langroid 0.59.0b3__py3-none-any.whl → 0.59.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. langroid/agent/done_sequence_parser.py +46 -11
  2. langroid/agent/special/doc_chat_task.py +0 -0
  3. langroid/agent/task.py +44 -7
  4. langroid/language_models/model_info.py +51 -0
  5. langroid/mcp/__init__.py +1 -0
  6. langroid/mcp/server/__init__.py +1 -0
  7. langroid/pydantic_v1/__init__.py +1 -1
  8. {langroid-0.59.0b3.dist-info → langroid-0.59.1.dist-info}/METADATA +4 -1
  9. {langroid-0.59.0b3.dist-info → langroid-0.59.1.dist-info}/RECORD +11 -47
  10. langroid/agent/base.py-e +0 -2216
  11. langroid/agent/chat_agent.py-e +0 -2086
  12. langroid/agent/chat_document.py-e +0 -513
  13. langroid/agent/openai_assistant.py-e +0 -882
  14. langroid/agent/special/arangodb/arangodb_agent.py-e +0 -648
  15. langroid/agent/special/lance_tools.py-e +0 -61
  16. langroid/agent/special/neo4j/neo4j_chat_agent.py-e +0 -430
  17. langroid/agent/task.py-e +0 -2418
  18. langroid/agent/tool_message.py-e +0 -400
  19. langroid/agent/tools/file_tools.py-e +0 -234
  20. langroid/agent/tools/mcp/fastmcp_client.py-e +0 -584
  21. langroid/agent/tools/orchestration.py-e +0 -301
  22. langroid/agent/tools/task_tool.py-e +0 -249
  23. langroid/agent/xml_tool_message.py-e +0 -392
  24. langroid/embedding_models/models.py-e +0 -563
  25. langroid/language_models/azure_openai.py-e +0 -134
  26. langroid/language_models/base.py-e +0 -812
  27. langroid/language_models/config.py-e +0 -18
  28. langroid/language_models/model_info.py-e +0 -483
  29. langroid/language_models/openai_gpt.py-e +0 -2280
  30. langroid/language_models/provider_params.py-e +0 -153
  31. langroid/mytypes.py-e +0 -132
  32. langroid/parsing/file_attachment.py-e +0 -246
  33. langroid/parsing/md_parser.py-e +0 -574
  34. langroid/parsing/parser.py-e +0 -410
  35. langroid/parsing/repo_loader.py-e +0 -812
  36. langroid/parsing/url_loader.py-e +0 -683
  37. langroid/parsing/urls.py-e +0 -279
  38. langroid/pydantic_v1/__init__.py-e +0 -36
  39. langroid/pydantic_v1/main.py-e +0 -11
  40. langroid/utils/configuration.py-e +0 -141
  41. langroid/utils/constants.py-e +0 -32
  42. langroid/utils/globals.py-e +0 -49
  43. langroid/utils/html_logger.py-e +0 -825
  44. langroid/utils/object_registry.py-e +0 -66
  45. langroid/utils/pydantic_utils.py-e +0 -602
  46. langroid/utils/types.py-e +0 -113
  47. langroid/vector_store/lancedb.py-e +0 -404
  48. langroid/vector_store/pineconedb.py-e +0 -427
  49. {langroid-0.59.0b3.dist-info → langroid-0.59.1.dist-info}/WHEEL +0 -0
  50. {langroid-0.59.0b3.dist-info → langroid-0.59.1.dist-info}/licenses/LICENSE +0 -0
@@ -1,400 +0,0 @@
1
- """
2
- Structured messages to an agent, typically from an LLM, to be handled by
3
- an agent. The messages could represent, for example:
4
- - information or data given to the agent
5
- - request for information or data from the agent
6
- - request to run a method of the agent
7
- """
8
-
9
- import copy
10
- import json
11
- import textwrap
12
- from abc import ABC
13
- from random import choice
14
- from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar
15
-
16
- from docstring_parser import parse
17
-
18
- from langroid.language_models.base import LLMFunctionSpec
19
- from pydantic import BaseModel, ConfigDict
20
- from langroid.utils.pydantic_utils import (
21
- _recursive_purge_dict_key,
22
- generate_simple_schema,
23
- )
24
- from langroid.utils.types import is_instance_of
25
-
26
- K = TypeVar("K")
27
-
28
-
29
- def remove_if_exists(k: K, d: dict[K, Any]) -> None:
30
- """Removes key `k` from `d` if present."""
31
- if k in d:
32
- d.pop(k)
33
-
34
-
35
- def format_schema_for_strict(schema: Any) -> None:
36
- """
37
- Recursively set additionalProperties to False and replace
38
- oneOf and allOf with anyOf, required for OpenAI structured outputs.
39
- Additionally, remove all defaults and set all fields to required.
40
- This may not be equivalent to the original schema.
41
- """
42
- if isinstance(schema, dict):
43
- if "type" in schema and schema["type"] == "object":
44
- schema["additionalProperties"] = False
45
-
46
- if "properties" in schema:
47
- properties = schema["properties"]
48
- all_properties = list(properties.keys())
49
- for k, v in properties.items():
50
- if "default" in v:
51
- if k == "request":
52
- v["enum"] = [v["default"]]
53
-
54
- v.pop("default")
55
- schema["required"] = all_properties
56
- else:
57
- schema["properties"] = {}
58
- schema["required"] = []
59
-
60
- anyOf = (
61
- schema.get("oneOf", []) + schema.get("allOf", []) + schema.get("anyOf", [])
62
- )
63
- if "allOf" in schema or "oneOf" in schema or "anyOf" in schema:
64
- schema["anyOf"] = anyOf
65
-
66
- remove_if_exists("allOf", schema)
67
- remove_if_exists("oneOf", schema)
68
-
69
- for v in schema.values():
70
- format_schema_for_strict(v)
71
- elif isinstance(schema, list):
72
- for v in schema:
73
- format_schema_for_strict(v)
74
-
75
-
76
- class ToolMessage(ABC, BaseModel):
77
- """
78
- Abstract Class for a class that defines the structure of a "Tool" message from an
79
- LLM. Depending on context, "tools" are also referred to as "plugins",
80
- or "function calls" (in the context of OpenAI LLMs).
81
- Essentially, they are a way for the LLM to express its intent to run a special
82
- function or method. Currently these "tools" are handled by methods of the
83
- agent.
84
-
85
- Attributes:
86
- request (str): name of agent method to map to.
87
- purpose (str): purpose of agent method, expressed in general terms.
88
- (This is used when auto-generating the tool instruction to the LLM)
89
- """
90
-
91
- request: str
92
- purpose: str
93
- id: str = "" # placeholder for OpenAI-API tool_call_id
94
-
95
- # If enabled, forces strict adherence to schema.
96
- # Currently only supported by OpenAI LLMs. When unset, enables if supported.
97
- _strict: Optional[bool] = None
98
- _allow_llm_use: bool = True # allow an LLM to use (i.e. generate) this tool?
99
-
100
- # Optional param to limit number of result tokens to retain in msg history.
101
- # Some tools can have large results that we may not want to fully retain,
102
- # e.g. result of a db query, which the LLM later reduces to a summary, so
103
- # in subsequent dialog we may only want to retain the summary,
104
- # and replace this raw result truncated to _max_retained_tokens.
105
- # Important to note: unlike _max_result_tokens, this param is used
106
- # NOT used to immediately truncate the result;
107
- # it is only used to truncate what is retained in msg history AFTER the
108
- # response to this result.
109
- _max_retained_tokens: int | None = None
110
-
111
- # Optional param to limit number of tokens in the result of the tool.
112
- _max_result_tokens: int | None = None
113
-
114
- model_config = ConfigDict(
115
- extra="allow",
116
- arbitrary_types_allowed=False,
117
- validate_default=True,
118
- validate_assignment=True,
119
- # do not include these fields in the generated schema
120
- # since we don't require the LLM to specify them
121
- json_schema_extra={"exclude": {"purpose", "id"}},
122
- )
123
-
124
- @classmethod
125
- def name(cls) -> str:
126
- return str(cls.default_value("request")) # redundant str() to appease mypy
127
-
128
- @classmethod
129
- def instructions(cls) -> str:
130
- """
131
- Instructions on tool usage.
132
- """
133
- return ""
134
-
135
- @classmethod
136
- def langroid_tools_instructions(cls) -> str:
137
- """
138
- Instructions on tool usage when `use_tools == True`, i.e.
139
- when using langroid built-in tools
140
- (as opposed to OpenAI-like function calls/tools).
141
- """
142
- return """
143
- IMPORTANT: When using this or any other tool/function, you MUST include a
144
- `request` field and set it equal to the FUNCTION/TOOL NAME you intend to use.
145
- """
146
-
147
- @classmethod
148
- def require_recipient(cls) -> Type["ToolMessage"]:
149
- class ToolMessageWithRecipient(cls): # type: ignore
150
- recipient: str # no default, so it is required
151
-
152
- return ToolMessageWithRecipient
153
-
154
- @classmethod
155
- def examples(cls) -> List["ToolMessage" | Tuple[str, "ToolMessage"]]:
156
- """
157
- Examples to use in few-shot demos with formatting instructions.
158
- Each example can be either:
159
- - just a ToolMessage instance, e.g. MyTool(param1=1, param2="hello"), or
160
- - a tuple (description, ToolMessage instance), where the description is
161
- a natural language "thought" that leads to the tool usage,
162
- e.g. ("I want to find the square of 5", SquareTool(num=5))
163
- In some scenarios, including such a description can significantly
164
- enhance reliability of tool use.
165
- Returns:
166
- """
167
- return []
168
-
169
- @classmethod
170
- def usage_examples(cls, random: bool = False) -> str:
171
- """
172
- Instruction to the LLM showing examples of how to use the tool-message.
173
-
174
- Args:
175
- random (bool): whether to pick a random example from the list of examples.
176
- Set to `true` when using this to illustrate a dialog between LLM and
177
- user.
178
- (if false, use ALL examples)
179
- Returns:
180
- str: examples of how to use the tool/function-call
181
- """
182
- # pick a random example of the fields
183
- if len(cls.examples()) == 0:
184
- return ""
185
- if random:
186
- examples = [choice(cls.examples())]
187
- else:
188
- examples = cls.examples()
189
- formatted_examples = [
190
- (
191
- f"EXAMPLE {i}: (THOUGHT: {ex[0]}) => \n{ex[1].format_example()}"
192
- if isinstance(ex, tuple)
193
- else f"EXAMPLE {i}:\n {ex.format_example()}"
194
- )
195
- for i, ex in enumerate(examples, 1)
196
- ]
197
- return "\n\n".join(formatted_examples)
198
-
199
- def to_json(self) -> str:
200
- return self.model_dump_json(
201
- indent=4, exclude=self.model_config["json_schema_extra"]["exclude"]
202
- )
203
-
204
- def format_example(self) -> str:
205
- return self.model_dump_json(
206
- indent=4, exclude=self.model_config["json_schema_extra"]["exclude"]
207
- )
208
-
209
- def dict_example(self) -> Dict[str, Any]:
210
- return self.model_dump(
211
- exclude=self.model_config["json_schema_extra"]["exclude"]
212
- )
213
-
214
- def get_value_of_type(self, target_type: Type[Any]) -> Any:
215
- """Try to find a value of a desired type in the fields of the ToolMessage."""
216
- ignore_fields = self.Config.schema_extra["exclude"].union(["request"])
217
- for field_name in set(self.model_dump().keys()) - ignore_fields:
218
- value = getattr(self, field_name)
219
- if is_instance_of(value, target_type):
220
- return value
221
- return None
222
-
223
- @classmethod
224
- def default_value(cls, f: str) -> Any:
225
- """
226
- Returns the default value of the given field, for the message-class
227
- Args:
228
- f (str): field name
229
-
230
- Returns:
231
- Any: default value of the field, or None if not set or if the
232
- field does not exist.
233
- """
234
- schema = cls.model_json_schema()
235
- properties = schema["properties"]
236
- return properties.get(f, {}).get("default", None)
237
-
238
- @classmethod
239
- def format_instructions(cls, tool: bool = False) -> str:
240
- """
241
- Default Instructions to the LLM showing how to use the tool/function-call.
242
- Works for GPT4 but override this for weaker LLMs if needed.
243
-
244
- Args:
245
- tool: instructions for Langroid-native tool use? (e.g. for non-OpenAI LLM)
246
- (or else it would be for OpenAI Function calls).
247
- Ignored in the default implementation, but can be used in subclasses.
248
- Returns:
249
- str: instructions on how to use the message
250
- """
251
- # TODO: when we attempt to use a "simpler schema"
252
- # (i.e. all nested fields explicit without definitions),
253
- # we seem to get worse results, so we turn it off for now
254
- param_dict = (
255
- # cls.simple_schema() if tool else
256
- cls.llm_function_schema(request=True).parameters
257
- )
258
- examples_str = ""
259
- if cls.examples():
260
- examples_str = "EXAMPLES:\n" + cls.usage_examples()
261
- return textwrap.dedent(
262
- f"""
263
- TOOL: {cls.default_value("request")}
264
- PURPOSE: {cls.default_value("purpose")}
265
- JSON FORMAT: {
266
- json.dumps(param_dict, indent=4)
267
- }
268
- {examples_str}
269
- """.lstrip()
270
- )
271
-
272
- @staticmethod
273
- def group_format_instructions() -> str:
274
- """Template for instructions for a group of tools.
275
- Works with GPT4 but override this for weaker LLMs if needed.
276
- """
277
- return textwrap.dedent(
278
- """
279
- === ALL AVAILABLE TOOLS and THEIR FORMAT INSTRUCTIONS ===
280
- You have access to the following TOOLS to accomplish your task:
281
-
282
- {format_instructions}
283
-
284
- When one of the above TOOLs is applicable, you must express your
285
- request as "TOOL:" followed by the request in the above format.
286
- """
287
- )
288
-
289
- @classmethod
290
- def llm_function_schema(
291
- cls,
292
- request: bool = False,
293
- defaults: bool = True,
294
- ) -> LLMFunctionSpec:
295
- """
296
- Clean up the schema of the Pydantic class (which can recursively contain
297
- other Pydantic classes), to create a version compatible with OpenAI
298
- Function-call API.
299
-
300
- Adapted from this excellent library:
301
- https://github.com/jxnl/instructor/blob/main/instructor/function_calls.py
302
-
303
- Args:
304
- request: whether to include the "request" field in the schema.
305
- (we set this to True when using Langroid-native TOOLs as opposed to
306
- OpenAI Function calls)
307
- defaults: whether to include fields with default values in the schema,
308
- in the "properties" section.
309
-
310
- Returns:
311
- LLMFunctionSpec: the schema as an LLMFunctionSpec
312
-
313
- """
314
- schema = copy.deepcopy(cls.model_json_schema())
315
- docstring = parse(cls.__doc__ or "")
316
- parameters = {
317
- k: v for k, v in schema.items() if k not in ("title", "description")
318
- }
319
- for param in docstring.params:
320
- if (name := param.arg_name) in parameters["properties"] and (
321
- description := param.description
322
- ):
323
- if "description" not in parameters["properties"][name]:
324
- parameters["properties"][name]["description"] = description
325
-
326
- excludes = cls.model_config["json_schema_extra"]["exclude"]
327
- if not request:
328
- excludes = excludes.union({"request"})
329
- # exclude 'excludes' from parameters["properties"]:
330
- parameters["properties"] = {
331
- field: details
332
- for field, details in parameters["properties"].items()
333
- if field not in excludes and (defaults or details.get("default") is None)
334
- }
335
- parameters["required"] = sorted(
336
- k
337
- for k, v in parameters["properties"].items()
338
- if ("default" not in v and k not in excludes)
339
- )
340
- if request:
341
- parameters["required"].append("request")
342
-
343
- # If request is present it must match the default value
344
- # Similar to defining request as a literal type
345
- parameters["request"] = {
346
- "enum": [cls.default_value("request")],
347
- "type": "string",
348
- }
349
-
350
- if "description" not in schema:
351
- if docstring.short_description:
352
- schema["description"] = docstring.short_description
353
- else:
354
- schema["description"] = (
355
- f"Correctly extracted `{cls.__name__}` with all "
356
- f"the required parameters with correct types"
357
- )
358
-
359
- # Handle nested ToolMessage fields
360
- if "definitions" in parameters:
361
- for v in parameters["definitions"].values():
362
- if "exclude" in v:
363
- v.pop("exclude")
364
-
365
- remove_if_exists("purpose", v["properties"])
366
- remove_if_exists("id", v["properties"])
367
- if (
368
- "request" in v["properties"]
369
- and "default" in v["properties"]["request"]
370
- ):
371
- if "required" not in v:
372
- v["required"] = []
373
- v["required"].append("request")
374
- v["properties"]["request"] = {
375
- "type": "string",
376
- "enum": [v["properties"]["request"]["default"]],
377
- }
378
-
379
- parameters.pop("exclude")
380
- _recursive_purge_dict_key(parameters, "title")
381
- _recursive_purge_dict_key(parameters, "additionalProperties")
382
- return LLMFunctionSpec(
383
- name=cls.default_value("request"),
384
- description=cls.default_value("purpose"),
385
- parameters=parameters,
386
- )
387
-
388
- @classmethod
389
- def simple_schema(cls) -> Dict[str, Any]:
390
- """
391
- Return a simplified schema for the message, with only the request and
392
- required fields.
393
- Returns:
394
- Dict[str, Any]: simplified schema
395
- """
396
- schema = generate_simple_schema(
397
- cls,
398
- exclude=list(cls.model_config["json_schema_extra"]["exclude"]),
399
- )
400
- return schema
@@ -1,234 +0,0 @@
1
- from contextlib import chdir
2
- from pathlib import Path
3
- from textwrap import dedent
4
- from typing import Callable, List, Tuple, Type
5
-
6
- import git
7
-
8
- from langroid.agent.tool_message import ToolMessage
9
- from langroid.agent.xml_tool_message import XMLToolMessage
10
- from pydantic import Field
11
- from langroid.utils.git_utils import git_commit_file
12
- from langroid.utils.system import create_file, list_dir, read_file
13
-
14
-
15
- class ReadFileTool(ToolMessage):
16
- request: str = "read_file_tool"
17
- purpose: str = "Read the contents of a <file_path>"
18
- file_path: str
19
-
20
- _line_nums: bool = True # whether to add line numbers to the content
21
- _curr_dir: Callable[[], str] | None = None
22
-
23
- @classmethod
24
- def create(
25
- cls,
26
- get_curr_dir: Callable[[], str] | None,
27
- ) -> Type["ReadFileTool"]:
28
- """
29
- Create a subclass of ReadFileTool for a specific directory
30
-
31
- Args:
32
- get_curr_dir (callable): A function that returns the current directory.
33
-
34
- Returns:
35
- Type[ReadFileTool]: A subclass of the ReadFileTool class, specifically
36
- for the current directory.
37
- """
38
-
39
- class CustomReadFileTool(cls): # type: ignore
40
- _curr_dir: Callable[[], str] | None = (
41
- staticmethod(get_curr_dir) if get_curr_dir else None
42
- )
43
-
44
- return CustomReadFileTool
45
-
46
- @classmethod
47
- def examples(cls) -> List[ToolMessage | tuple[str, ToolMessage]]:
48
- return [
49
- cls(file_path="src/lib.rs"),
50
- (
51
- "I want to read the contents of src/main.rs",
52
- cls(file_path="src/main.rs"),
53
- ),
54
- ]
55
-
56
- def handle(self) -> str:
57
- # return contents as str for LLM to read
58
- # ASSUME: file_path should be relative to the curr_dir
59
- try:
60
- dir = (self._curr_dir and self._curr_dir()) or Path.cwd()
61
- with chdir(dir):
62
- # if file doesn't exist, return an error message
63
- content = read_file(self.file_path, self._line_nums)
64
- line_num_str = ""
65
- if self._line_nums:
66
- line_num_str = "(Line numbers added for reference only!)"
67
- return f"""
68
- CONTENTS of {self.file_path}:
69
- {line_num_str}
70
- ---------------------------
71
- {content}
72
- """
73
- except FileNotFoundError:
74
- return f"File not found: {self.file_path}"
75
-
76
-
77
- class WriteFileTool(XMLToolMessage):
78
- request: str = "write_file_tool"
79
- purpose: str = """
80
- Tool for writing <content> in a certain <language> to a <file_path>
81
- """
82
-
83
- file_path: str = Field(..., description="The path to the file to write the content")
84
-
85
- language: str = Field(
86
- default="",
87
- description="""
88
- The language of the content; could be human language or programming language
89
- """,
90
- )
91
- content: str = Field(
92
- ...,
93
- description="The content to write to the file",
94
- verbatim=True, # preserve the content as is; uses CDATA section in XML
95
- )
96
- _curr_dir: Callable[[], str] | None = None
97
- _git_repo: Callable[[], git.Repo] | None = None
98
- _commit_message: str = "Agent write file tool"
99
-
100
- @classmethod
101
- def create(
102
- cls,
103
- get_curr_dir: Callable[[], str] | None,
104
- get_git_repo: Callable[[], str] | None,
105
- ) -> Type["WriteFileTool"]:
106
- """
107
- Create a subclass of WriteFileTool with the current directory and git repo.
108
-
109
- Args:
110
- get_curr_dir (callable): A function that returns the current directory.
111
- get_git_repo (callable): A function that returns the git repo.
112
-
113
- Returns:
114
- Type[WriteFileTool]: A subclass of the WriteFileTool class, specifically
115
- for the current directory and git repo.
116
- """
117
-
118
- class CustomWriteFileTool(cls): # type: ignore
119
- _curr_dir: Callable[[], str] | None = (
120
- staticmethod(get_curr_dir) if get_curr_dir else None
121
- )
122
- _git_repo: Callable[[], str] | None = (
123
- staticmethod(get_git_repo) if get_git_repo else None
124
- )
125
-
126
- return CustomWriteFileTool
127
-
128
- @classmethod
129
- def examples(cls) -> List[ToolMessage | Tuple[str, ToolMessage]]:
130
- return [
131
- (
132
- """
133
- I want to define a simple hello world python function
134
- in a file "mycode/hello.py"
135
- """,
136
- cls(
137
- file_path="mycode/hello.py",
138
- language="python",
139
- content="""
140
- def hello():
141
- print("Hello, World!")
142
- """,
143
- ),
144
- ),
145
- cls(
146
- file_path="src/lib.rs",
147
- language="rust",
148
- content="""
149
- fn main() {
150
- println!("Hello, World!");
151
- }
152
- """,
153
- ),
154
- cls(
155
- file_path="docs/intro.txt",
156
- content="""
157
- # Introduction
158
- This is the first sentence of the introduction.
159
- """,
160
- ),
161
- ]
162
-
163
- def handle(self) -> str:
164
- curr_dir = (self._curr_dir and self._curr_dir()) or Path.cwd()
165
- with chdir(curr_dir):
166
- create_file(self.file_path, self.content)
167
- msg = f"Content written to {self.file_path}"
168
- # possibly commit the file
169
- if self._git_repo:
170
- git_commit_file(
171
- self._git_repo(),
172
- self.file_path,
173
- self._commit_message,
174
- )
175
- msg += " and committed"
176
- return msg
177
-
178
-
179
- class ListDirTool(ToolMessage):
180
- request: str = "list_dir_tool"
181
- purpose: str = "List the contents of a <dir_path>"
182
- dir_path: str
183
-
184
- _curr_dir: Callable[[], str] | None = None
185
-
186
- @classmethod
187
- def create(
188
- cls,
189
- get_curr_dir: Callable[[], str] | None,
190
- ) -> Type["ReadFileTool"]:
191
- """
192
- Create a subclass of ListDirTool for a specific directory
193
-
194
- Args:
195
- get_curr_dir (callable): A function that returns the current directory.
196
-
197
- Returns:
198
- Type[ReadFileTool]: A subclass of the ReadFileTool class, specifically
199
- for the current directory.
200
- """
201
-
202
- class CustomListDirTool(cls): # type: ignore
203
- _curr_dir: Callable[[], str] | None = (
204
- staticmethod(get_curr_dir) if get_curr_dir else None
205
- )
206
-
207
- return CustomListDirTool
208
-
209
- @classmethod
210
- def examples(cls) -> List[ToolMessage | tuple[str, ToolMessage]]:
211
- return [
212
- cls(dir_path="src"),
213
- (
214
- "I want to list the contents of src",
215
- cls(dir_path="src"),
216
- ),
217
- ]
218
-
219
- def handle(self) -> str:
220
- # ASSUME: dir_path should be relative to the curr_dir_path
221
- dir = (self._curr_dir and self._curr_dir()) or Path.cwd()
222
- with chdir(dir):
223
- contents = list_dir(self.dir_path)
224
-
225
- if not contents:
226
- return f"Directory not found or empty: {self.dir_path}"
227
- contents_str = "\n".join(contents)
228
- return dedent(
229
- f"""
230
- LISTING of directory {self.dir_path}:
231
- ---------------------------
232
- {contents_str}
233
- """.strip()
234
- )