langtrace-python-sdk 3.3.11__py3-none-any.whl → 3.3.12__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,173 @@
1
+ from typing import TypedDict, Union, Annotated
2
+ from langchain_core.agents import AgentAction, AgentFinish
3
+ from langchain_core.tools import tool
4
+ import operator
5
+ from dotenv import load_dotenv
6
+ from langchain_openai import ChatOpenAI
7
+
8
+ from langchain import hub
9
+ from langchain.agents import create_openai_tools_agent
10
+ import json
11
+ from langgraph.graph import StateGraph, END
12
+ from langtrace_python_sdk import langtrace, with_langtrace_root_span
13
+
14
+ load_dotenv()
15
+
16
+ langtrace.init(write_spans_to_console=False)
17
+
18
+
19
+ class AgentState(TypedDict):
20
+ input: str
21
+ agent_out: Union[AgentAction, AgentFinish, None]
22
+ intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
23
+
24
+
25
+ ehi_information = """Title: EHI: End-to-end Learning of Hierarchical Index for
26
+ Efficient Dense Retrieval
27
+ Summary: Dense embedding-based retrieval is now the industry
28
+ standard for semantic search and ranking problems, like obtaining relevant web
29
+ documents for a given query. Such techniques use a two-stage process: (a)
30
+ contrastive learning to train a dual encoder to embed both the query and
31
+ documents and (b) approximate nearest neighbor search (ANNS) for finding similar
32
+ documents for a given query. These two stages are disjoint; the learned
33
+ embeddings might be ill-suited for the ANNS method and vice-versa, leading to
34
+ suboptimal performance. In this work, we propose End-to-end Hierarchical
35
+ Indexing -- EHI -- that jointly learns both the embeddings and the ANNS
36
+ structure to optimize retrieval performance. EHI uses a standard dual encoder
37
+ model for embedding queries and documents while learning an inverted file index
38
+ (IVF) style tree structure for efficient ANNS. To ensure stable and efficient
39
+ learning of discrete tree-based ANNS structure, EHI introduces the notion of
40
+ dense path embedding that captures the position of a query/document in the tree.
41
+ We demonstrate the effectiveness of EHI on several benchmarks, including
42
+ de-facto industry standard MS MARCO (Dev set and TREC DL19) datasets. For
43
+ example, with the same compute budget, EHI outperforms state-of-the-art (SOTA)
44
+ in by 0.6% (MRR@10) on MS MARCO dev set and by 4.2% (nDCG@10) on TREC DL19
45
+ benchmarks.
46
+ Author(s): Ramnath Kumar, Anshul Mittal, Nilesh Gupta, Aditya Kusupati,
47
+ Inderjit Dhillon, Prateek Jain
48
+ Source: https://arxiv.org/pdf/2310.08891.pdf"""
49
+
50
+
51
+ @tool("search")
52
+ def search_tool(query: str):
53
+ """Searches for information on the topic of artificial intelligence (AI).
54
+ Cannot be used to research any other topics. Search query must be provided
55
+ in natural language and be verbose."""
56
+ # this is a "RAG" emulator
57
+ return ehi_information
58
+
59
+
60
+ @tool("final_answer")
61
+ def final_answer_tool(answer: str, source: str):
62
+ """Returns a natural language response to the user in `answer`, and a
63
+ `source` which provides citations for where this information came from.
64
+ """
65
+ return ""
66
+
67
+
68
+ llm = ChatOpenAI()
69
+ prompt = hub.pull("hwchase17/openai-functions-agent")
70
+
71
+
72
+ query_agent_runnable = create_openai_tools_agent(
73
+ llm=llm, tools=[final_answer_tool, search_tool], prompt=prompt
74
+ )
75
+
76
+
77
+ inputs = {"input": "what are EHI embeddings?", "intermediate_steps": []}
78
+
79
+ agent_out = query_agent_runnable.invoke(inputs)
80
+
81
+
82
+ def run_query_agent(state: list):
83
+ print("> run_query_agent")
84
+ agent_out = query_agent_runnable.invoke(state)
85
+ return {"agent_out": agent_out}
86
+
87
+
88
+ def execute_search(state: list):
89
+ print("> execute_search")
90
+ action = state["agent_out"]
91
+ tool_call = action[-1].message_log[-1].additional_kwargs["tool_calls"][-1]
92
+ out = search_tool.invoke(json.loads(tool_call["function"]["arguments"]))
93
+ return {"intermediate_steps": [{"search": str(out)}]}
94
+
95
+
96
+ def router(state: list):
97
+ print("> router")
98
+ if isinstance(state["agent_out"], list):
99
+ return state["agent_out"][-1].tool
100
+ else:
101
+ return "error"
102
+
103
+
104
+ # finally, we will have a single LLM call that MUST use the final_answer structure
105
+ final_answer_llm = llm.bind_tools([final_answer_tool], tool_choice="final_answer")
106
+
107
+
108
+ # this forced final_answer LLM call will be used to structure output from our
109
+ # RAG endpoint
110
+ def rag_final_answer(state: list):
111
+ print("> final_answer")
112
+ query = state["input"]
113
+ context = state["intermediate_steps"][-1]
114
+
115
+ prompt = f"""You are a helpful assistant, answer the user's question using the
116
+ context provided.
117
+
118
+ CONTEXT: {context}
119
+
120
+ QUESTION: {query}
121
+ """
122
+ out = final_answer_llm.invoke(prompt)
123
+ function_call = out.additional_kwargs["tool_calls"][-1]["function"]["arguments"]
124
+ return {"agent_out": function_call}
125
+
126
+
127
+ # we use the same forced final_answer LLM call to handle incorrectly formatted
128
+ # output from our query_agent
129
+ def handle_error(state: list):
130
+ print("> handle_error")
131
+ query = state["input"]
132
+ prompt = f"""You are a helpful assistant, answer the user's question.
133
+
134
+ QUESTION: {query}
135
+ """
136
+ out = final_answer_llm.invoke(prompt)
137
+ function_call = out.additional_kwargs["tool_calls"][-1]["function"]["arguments"]
138
+ return {"agent_out": function_call}
139
+
140
+
141
+ @with_langtrace_root_span("run_graph")
142
+ def run_graph():
143
+ graph = StateGraph(AgentState)
144
+
145
+ # we have four nodes that will consume our agent state and modify
146
+ # our agent state based on some internal process
147
+ graph.add_node("query_agent", run_query_agent)
148
+ graph.add_node("search", execute_search)
149
+ graph.add_node("error", handle_error)
150
+ graph.add_node("rag_final_answer", rag_final_answer)
151
+ # our graph will always begin with the query agent
152
+ graph.set_entry_point("query_agent")
153
+ # conditional edges are controlled by our router
154
+ graph.add_conditional_edges(
155
+ "query_agent",
156
+ router,
157
+ {
158
+ "search": "search",
159
+ "error": "error",
160
+ "final_answer": END,
161
+ },
162
+ )
163
+ graph.add_edge("search", "rag_final_answer")
164
+ graph.add_edge("error", END)
165
+ graph.add_edge("rag_final_answer", END)
166
+
167
+ runnable = graph.compile()
168
+
169
+ return runnable.invoke({"input": "what are EHI embeddings?"})
170
+
171
+
172
+ if __name__ == "__main__":
173
+ run_graph()
@@ -223,7 +223,7 @@ class CrewAISpanAttributes:
223
223
  for task in tasks:
224
224
  self.crew["tasks"].append(
225
225
  {
226
- "agent": task.agent.role,
226
+ "agent": task.agent.role if task.agent else None,
227
227
  "description": task.description,
228
228
  "async_execution": task.async_execution,
229
229
  "expected_output": task.expected_output,
@@ -41,7 +41,8 @@ class LanggraphInstrumentation(BaseInstrumentor):
41
41
  # List of modules to patch, with their corresponding patch names
42
42
  modules_to_patch = [
43
43
  (
44
- "langgraph.graph.graph",
44
+ "langgraph.graph.state", # Updated module path
45
+ "StateGraph", # Updated class name
45
46
  [
46
47
  "add_node",
47
48
  "add_edge",
@@ -49,26 +50,20 @@ class LanggraphInstrumentation(BaseInstrumentor):
49
50
  "set_finish_point",
50
51
  "add_conditional_edges",
51
52
  ],
52
- ),
53
+ )
53
54
  ]
54
55
 
55
- for module_name, methods in modules_to_patch:
56
- module = importlib.import_module(module_name)
57
- for name, obj in inspect.getmembers(
58
- module,
59
- lambda member: inspect.isclass(member)
60
- and member.__module__ == module.__name__,
61
- ):
62
- for method_name, _ in inspect.getmembers(
63
- obj, predicate=inspect.isfunction
64
- ):
65
- if method_name in methods:
66
- module = f"{name}.{method_name}"
67
- wrap_function_wrapper(
68
- module_name,
69
- module,
70
- patch_graph_methods(module, tracer, version),
71
- )
56
+ for module_name, class_name, methods in modules_to_patch:
57
+ for method_name in methods:
58
+ # Construct the correct path for the method
59
+ method_path = f"{class_name}.{method_name}"
60
+ wrap_function_wrapper(
61
+ module_name,
62
+ method_path,
63
+ patch_graph_methods(
64
+ f"{module_name}.{method_path}", tracer, version
65
+ ),
66
+ )
72
67
 
73
68
  def _uninstrument(self, **kwargs):
74
69
  pass
@@ -30,6 +30,7 @@ from langtrace_python_sdk.constants.instrumentation.common import (
30
30
  from importlib_metadata import version as v
31
31
 
32
32
  from langtrace_python_sdk.constants import LANGTRACE_SDK_NAME
33
+ from langtrace_python_sdk.utils.llm import set_span_attributes
33
34
 
34
35
 
35
36
  def patch_graph_methods(method_name, tracer, version):
@@ -57,9 +58,7 @@ def patch_graph_methods(method_name, tracer, version):
57
58
  kind=SpanKind.CLIENT,
58
59
  context=set_span_in_context(trace.get_current_span()),
59
60
  ) as span:
60
- for field, value in attributes.model_dump(by_alias=True).items():
61
- if value is not None:
62
- span.set_attribute(field, value)
61
+ set_span_attributes(span, attributes)
63
62
  try:
64
63
  # Attempt to call the original method
65
64
  result = wrapped(*args, **kwargs)
@@ -1 +1 @@
1
- __version__ = "3.3.11"
1
+ __version__ = "3.3.12"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: langtrace-python-sdk
3
- Version: 3.3.11
3
+ Version: 3.3.12
4
4
  Summary: Python SDK for LangTrace
5
5
  Project-URL: Homepage, https://github.com/Scale3-Labs/langtrace-python-sdk
6
6
  Author-email: Scale3 Labs <engineering@scale3labs.com>
@@ -61,6 +61,7 @@ examples/langchain_example/langgraph_example.py,sha256=7C2a4Sg0PKbbab03CVkStO3Mz
61
61
  examples/langchain_example/langgraph_example_tools.py,sha256=rFwgQYRngeyCz9PuBxnllp5t5PIHk8d-UDKwCQTgkxw,4208
62
62
  examples/langchain_example/sagemaker.py,sha256=V-rTZRyaErHCuo3kfrrZD8AELHJVi3wF7n1YrixfF1s,2330
63
63
  examples/langchain_example/tool.py,sha256=8T8_IDbgA58XbsfyH5_xhA8ZKQfyfyFxF8wor-PsRjA,2556
64
+ examples/langgraph_example/main.py,sha256=G1bvJ83KmBk6ibs6UFHNaLFTeg9-72dEy2UyhGd7ssI,6031
64
65
  examples/litellm_example/basic.py,sha256=UDbv6-SV7H5_Ogk_IOL22ZX4hv5I_CKCyEHl3r8pf7c,2338
65
66
  examples/litellm_example/config.yaml,sha256=kSAAspBhibtc4D7Abd2vYqm3uIqHR1kjE8nZrSTJqYQ,303
66
67
  examples/litellm_example/proxy_basic.py,sha256=glQvcQ3rYD1QTyQfTwmzlPdzGMiIceRhAzE3_O94_1U,366
@@ -105,7 +106,7 @@ examples/weaviate_example/__init__.py,sha256=8JMDBsRSEV10HfTd-YC7xb4txBjD3la56sn
105
106
  examples/weaviate_example/query_text.py,sha256=wPHQTc_58kPoKTZMygVjTj-2ZcdrIuaausJfMxNQnQc,127162
106
107
  langtrace_python_sdk/__init__.py,sha256=VZM6i71NR7pBQK6XvJWRelknuTYUhqwqE7PlicKa5Wg,1166
107
108
  langtrace_python_sdk/langtrace.py,sha256=TtRWuUiWUB0S7JiQpUsF9lZsiyqPG3m9mMDX-QlDgAw,12601
108
- langtrace_python_sdk/version.py,sha256=8z892wHTeofZFdOEAH717nrRAZ1euxjj23yT75bY2Kg,23
109
+ langtrace_python_sdk/version.py,sha256=VtAFRVGsCMO3HHox_t03uB8rQncuYOsHrAqMM5djlk4,23
109
110
  langtrace_python_sdk/constants/__init__.py,sha256=3CNYkWMdd1DrkGqzLUgNZXjdAlM6UFMlf_F-odAToyc,146
110
111
  langtrace_python_sdk/constants/exporter/langtrace_exporter.py,sha256=d-3Qn5C_NTy1NkmdavZvy-6vePwTC5curN6QMy2haHc,50
111
112
  langtrace_python_sdk/constants/instrumentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -152,7 +153,7 @@ langtrace_python_sdk/instrumentation/cohere/instrumentation.py,sha256=YQFHZIBd7S
152
153
  langtrace_python_sdk/instrumentation/cohere/patch.py,sha256=AnRWIy00XaLdQg670s8FDXoVWai3sF1JKeR70pDuZ7I,20986
153
154
  langtrace_python_sdk/instrumentation/crewai/__init__.py,sha256=_UBKfvQv7l0g2_wnmA5F6CdSAFH0atNOVPd49zsN3aM,88
154
155
  langtrace_python_sdk/instrumentation/crewai/instrumentation.py,sha256=5Umzq8zjEnMEtjZZiMB4DQOPkxZ-1vts7RKC6JWpn24,2969
155
- langtrace_python_sdk/instrumentation/crewai/patch.py,sha256=C2OKKPC-pzfzZWxPc74kHdYsKTX9yRhOgVY47WY9KN8,9109
156
+ langtrace_python_sdk/instrumentation/crewai/patch.py,sha256=VoyOtGKYzaOIu7UnVNTemZeB3LrCIodrrYwmXLdxRw8,9133
156
157
  langtrace_python_sdk/instrumentation/dspy/__init__.py,sha256=tM1srfi_QgyCzrde4izojMrRq2Wm7Dj5QUvVQXIJzkk,84
157
158
  langtrace_python_sdk/instrumentation/dspy/instrumentation.py,sha256=o8URiDvCbZ8LL0I-4xKHkn_Ms2sETBRpn-gOliv3xzQ,2929
158
159
  langtrace_python_sdk/instrumentation/dspy/patch.py,sha256=H7zF4PVdtepOSpzJuEcckKUjnZQYKlY7yhn3dk6xbpY,10458
@@ -175,8 +176,8 @@ langtrace_python_sdk/instrumentation/langchain_core/__init__.py,sha256=kumE_reeq
175
176
  langtrace_python_sdk/instrumentation/langchain_core/instrumentation.py,sha256=szTCveG4IP64rlaY4iZATWv2f38k1_DtfbBU60YlfYk,6730
176
177
  langtrace_python_sdk/instrumentation/langchain_core/patch.py,sha256=CXEfbq6E88X_y3JF7CaEEbNCYzSfig5ztNHW-aiiTic,10918
177
178
  langtrace_python_sdk/instrumentation/langgraph/__init__.py,sha256=eitlHloY-aZ4ZuIEJx61AadEA3G7siyecP-V-lziAr8,101
178
- langtrace_python_sdk/instrumentation/langgraph/instrumentation.py,sha256=SUZZhWSIbcfsF1S5NtEqW8QzkRM_pKAuXB7pwk5tsOU,2526
179
- langtrace_python_sdk/instrumentation/langgraph/patch.py,sha256=PGe1ZywXctB_yYqnp8AtD8Xqj7EZ087-S5_2vLRYhEQ,4987
179
+ langtrace_python_sdk/instrumentation/langgraph/instrumentation.py,sha256=lEm_rcOU4JqXGmhG1C2yrIiPbt9vntvxmU7pZg8NYtE,2313
180
+ langtrace_python_sdk/instrumentation/langgraph/patch.py,sha256=e1cFCDUB8Dwl2ekxgnZ36S2XkWROagRGtxF3Rz5F8RM,4931
180
181
  langtrace_python_sdk/instrumentation/litellm/__init__.py,sha256=8uziCc56rFSRiPkYcrcBRbtppOANkZ7uZssCKAl2MKk,97
181
182
  langtrace_python_sdk/instrumentation/litellm/instrumentation.py,sha256=Km2q_yfZU6nSqPEXG2xbtTSjqv7xSS92Kxqzw-GtQno,2655
182
183
  langtrace_python_sdk/instrumentation/litellm/patch.py,sha256=wGPOlrLo4RHj1lXNv6wOz5H_p4G0XtzhVjgc-2m7Gik,24469
@@ -264,8 +265,8 @@ tests/pinecone/cassettes/test_query.yaml,sha256=b5v9G3ssUy00oG63PlFUR3JErF2Js-5A
264
265
  tests/pinecone/cassettes/test_upsert.yaml,sha256=neWmQ1v3d03V8WoLl8FoFeeCYImb8pxlJBWnFd_lITU,38607
265
266
  tests/qdrant/conftest.py,sha256=9n0uHxxIjWk9fbYc4bx-uP8lSAgLBVx-cV9UjnsyCHM,381
266
267
  tests/qdrant/test_qdrant.py,sha256=pzjAjVY2kmsmGfrI2Gs2xrolfuaNHz7l1fqGQCjp5_o,3353
267
- langtrace_python_sdk-3.3.11.dist-info/METADATA,sha256=ReGla3YZNI-O-8R3BP4gt1Pu8IyfJOer19fvSuz7XJg,15643
268
- langtrace_python_sdk-3.3.11.dist-info/WHEEL,sha256=C2FUgwZgiLbznR-k0b_5k3Ai_1aASOXDss3lzCUsUug,87
269
- langtrace_python_sdk-3.3.11.dist-info/entry_points.txt,sha256=1_b9-qvf2fE7uQNZcbUei9vLpFZBbbh9LrtGw95ssAo,70
270
- langtrace_python_sdk-3.3.11.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
271
- langtrace_python_sdk-3.3.11.dist-info/RECORD,,
268
+ langtrace_python_sdk-3.3.12.dist-info/METADATA,sha256=cTTf-Y1s5PNM4qjMVrGRs-LloSDaUTHJQZ6Lzu44d1s,15643
269
+ langtrace_python_sdk-3.3.12.dist-info/WHEEL,sha256=C2FUgwZgiLbznR-k0b_5k3Ai_1aASOXDss3lzCUsUug,87
270
+ langtrace_python_sdk-3.3.12.dist-info/entry_points.txt,sha256=1_b9-qvf2fE7uQNZcbUei9vLpFZBbbh9LrtGw95ssAo,70
271
+ langtrace_python_sdk-3.3.12.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
272
+ langtrace_python_sdk-3.3.12.dist-info/RECORD,,