+ def check_if_tool_was_called(state: ScenarioExecutor) -> None:
268
+ assert state.has_tool_call("web_search")
269
+
270
+ result = await scenario.script(
271
+ [
272
+ # Define existing history of messages
273
+ scenario.user("how do I safely approach a bank?"),
274
+
275
+ # Or let it be generate automatically
276
+ scenario.agent(),
277
+
278
+ # Add custom assertions, for example making sure a tool was called
279
+ check_if_tool_was_called,
280
+
281
+ # Another user message
282
+ scenario.user(),
283
+
284
+ # Let the simulation proceed for 2 more turns, print at every turn
285
+ scenario.proceed(
286
+ turns=2,
287
+ on_turn=lambda state: print(f"Turn {state.current_turn}: {state.messages}"),
288
+ ),
289
+
290
+ # Time to make a judgment call
291
+ scenario.judge(),
292
+ ]
293
+ ).run()
294
+
295
+ assert result.success
296
+ ```
297
+
298
+ ## Debug mode
299
+
300
+ You can enable debug mode by setting the `debug` field to `True` in the `Scenario.configure` method or in the specific scenario you are running, or by passing the `--debug` flag to pytest.
301
+
302
+ Debug mode allows you to see the messages in slow motion step by step, and intervene with your own inputs to debug your agent from the middle of the conversation.
303
+
304
+ ```python
305
+ Scenario.configure(testing_agent=TestingAgent(model="openai/gpt-4o-mini"), debug=True)
306
+ ```
307
+
308
+ or
309
+
310
+ ```bash
311
+ pytest -s tests/test_vegetarian_recipe_agent.py --debug
312
+ ```
313
+
314
+ ## Cache
315
+
316
+ Each time the scenario runs, the testing agent might chose a different input to start, this is good to make sure it covers the variance of real users as well, however we understand that the non-deterministic nature of it might make it less repeatable, costly and harder to debug. To solve for it, you can use the `cache_key` field in the `Scenario.configure` method or in the specific scenario you are running, this will make the testing agent give the same input for given the same scenario:
317
+
318
+ ```python
319
+ Scenario.configure(testing_agent=TestingAgent(model="openai/gpt-4o-mini"), cache_key="42")
320
+ ```
321
+
322
+ To bust the cache, you can simply pass a different `cache_key`, disable it, or delete the cache files located at `~/.scenario/cache`.
323
+
324
+ To go a step further and fully cache the test end-to-end, you can also wrap the LLM calls or any other non-deterministic functions in your application side with the `@scenario_cache` decorator:
325
+
326
+ ```python
327
+ class MyAgent:
328
+ @scenario_cache(ignore=["self"])
329
+ def invoke(self, message, context):
330
+ return client.chat.completions.create(
331
+ # ...
332
+ )
333
+ ```
334
+
335
+ This will cache any function call you decorate when running the tests and make them repeatable, hashed by the function arguments, the scenario being executed, and the `cache_key` you provided. You can exclude arguments that should not be hashed for the cache key by naming them in the `ignore` argument.
336
+
337
+ ## Disable Output
338
+
339
+ You can remove the `-s` flag from pytest to hide the output during test, which will only show up if the test fails. Alternatively, you can set `verbose=False` in the `Scenario.configure` method or in the specific scenario you are running.
340
+
341
+ ## Running in parallel
342
+
343
+ As the number of your scenarios grows, you might want to run them in parallel to speed up your whole test suite. We suggest you to use the [pytest-asyncio-concurrent](https://pypi.org/project/pytest-asyncio-concurrent/) plugin to do so.
344
+
345
+ Simply install the plugin from the link above, then replace the `@pytest.mark.asyncio` annotation in the tests with `@pytest.mark.asyncio_concurrent`, adding a group name to it to mark the group of scenarions that should be run in parallel together, e.g.:
346
+
347
+ ```python
348
+ @pytest.mark.agent_test
349
+ @pytest.mark.asyncio_concurrent(group="vegetarian_recipe_agent")
350
+ async def test_vegetarian_recipe_agent():
351
+ # ...
352
+
353
+ @pytest.mark.agent_test
354
+ @pytest.mark.asyncio_concurrent(group="vegetarian_recipe_agent")
355
+ async def test_user_is_very_hungry():
356
+ # ...
357
+ ```
358
+
359
+ Those two scenarios should now run in parallel.
360
+
361
+ ## License
362
+
363
+ MIT License
@@ -0,0 +1,18 @@
1
+ scenario/__init__.py,sha256=oMh5le4c4sIN2K1Ylv2xnkyKHpcOzBeqvW58fTWAFlU,7794
2
+ scenario/agent_adapter.py,sha256=pd3BdNUWna8h_9hykn1FvcyareMzUofQKKvXaAfQluY,4338
3
+ scenario/cache.py,sha256=iPpMmjKruLnnxCeLnRiQjiH89LhcVIfQQXKH5etU_m4,6217
4
+ scenario/config.py,sha256=AeDbKE-_Rrxkan64tDDDynaSNyijoIKHxWaRMqGd4oY,6121
5
+ scenario/error_messages.py,sha256=6lEx3jBGMbPx0kG0eX5zoZE-ENVM3O_ZkIbVMlnidYs,3892
6
+ scenario/judge_agent.py,sha256=7fKK_oevXzWKXDioBjHzgGSDpS0aby3oRcrc6oaip68,16973
7
+ scenario/pytest_plugin.py,sha256=s2M2mll9JSCSWB5SKDQIWT5DOCvzZOo_8JCCfJzyy8k,12849
8
+ scenario/scenario_executor.py,sha256=oz7Odv41HNLcNd_7sKUW-AKKdY-on_PyVLaxpvKjrGE,27211
9
+ scenario/scenario_state.py,sha256=I_fWoY_LvNuKCBL-b62z5bQOAI25dx55FuZNWwtIeVs,7075
10
+ scenario/script.py,sha256=7wsHZxdSgFaYLflkV6sysDxefkkag79mySR7yp7N3ug,12278
11
+ scenario/types.py,sha256=CsexCupg2WUi4dToYF5RqFdNIHx1JhaRaRRBs78YVd0,9498
12
+ scenario/user_simulator_agent.py,sha256=o8sZLMWOcTf7BKgPO_a5rPnC6GgdZQe3HujqwjPzjV8,9346
13
+ scenario/utils.py,sha256=ryJYcMoSAjVzA_f5V6Mcga5GkipYbCzaYNNpBjAQI_g,16992
14
+ langwatch_scenario-0.4.0.dist-info/METADATA,sha256=d9tNTNioHH5_1q8oIvIABaTgC6J9XmEJR4Tjim3sFks,13827
15
+ langwatch_scenario-0.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
16
+ langwatch_scenario-0.4.0.dist-info/entry_points.txt,sha256=WlEnJ_gku0i18bIa3DSuGqXRX-QDQLe_s0YmRzK45TI,45
17
+ langwatch_scenario-0.4.0.dist-info/top_level.txt,sha256=45Mn28aedJsetnBMB5xSmrJ-yo701QLH89Zlz4r1clE,9
18
+ langwatch_scenario-0.4.0.dist-info/RECORD,,
scenario/__init__.py CHANGED
@@ -1,24 +1,248 @@
1
1
  """
2
- Scenario: A testing library for conversational agents.
2
+ Scenario: Agent Testing Framework through Simulation Testing
3
+
4
+ Scenario is a comprehensive testing framework for AI agents that uses simulation testing
5
+ to validate agent behavior through realistic conversations. It enables testing of both
6
+ happy paths and edge cases by simulating user interactions and evaluating agent responses
7
+ against configurable success criteria.
8
+
9
+ Key Features:
10
+ - End-to-end conversation testing with specified scenarios
11
+ - Flexible control from fully scripted to completely automated simulations
12
+ - Multi-turn evaluation designed for complex conversational agents
13
+ - Works with any testing framework (pytest, unittest, etc.)
14
+ - Framework-agnostic integration with any LLM or agent architecture
15
+ - Built-in caching for deterministic and faster test execution
16
+
17
+ Basic Usage:
18
+ ```python
19
+ import scenario
20
+
21
+ # Configure global settings
22
+ scenario.configure(default_model="openai/gpt-4.1-mini")
23
+
24
+ # Create your agent adapter
25
+ class MyAgent(scenario.AgentAdapter):
26
+ async def call(self, input: scenario.AgentInput) -> scenario.AgentReturnTypes:
27
+ return my_agent_function(input.last_new_user_message_str())
28
+
29
+ # Run a scenario test
30
+ result = await scenario.run(
31
+ name="customer service test",
32
+ description="Customer asks about billing, agent should help politely",
33
+ agents=[
34
+ MyAgent(),
35
+ scenario.UserSimulatorAgent(),
36
+ scenario.JudgeAgent(criteria=[
37
+ "Agent is polite and professional",
38
+ "Agent addresses the billing question",
39
+ "Agent provides clear next steps"
40
+ ])
41
+ ]
42
+ )
43
+
44
+ assert result.success
45
+ ```
46
+
47
+ Advanced Usage:
48
+ ```python
49
+ # Script-controlled scenario with custom evaluations
50
+ def check_tool_usage(state: scenario.ScenarioState) -> None:
51
+ assert state.has_tool_call("get_customer_info")
52
+
53
+ result = await scenario.run(
54
+ name="scripted interaction",
55
+ description="Test specific conversation flow",
56
+ agents=[
57
+ MyAgent(),
58
+ scenario.UserSimulatorAgent(),
59
+ scenario.JudgeAgent(criteria=["Agent provides helpful response"])
60
+ ],
61
+ script=[
62
+ scenario.user("I have a billing question"),
63
+ scenario.agent(),
64
+ check_tool_usage, # Custom assertion
65
+ scenario.proceed(turns=2), # Let it continue automatically
66
+ scenario.succeed("All requirements met")
67
+ ]
68
+ )
69
+ ```
70
+
71
+ Integration with Testing Frameworks:
72
+ ```python
73
+ import pytest
74
+
75
+ @pytest.mark.agent_test
76
+ @pytest.mark.asyncio
77
+ async def test_weather_agent():
78
+ result = await scenario.run(
79
+ name="weather query",
80
+ description="User asks about weather in a specific city",
81
+ agents=[
82
+ WeatherAgent(),
83
+ scenario.UserSimulatorAgent(),
84
+ scenario.JudgeAgent(criteria=["Provides accurate weather information"])
85
+ ]
86
+ )
87
+ assert result.success
88
+ ```
89
+
90
+ For more examples and detailed documentation, visit: https://github.com/langwatch/scenario
3
91
  """
4
92
 
5
93
  # First import non-dependent modules
6
- from .result import ScenarioResult
94
+ from .types import ScenarioResult, AgentInput, AgentRole, AgentReturnTypes
7
95
  from .config import ScenarioConfig
8
96
 
9
97
  # Then import modules with dependencies
10
- from .testing_agent import TestingAgent
11
- from .scenario import Scenario
98
+ from .scenario_executor import ScenarioExecutor
99
+ from .scenario_state import ScenarioState
100
+ from .agent_adapter import AgentAdapter
101
+ from .judge_agent import JudgeAgent
102
+ from .user_simulator_agent import UserSimulatorAgent
12
103
  from .cache import scenario_cache
104
+ from .script import message, user, agent, judge, proceed, succeed, fail
13
105
 
14
106
  # Import pytest plugin components
15
107
  from .pytest_plugin import pytest_configure, scenario_reporter
16
108
 
109
+ run = ScenarioExecutor.run
110
+ """
111
+ High-level interface for running scenario tests.
112
+
113
+ This is the main entry point for executing scenario-based agent tests. It creates
114
+ and runs a complete scenario simulation including user interactions, agent responses,
115
+ and success evaluation.
116
+
117
+ Args:
118
+ name: Human-readable name for the scenario
119
+ description: Detailed description that guides the simulation behavior
120
+ agents: List of agent adapters (agent under test, user simulator, judge)
121
+ max_turns: Maximum conversation turns before timeout (default: 10)
122
+ verbose: Show detailed output during execution
123
+ cache_key: Cache key for deterministic behavior across runs
124
+ debug: Enable debug mode for step-by-step execution
125
+ script: Optional script steps to control scenario flow
126
+
127
+ Returns:
128
+ ScenarioResult containing test outcome, conversation history, and detailed analysis
129
+
130
+ Example:
131
+ ```python
132
+ result = await scenario.run(
133
+ name="help request",
134
+ description="User needs help with a technical problem",
135
+ agents=[
136
+ MyAgentAdapter(),
137
+ scenario.UserSimulatorAgent(),
138
+ scenario.JudgeAgent(criteria=["Provides helpful response"])
139
+ ]
140
+ )
141
+
142
+ print(f"Test {'PASSED' if result.success else 'FAILED'}")
143
+ print(f"Reasoning: {result.reasoning}")
144
+ ```
145
+ """
146
+
147
+ configure = ScenarioConfig.configure
148
+ """
149
+ Set global configuration settings for all scenario executions.
150
+
151
+ This function allows you to configure default behavior that will be applied
152
+ to all scenarios unless explicitly overridden in individual scenario runs.
153
+
154
+ Args:
155
+ default_model: Default LLM model identifier for user simulator and judge agents
156
+ max_turns: Maximum number of conversation turns before timeout (default: 10)
157
+ verbose: Enable verbose output during scenario execution
158
+ cache_key: Cache key for deterministic scenario behavior across runs
159
+ debug: Enable debug mode for step-by-step execution with user intervention
160
+
161
+ Example:
162
+ ```python
163
+ # Set up global defaults
164
+ scenario.configure(
165
+ default_model="openai/gpt-4.1-mini",
166
+ max_turns=15,
167
+ verbose=True,
168
+ cache_key="my-test-suite-v1"
169
+ )
170
+
171
+ # All subsequent scenarios will use these defaults
172
+ result = await scenario.run(...)
173
+ ```
174
+ """
175
+
176
+ default_config = ScenarioConfig.default_config
177
+ """
178
+ Access to the current global configuration settings.
179
+
180
+ This provides read-only access to the default configuration that has been
181
+ set via scenario.configure(). Useful for debugging or conditional logic
182
+ based on current settings.
183
+
184
+ Example:
185
+ ```python
186
+ if scenario.default_config and scenario.default_config.debug:
187
+ print("Debug mode is enabled")
188
+ ```
189
+ """
190
+
191
+ cache = scenario_cache
192
+ """
193
+ Decorator for caching function calls during scenario execution.
194
+
195
+ This decorator enables deterministic testing by caching LLM calls and other
196
+ non-deterministic operations based on scenario configuration and function arguments.
197
+ Results are cached when a cache_key is configured, making tests repeatable and faster.
198
+
199
+ Args:
200
+ ignore: List of argument names to exclude from cache key computation
201
+
202
+ Example:
203
+ ```python
204
+ class MyAgent:
205
+ @scenario.cache(ignore=["self"])
206
+ def invoke(self, message: str) -> str:
207
+ # This LLM call will be cached when cache_key is set
208
+ return llm_client.complete(model="gpt-4", prompt=message)
209
+
210
+ # Enable caching for deterministic tests
211
+ scenario.configure(cache_key="test-suite-v1")
212
+ ```
213
+ """
214
+
17
215
  __all__ = [
18
- "Scenario",
19
- "TestingAgent",
216
+ # Functions
217
+ "run",
218
+ "configure",
219
+ "default_config",
220
+ "cache",
221
+
222
+ # Script
223
+ "message",
224
+ "proceed",
225
+ "succeed",
226
+ "fail",
227
+ "judge",
228
+ "agent",
229
+ "user",
230
+
231
+ # Types
20
232
  "ScenarioResult",
233
+ "AgentInput",
234
+ "AgentRole",
21
235
  "ScenarioConfig",
236
+ "AgentReturnTypes",
237
+
238
+ # Classes
239
+ "ScenarioExecutor",
240
+ "ScenarioState",
241
+ "AgentAdapter",
242
+ "UserSimulatorAgent",
243
+ "JudgeAgent",
244
+
245
+ # Plugins
22
246
  "pytest_configure",
23
247
  "scenario_reporter",
24
248
  "scenario_cache",