langtrace-python-sdk 3.3.23__py3-none-any.whl → 3.3.25__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,9 +1,7 @@
1
1
  from examples.awsbedrock_examples.converse import (
2
- use_converse_stream,
3
- use_converse,
4
2
  use_invoke_model_anthropic,
5
- use_invoke_model_cohere,
6
- use_invoke_model_amazon,
3
+ use_invoke_model_titan,
4
+ use_invoke_model_llama,
7
5
  )
8
6
  from langtrace_python_sdk import langtrace, with_langtrace_root_span
9
7
 
@@ -12,8 +10,9 @@ class AWSBedrockRunner:
12
10
  @with_langtrace_root_span("AWS_Bedrock")
13
11
  def run(self):
14
12
 
15
- use_converse_stream()
16
- use_converse()
17
- use_invoke_model_anthropic()
18
- use_invoke_model_cohere()
19
- use_invoke_model_amazon()
13
+ # use_converse_stream()
14
+ # use_converse()
15
+ # use_invoke_model_anthropic(stream=True)
16
+ # use_invoke_model_cohere()
17
+ # use_invoke_model_llama(stream=False)
18
+ use_invoke_model_titan(stream=False)
@@ -88,6 +88,12 @@ def use_invoke_model_titan(stream=False):
88
88
  response = brt.invoke_model_with_response_stream(
89
89
  body=body, modelId=modelId, accept=accept, contentType=contentType
90
90
  )
91
+ # Extract and print the response text in real-time.
92
+ for event in response["body"]:
93
+ chunk = json.loads(event["chunk"]["bytes"])
94
+ if "outputText" in chunk:
95
+ print(chunk["outputText"], end="")
96
+
91
97
  else:
92
98
  response = brt.invoke_model(
93
99
  body=body, modelId=modelId, accept=accept, contentType=contentType
@@ -130,7 +136,8 @@ def use_invoke_model_anthropic(stream=False):
130
136
  for event in stream_response:
131
137
  chunk = event.get("chunk")
132
138
  if chunk:
133
- print(json.loads(chunk.get("bytes").decode()))
139
+ # print(json.loads(chunk.get("bytes").decode()))
140
+ pass
134
141
 
135
142
  else:
136
143
  response = brt.invoke_model(
@@ -141,7 +148,7 @@ def use_invoke_model_anthropic(stream=False):
141
148
  print(response_body.get("completion"))
142
149
 
143
150
 
144
- def use_invoke_model_llama():
151
+ def use_invoke_model_llama(stream=False):
145
152
  model_id = "meta.llama3-8b-instruct-v1:0"
146
153
  prompt = "What is the capital of France?"
147
154
  max_gen_len = 128
@@ -157,11 +164,18 @@ def use_invoke_model_llama():
157
164
  "top_p": top_p,
158
165
  }
159
166
  )
160
- response = brt.invoke_model(body=body, modelId=model_id)
161
-
162
- response_body = json.loads(response.get("body").read())
163
167
 
164
- return response_body
168
+ if stream:
169
+ response = brt.invoke_model_with_response_stream(body=body, modelId=model_id)
170
+ for event in response["body"]:
171
+ chunk = json.loads(event["chunk"]["bytes"])
172
+ if "generation" in chunk:
173
+ # print(chunk["generation"], end="")
174
+ pass
175
+ else:
176
+ response = brt.invoke_model(body=body, modelId=model_id)
177
+ response_body = json.loads(response.get("body").read())
178
+ return response_body
165
179
 
166
180
 
167
181
  # print(get_foundation_models())
@@ -10,6 +10,7 @@ TIKTOKEN_MODEL_MAPPING = {
10
10
 
11
11
  SERVICE_PROVIDERS = {
12
12
  "ANTHROPIC": "Anthropic",
13
+ "ARCH": "Arch",
13
14
  "AZURE": "Azure",
14
15
  "CHROMA": "Chroma",
15
16
  "CREWAI": "CrewAI",
@@ -16,9 +16,7 @@ limitations under the License.
16
16
 
17
17
  import json
18
18
 
19
- from langtrace_python_sdk.instrumentation.aws_bedrock.bedrock_streaming_wrapper import (
20
- StreamingWrapper,
21
- )
19
+ from wrapt import ObjectProxy
22
20
  from .stream_body_wrapper import BufferedStreamBody
23
21
  from functools import wraps
24
22
  from langtrace.trace_attributes import (
@@ -87,6 +85,11 @@ def patch_aws_bedrock(tracer, version):
87
85
 
88
86
  client = wrapped(*args, **kwargs)
89
87
  client.invoke_model = patch_invoke_model(client.invoke_model, tracer, version)
88
+ client.invoke_model_with_response_stream = (
89
+ patch_invoke_model_with_response_stream(
90
+ client.invoke_model_with_response_stream, tracer, version
91
+ )
92
+ )
90
93
 
91
94
  client.converse = patch_converse(client.converse, tracer, version)
92
95
  client.converse_stream = patch_converse_stream(
@@ -186,6 +189,56 @@ def patch_invoke_model(original_method, tracer, version):
186
189
  return traced_method
187
190
 
188
191
 
192
+ def patch_invoke_model_with_response_stream(original_method, tracer, version):
193
+ @wraps(original_method)
194
+ def traced_method(*args, **kwargs):
195
+ modelId = kwargs.get("modelId")
196
+ (vendor, _) = modelId.split(".")
197
+ span_attributes = {
198
+ **get_langtrace_attributes(version, vendor, vendor_type="framework"),
199
+ **get_extra_attributes(),
200
+ }
201
+ span = tracer.start_span(
202
+ name=get_span_name("aws_bedrock.invoke_model_with_response_stream"),
203
+ kind=SpanKind.CLIENT,
204
+ context=set_span_in_context(trace.get_current_span()),
205
+ )
206
+ set_span_attributes(span, span_attributes)
207
+ response = original_method(*args, **kwargs)
208
+ if span.is_recording():
209
+ handle_streaming_call(span, kwargs, response)
210
+ return response
211
+
212
+ return traced_method
213
+
214
+
215
+ def handle_streaming_call(span, kwargs, response):
216
+
217
+ def stream_finished(response_body):
218
+ request_body = json.loads(kwargs.get("body"))
219
+
220
+ (vendor, model) = kwargs.get("modelId").split(".")
221
+
222
+ set_span_attribute(span, SpanAttributes.LLM_REQUEST_MODEL, model)
223
+ set_span_attribute(span, SpanAttributes.LLM_RESPONSE_MODEL, model)
224
+
225
+ if vendor == "amazon":
226
+ set_amazon_attributes(span, request_body, response_body)
227
+
228
+ if vendor == "anthropic":
229
+ if "prompt" in request_body:
230
+ set_anthropic_completions_attributes(span, request_body, response_body)
231
+ elif "messages" in request_body:
232
+ set_anthropic_messages_attributes(span, request_body, response_body)
233
+
234
+ if vendor == "meta":
235
+ set_llama_meta_attributes(span, request_body, response_body)
236
+
237
+ span.end()
238
+
239
+ response["body"] = StreamingBedrockWrapper(response["body"], stream_finished)
240
+
241
+
189
242
  def handle_call(span, kwargs, response):
190
243
  modelId = kwargs.get("modelId")
191
244
  (vendor, model_name) = modelId.split(".")
@@ -195,7 +248,6 @@ def handle_call(span, kwargs, response):
195
248
  request_body = json.loads(kwargs.get("body"))
196
249
  response_body = json.loads(response.get("body").read())
197
250
 
198
- set_span_attribute(span, SpanAttributes.LLM_SYSTEM, vendor)
199
251
  set_span_attribute(span, SpanAttributes.LLM_RESPONSE_MODEL, modelId)
200
252
  set_span_attribute(span, SpanAttributes.LLM_REQUEST_MODEL, modelId)
201
253
 
@@ -222,12 +274,18 @@ def set_llama_meta_attributes(span, request_body, response_body):
222
274
  set_span_attribute(
223
275
  span, SpanAttributes.LLM_REQUEST_MAX_TOKENS, request_body.get("max_gen_len")
224
276
  )
277
+ if "invocation_metrics" in response_body:
278
+ input_tokens = response_body.get("invocation_metrics").get("inputTokenCount")
279
+ output_tokens = response_body.get("invocation_metrics").get("outputTokenCount")
280
+ else:
281
+ input_tokens = response_body.get("prompt_token_count")
282
+ output_tokens = response_body.get("generation_token_count")
225
283
 
226
284
  set_usage_attributes(
227
285
  span,
228
286
  {
229
- "input_tokens": response_body.get("prompt_token_count"),
230
- "output_tokens": response_body.get("generation_token_count"),
287
+ "input_tokens": input_tokens,
288
+ "output_tokens": output_tokens,
231
289
  },
232
290
  )
233
291
 
@@ -245,7 +303,6 @@ def set_llama_meta_attributes(span, request_body, response_body):
245
303
  }
246
304
  ]
247
305
  set_span_attribute(span, SpanAttributes.LLM_PROMPTS, json.dumps(prompts))
248
- print(completions)
249
306
  set_event_completion(span, completions)
250
307
 
251
308
 
@@ -257,13 +314,22 @@ def set_amazon_attributes(span, request_body, response_body):
257
314
  "content": request_body.get("inputText"),
258
315
  }
259
316
  ]
260
- completions = [
261
- {
262
- "role": "assistant",
263
- "content": result.get("outputText"),
264
- }
265
- for result in response_body.get("results")
266
- ]
317
+ if "results" in response_body:
318
+ completions = [
319
+ {
320
+ "role": "assistant",
321
+ "content": result.get("outputText"),
322
+ }
323
+ for result in response_body.get("results")
324
+ ]
325
+
326
+ else:
327
+ completions = [
328
+ {
329
+ "role": "assistant",
330
+ "content": response_body.get("outputText"),
331
+ }
332
+ ]
267
333
  set_span_attribute(
268
334
  span, SpanAttributes.LLM_REQUEST_MAX_TOKENS, config.get("maxTokenCount")
269
335
  )
@@ -272,13 +338,19 @@ def set_amazon_attributes(span, request_body, response_body):
272
338
  )
273
339
  set_span_attribute(span, SpanAttributes.LLM_REQUEST_TOP_P, config.get("topP"))
274
340
  set_span_attribute(span, SpanAttributes.LLM_PROMPTS, json.dumps(prompts))
341
+ input_tokens = response_body.get("inputTextTokenCount")
342
+ if "results" in response_body:
343
+ output_tokens = sum(
344
+ int(result.get("tokenCount")) for result in response_body.get("results")
345
+ )
346
+ else:
347
+ output_tokens = response_body.get("outputTextTokenCount")
348
+
275
349
  set_usage_attributes(
276
350
  span,
277
351
  {
278
- "input_tokens": response_body.get("inputTextTokenCount"),
279
- "output_tokens": sum(
280
- int(result.get("tokenCount")) for result in response_body.get("results")
281
- ),
352
+ "input_tokens": input_tokens,
353
+ "output_tokens": output_tokens,
282
354
  },
283
355
  )
284
356
  set_event_completion(span, completions)
@@ -320,7 +392,7 @@ def set_anthropic_messages_attributes(span, request_body, response_body):
320
392
  set_span_attribute(
321
393
  span,
322
394
  SpanAttributes.LLM_REQUEST_MAX_TOKENS,
323
- request_body.get("max_tokens_to_sample"),
395
+ request_body.get("max_tokens_to_sample") or request_body.get("max_tokens"),
324
396
  )
325
397
  set_span_attribute(
326
398
  span,
@@ -394,3 +466,62 @@ def set_span_streaming_response(span, response):
394
466
  set_event_completion(
395
467
  span, [{"role": role or "assistant", "content": streaming_response}]
396
468
  )
469
+
470
+
471
+ class StreamingBedrockWrapper(ObjectProxy):
472
+ def __init__(
473
+ self,
474
+ response,
475
+ stream_done_callback=None,
476
+ ):
477
+ super().__init__(response)
478
+
479
+ self._stream_done_callback = stream_done_callback
480
+ self._accumulating_body = {"generation": ""}
481
+
482
+ def __iter__(self):
483
+ for event in self.__wrapped__:
484
+ self._process_event(event)
485
+ yield event
486
+
487
+ def _process_event(self, event):
488
+ chunk = event.get("chunk")
489
+ if not chunk:
490
+ return
491
+
492
+ decoded_chunk = json.loads(chunk.get("bytes").decode())
493
+ type = decoded_chunk.get("type")
494
+
495
+ if type is None and "outputText" in decoded_chunk:
496
+ self._stream_done_callback(decoded_chunk)
497
+ return
498
+ if "generation" in decoded_chunk:
499
+ self._accumulating_body["generation"] += decoded_chunk.get("generation")
500
+
501
+ if type == "message_start":
502
+ self._accumulating_body = decoded_chunk.get("message")
503
+ elif type == "content_block_start":
504
+ self._accumulating_body["content"].append(
505
+ decoded_chunk.get("content_block")
506
+ )
507
+ elif type == "content_block_delta":
508
+ self._accumulating_body["content"][-1]["text"] += decoded_chunk.get(
509
+ "delta"
510
+ ).get("text")
511
+
512
+ elif self.has_finished(type, decoded_chunk):
513
+ self._accumulating_body["invocation_metrics"] = decoded_chunk.get(
514
+ "amazon-bedrock-invocationMetrics"
515
+ )
516
+ self._stream_done_callback(self._accumulating_body)
517
+
518
+ def has_finished(self, type, chunk):
519
+ if type and type == "message_stop":
520
+ return True
521
+
522
+ if "completionReason" in chunk and chunk.get("completionReason") == "FINISH":
523
+ return True
524
+
525
+ if "stop_reason" in chunk and chunk.get("stop_reason") is not None:
526
+ return True
527
+ return False
@@ -254,6 +254,8 @@ def chat_completions_create(version: str, tracer: Tracer) -> Callable:
254
254
  service_provider = SERVICE_PROVIDERS["XAI"]
255
255
  elif "deepseek" in get_base_url(instance):
256
256
  service_provider = SERVICE_PROVIDERS["DEEPSEEK"]
257
+ elif ":12000" in get_base_url(instance) or ":10000" in get_base_url(instance):
258
+ service_provider = SERVICE_PROVIDERS["ARCH"]
257
259
  llm_prompts = []
258
260
  for item in kwargs.get("messages", []):
259
261
  tools = get_tool_calls(item)
@@ -348,6 +350,8 @@ def async_chat_completions_create(version: str, tracer: Tracer) -> Callable:
348
350
  service_provider = SERVICE_PROVIDERS["XAI"]
349
351
  elif "deepseek" in get_base_url(instance):
350
352
  service_provider = SERVICE_PROVIDERS["DEEPSEEK"]
353
+ elif ":12000" in get_base_url(instance) or ":10000" in get_base_url(instance):
354
+ service_provider = SERVICE_PROVIDERS["ARCH"]
351
355
  llm_prompts = []
352
356
  for item in kwargs.get("messages", []):
353
357
  tools = get_tool_calls(item)
@@ -447,6 +451,8 @@ def embeddings_create(version: str, tracer: Tracer) -> Callable:
447
451
  service_provider = SERVICE_PROVIDERS["XAI"]
448
452
  elif "deepseek" in base_url:
449
453
  service_provider = SERVICE_PROVIDERS["DEEPSEEK"]
454
+ elif ":12000" in base_url or ":10000" in base_url:
455
+ service_provider = SERVICE_PROVIDERS["ARCH"]
450
456
 
451
457
  span_attributes = {
452
458
  **get_langtrace_attributes(version, service_provider, vendor_type="llm"),
@@ -533,6 +539,8 @@ def async_embeddings_create(version: str, tracer: Tracer) -> Callable:
533
539
  service_provider = SERVICE_PROVIDERS["XAI"]
534
540
  elif "deepseek" in base_url:
535
541
  service_provider = SERVICE_PROVIDERS["DEEPSEEK"]
542
+ elif ":12000" in base_url or ":10000" in base_url:
543
+ service_provider = SERVICE_PROVIDERS["ARCH"]
536
544
 
537
545
  span_attributes = {
538
546
  **get_langtrace_attributes(version, service_provider, vendor_type="llm"),
@@ -1 +1 @@
1
- __version__ = "3.3.23"
1
+ __version__ = "3.3.25"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langtrace-python-sdk
3
- Version: 3.3.23
3
+ Version: 3.3.25
4
4
  Summary: Python SDK for LangTrace
5
5
  Project-URL: Homepage, https://github.com/Scale3-Labs/langtrace-python-sdk
6
6
  Author-email: Scale3 Labs <engineering@scale3labs.com>
@@ -3,8 +3,8 @@ examples/anthropic_example/__init__.py,sha256=03us1YuvAJR6fqXX8NH2kROBfTmyz7KzFV
3
3
  examples/anthropic_example/completion.py,sha256=3_YEZrt0BLVNJT_RbLXg6JGP2bweuc_HPC2MWR73tOM,713
4
4
  examples/autogen_example/__init__.py,sha256=UJgpzL2yOmzir-DAiGFR1PB1Zz3YcQvYcq5bCN8nl0A,158
5
5
  examples/autogen_example/main.py,sha256=6OJ73VCdHgVrqnekF1S1nK8mXCUABLbUUkQtr7wOCdw,2312
6
- examples/awsbedrock_examples/__init__.py,sha256=lVm2bgPNb4h83xRW2JbTsYf0DrZjrUr29g7-QleO4iQ,505
7
- examples/awsbedrock_examples/converse.py,sha256=-J0Hz6OSnIpO4idHol9nxL_Ri9GWwq95aqqi3wlCTRI,5317
6
+ examples/awsbedrock_examples/__init__.py,sha256=sQ6dq-K2vunY9Y8r8uS-ZwrqKd8XnvV-BukWQ2Gm0fA,537
7
+ examples/awsbedrock_examples/converse.py,sha256=41CyEla9vFT53ugLJYYHV6kchLEAfXZKMncoJHx1sds,5950
8
8
  examples/azureopenai_example/__init__.py,sha256=PaZM90r6VN4eSOXxb6wGsyhf9-RJCNqBypzk1Xa2GJI,271
9
9
  examples/azureopenai_example/completion.py,sha256=K_GeU0TfJ9lLDfW5VI0Lmm8_I0JXf1x9Qi83ImJ350c,668
10
10
  examples/cerebras_example/__init__.py,sha256=ydfNi0DjFMGVcfo79XVG3VEbzIrHo5wYBgSJzl_asNA,295
@@ -111,7 +111,7 @@ examples/weaviate_example/__init__.py,sha256=8JMDBsRSEV10HfTd-YC7xb4txBjD3la56sn
111
111
  examples/weaviate_example/query_text.py,sha256=wPHQTc_58kPoKTZMygVjTj-2ZcdrIuaausJfMxNQnQc,127162
112
112
  langtrace_python_sdk/__init__.py,sha256=VZM6i71NR7pBQK6XvJWRelknuTYUhqwqE7PlicKa5Wg,1166
113
113
  langtrace_python_sdk/langtrace.py,sha256=jvfrnkAxc41dmIvwNuVcXwCWyV2vqhGV5qAr5KiMHBA,13239
114
- langtrace_python_sdk/version.py,sha256=Q6BbHmX4u_5OYiZVZRbbX2mSRD5cDGkLiRAb8Pu2590,23
114
+ langtrace_python_sdk/version.py,sha256=az2Dhu6yZKkkThV8SgI4rYzbUuCu_ZG2DXjZd5fMiF0,23
115
115
  langtrace_python_sdk/constants/__init__.py,sha256=3CNYkWMdd1DrkGqzLUgNZXjdAlM6UFMlf_F-odAToyc,146
116
116
  langtrace_python_sdk/constants/exporter/langtrace_exporter.py,sha256=EVCrouYCpY98f0KSaKr4PzNxPULTZZO6dSA_crEOyJU,106
117
117
  langtrace_python_sdk/constants/instrumentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -119,7 +119,7 @@ langtrace_python_sdk/constants/instrumentation/anthropic.py,sha256=YX3llt3zwDY6X
119
119
  langtrace_python_sdk/constants/instrumentation/aws_bedrock.py,sha256=QwKtO4NBarOZoGkt5cFCcpxAw3zvZxcMMWBbzPPGv-g,422
120
120
  langtrace_python_sdk/constants/instrumentation/chroma.py,sha256=hiPGYdHS0Yj4Kh3eaYBbuCAl_swqIygu80yFqkOgdak,955
121
121
  langtrace_python_sdk/constants/instrumentation/cohere.py,sha256=9yD133VdrYZ5BoJR4nJHlj67gHEImB9-KsD-NkzHW1I,1159
122
- langtrace_python_sdk/constants/instrumentation/common.py,sha256=DPDX8icb0Tj3OrgpbL9WeiIaMG7Si2IKiSL8YRwwor4,1203
122
+ langtrace_python_sdk/constants/instrumentation/common.py,sha256=0_38AXPFLZnnI6T7wMiSDzTP8AAT-dmNi7Mui0q5WMg,1223
123
123
  langtrace_python_sdk/constants/instrumentation/embedchain.py,sha256=HodCJvaFjILoOG50OwFObxfVxt_8VUaIAIqvgoN3tzo,278
124
124
  langtrace_python_sdk/constants/instrumentation/gemini.py,sha256=UAmfgg9FM7uNeOCdPfWlir6OIH-8BoxFGPRpdBd9ZZs,358
125
125
  langtrace_python_sdk/constants/instrumentation/groq.py,sha256=VFXmIl4aqGY_fS0PAmjPj_Qm7Tibxbx7Ur_e7rQpqXc,134
@@ -147,7 +147,7 @@ langtrace_python_sdk/instrumentation/autogen/patch.py,sha256=7Sq3C8Q5tT27UkWXd1S
147
147
  langtrace_python_sdk/instrumentation/aws_bedrock/__init__.py,sha256=IHqPgR1kdDvcoV1nUb-B21PaJ_qbQB0jc011Udi1ioU,96
148
148
  langtrace_python_sdk/instrumentation/aws_bedrock/bedrock_streaming_wrapper.py,sha256=_EMlxfBhjNsB-2TrP0ek-vx1CK5bpgjXPmQWNT9eBcE,1370
149
149
  langtrace_python_sdk/instrumentation/aws_bedrock/instrumentation.py,sha256=M7Dyw1tG18ptD0ctCT9yHzO4UyKCcS8JkHg9WVaz9Ck,1473
150
- langtrace_python_sdk/instrumentation/aws_bedrock/patch.py,sha256=cZ20LS0lNCKoEeeJLVEG5aduuGrapu_u4v8Cl-z6gLg,13406
150
+ langtrace_python_sdk/instrumentation/aws_bedrock/patch.py,sha256=KKNp9gKzoj9YuLrqA0VMDe0FUSBzKtrbXiNN1hdciJM,17941
151
151
  langtrace_python_sdk/instrumentation/aws_bedrock/stream_body_wrapper.py,sha256=ENdhRVHBhdkIlJIc_tkf8ASijUzZdVZM-oonNLdNM48,1584
152
152
  langtrace_python_sdk/instrumentation/cerebras/__init__.py,sha256=9rHNg7PWcZ7a9jExQZlqwWPkvLGcPT-DGWot0_6Bx9k,92
153
153
  langtrace_python_sdk/instrumentation/cerebras/instrumentation.py,sha256=WPsaYxHanYnoxGjDk7fILGJSnSRUs_zoQ30JCyPBMII,1927
@@ -206,7 +206,7 @@ langtrace_python_sdk/instrumentation/ollama/instrumentation.py,sha256=jdsvkqUJAA
206
206
  langtrace_python_sdk/instrumentation/ollama/patch.py,sha256=w99r9wCCVDdJnZQEezYE2lW_iNFEtrldt9vq3ISAsag,5375
207
207
  langtrace_python_sdk/instrumentation/openai/__init__.py,sha256=VPHRNCQEdkizIVP2d0Uw_a7t8XOTSTprEIB8oboJFbs,95
208
208
  langtrace_python_sdk/instrumentation/openai/instrumentation.py,sha256=PZxI0qfoud1VsKGmJu49YDp0Z9z9TzCR8qxR3uznOMA,2810
209
- langtrace_python_sdk/instrumentation/openai/patch.py,sha256=u8qlCooN-JmGVWLe7jwAeBMHTIi35ktVvL9gWVBfDko,26809
209
+ langtrace_python_sdk/instrumentation/openai/patch.py,sha256=EQRE_b_os6jqdqKOj6XZb58QT3tUyCAcFUiwM0CDDLU,27329
210
210
  langtrace_python_sdk/instrumentation/openai/types.py,sha256=aVkoa7tmAbYfyOhnyMrDaVjQuwhmRNLMthlNtKMtWX8,4311
211
211
  langtrace_python_sdk/instrumentation/pinecone/__init__.py,sha256=DzXyGh9_MGWveJvXULkFwdkf7PbG2s3bAWtT1Dmz7Ok,99
212
212
  langtrace_python_sdk/instrumentation/pinecone/instrumentation.py,sha256=HDXkRITrVPwdQEoOYJOfMzZE_2-vDDvuqHTlD8W1lQw,1845
@@ -277,8 +277,8 @@ tests/pinecone/cassettes/test_query.yaml,sha256=b5v9G3ssUy00oG63PlFUR3JErF2Js-5A
277
277
  tests/pinecone/cassettes/test_upsert.yaml,sha256=neWmQ1v3d03V8WoLl8FoFeeCYImb8pxlJBWnFd_lITU,38607
278
278
  tests/qdrant/conftest.py,sha256=9n0uHxxIjWk9fbYc4bx-uP8lSAgLBVx-cV9UjnsyCHM,381
279
279
  tests/qdrant/test_qdrant.py,sha256=pzjAjVY2kmsmGfrI2Gs2xrolfuaNHz7l1fqGQCjp5_o,3353
280
- langtrace_python_sdk-3.3.23.dist-info/METADATA,sha256=KuERJmhF9i6f40sX0ty1TVq_6zaiAefIEmwTr78vkz8,15676
281
- langtrace_python_sdk-3.3.23.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
282
- langtrace_python_sdk-3.3.23.dist-info/entry_points.txt,sha256=1_b9-qvf2fE7uQNZcbUei9vLpFZBbbh9LrtGw95ssAo,70
283
- langtrace_python_sdk-3.3.23.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
284
- langtrace_python_sdk-3.3.23.dist-info/RECORD,,
280
+ langtrace_python_sdk-3.3.25.dist-info/METADATA,sha256=s4G6wsJb-vgM1moTavHUaw6q_aWzKvpxrLgapDjxOsU,15676
281
+ langtrace_python_sdk-3.3.25.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
282
+ langtrace_python_sdk-3.3.25.dist-info/entry_points.txt,sha256=1_b9-qvf2fE7uQNZcbUei9vLpFZBbbh9LrtGw95ssAo,70
283
+ langtrace_python_sdk-3.3.25.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
284
+ langtrace_python_sdk-3.3.25.dist-info/RECORD,,