langroid 0.5.0__py3-none-any.whl → 0.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,9 @@
1
+ from . import query_planner_agent
2
+ from . import critic_agent
3
+ from . import lance_rag_task
4
+
5
+ __all__ = [
6
+ "query_planner_agent",
7
+ "critic_agent",
8
+ "lance_rag_task",
9
+ ]
@@ -0,0 +1,171 @@
1
+ """
2
+ QueryPlanCritic is a ChatAgent that is created with a specific document schema.
3
+
4
+ Its role is to provide feedback on a Query Plan, which consists of:
5
+ - filter condition if needed (or empty string if no filter is needed)
6
+ - query - a possibly rephrased query that can be used to match the `content` field
7
+ - dataframe_calc - a Pandas-dataframe calculation/aggregation string, possibly empty
8
+ - original_query - the original query for reference
9
+ - result - the answer received from an assistant that used this QUERY PLAN.
10
+
11
+ This agent has access to two tools:
12
+ - QueryPlanTool: The handler method for this tool re-writes the query plan
13
+ in plain text (non-JSON) so the LLM can provide its feedback using the
14
+ QueryPlanFeedbackTool.
15
+ - QueryPlanFeedbackTool: LLM uses this tool to provide feedback on the Query Plan
16
+ """
17
+
18
+ import logging
19
+
20
+ from langroid.agent.chat_agent import ChatAgent
21
+ from langroid.agent.chat_document import ChatDocument
22
+ from langroid.agent.special.lance_rag.query_planner_agent import (
23
+ LanceQueryPlanAgentConfig,
24
+ )
25
+ from langroid.agent.special.lance_tools import (
26
+ QueryPlanAnswerTool,
27
+ QueryPlanFeedbackTool,
28
+ )
29
+ from langroid.mytypes import Entity
30
+ from langroid.utils.constants import DONE, NO_ANSWER
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+
35
+ class QueryPlanCriticConfig(LanceQueryPlanAgentConfig):
36
+ name = "QueryPlanCritic"
37
+ system_message = f"""
38
+ You are an expert at carefully planning a query that needs to be answered
39
+ based on a large collection of documents. These docs have a special `content` field
40
+ and additional FILTERABLE fields in the SCHEMA below, along with the
41
+ SAMPLE VALUES for each field, and the DTYPE in PANDAS TERMINOLOGY.
42
+
43
+ {{doc_schema}}
44
+
45
+ The ORIGINAL QUERY is handled by a QUERY PLANNER who sends the PLAN to an ASSISTANT,
46
+ who returns an ANSWER.
47
+
48
+ You will receive a QUERY PLAN consisting of:
49
+ - ORIGINAL QUERY from the user, which a QUERY PLANNER processes,
50
+ to create a QUERY PLAN, to be handled by an ASSISTANT.
51
+ - PANDAS-LIKE FILTER, WHICH CAN BE EMPTY (and it's fine if results sound reasonable)
52
+ FILTER SHOULD ONLY BE USED IF EXPLICITLY REQUIRED BY THE QUERY.
53
+ - REPHRASED QUERY (CANNOT BE EMPTY) that will be used to match against the
54
+ CONTENT (not filterable) of the documents.
55
+ In general the REPHRASED QUERY should be relied upon to match the CONTENT
56
+ of the docs. Thus the REPHRASED QUERY itself acts like a
57
+ SEMANTIC/LEXICAL/FUZZY FILTER since the Assistant is able to use it to match
58
+ the CONTENT of the docs in various ways (semantic, lexical, fuzzy, etc.).
59
+ Keep in mind that the ASSISTANT does NOT know anything about the FILTER fields,
60
+ so the REPHRASED QUERY should NOT mention ANY FILTER fields.
61
+ The assistant will answer based on documents whose CONTENTS match the QUERY,
62
+ possibly REPHRASED.
63
+ !!!!****THE REPHRASED QUERY SHOULD NEVER BE EMPTY****!!!
64
+ - DATAFRAME CALCULATION, which must be a SINGLE LINE calculation (or empty),
65
+ [NOTE ==> This calculation is applied AFTER the FILTER and REPHRASED QUERY.],
66
+ - ANSWER received from an assistant that used this QUERY PLAN.
67
+ NOTE -- the ANSWER will usually NOT contain any references to FILTERING conditions,
68
+ and this is ALLOWED, since the ANSWER is based on documents AFTER FILTERING.
69
+
70
+ In addition to the above SCHEMA fields there is a `content` field which:
71
+ - CANNOT appear in a FILTER,
72
+ - CAN appear in the DATAFRAME CALCULATION.
73
+ THERE ARE NO OTHER FIELDS IN THE DOCUMENTS or in the RESULTING DATAFRAME.
74
+
75
+ Your job is to act as a CRITIC and provide feedback,
76
+ ONLY using the `query_plan_feedback` tool, and DO NOT SAY ANYTHING ELSE.
77
+
78
+ Here is how you must examine the QUERY PLAN + ANSWER:
79
+ - ALL filtering conditions in the original query must be EXPLICITLY
80
+ mentioned in the FILTER, and the QUERY field should not be used for filtering.
81
+ - If the ANSWER contains an ERROR message, then this means that the query
82
+ plan execution FAILED, and your feedback should say INVALID along
83
+ with the ERROR message, `suggested_fix` that aims to help the assistant
84
+ fix the problem (or simply equals "address the the error shown in feedback")
85
+ - Ask yourself, is the ANSWER in the expected form, e.g.
86
+ if the question is asking for the name of an ENTITY with max SIZE,
87
+ then the answer should be the ENTITY name, NOT the SIZE!!
88
+ - It is perfectly FINE if the ANSWER does NOT contain any references to FILTERING
89
+ conditions, since the ANSWER is obtained from documents AFTER FILTERING!
90
+ - If the ANSWER is in the expected form, then the QUERY PLAN is likely VALID,
91
+ and your feedback should say VALID, with empty `suggested_fix`.
92
+ ===> HOWEVER!!! Watch out for a spurious correct-looking answer, for EXAMPLE:
93
+ the query was to find the ENTITY with a maximum SIZE,
94
+ but the dataframe calculation is find the SIZE, NOT the ENTITY!!
95
+ - If the ANSWER is {NO_ANSWER} or of the wrong form,
96
+ then try to DIAGNOSE the problem IN THE FOLLOWING ORDER:
97
+ - DATAFRAME CALCULATION -- is it doing the right thing?
98
+ Is it finding the Index of a row instead of the value in a column?
99
+ Or another example: maybe it is finding the maximum population
100
+ rather than the CITY with the maximum population?
101
+ If you notice a problem with the DATAFRAME CALCULATION, then
102
+ ONLY SUBMIT FEEDBACK ON THE DATAFRAME CALCULATION, and DO NOT
103
+ SUGGEST ANYTHING ELSE.
104
+ - If the DATAFRAME CALCULATION looks correct, then check if
105
+ the REPHRASED QUERY makes sense given the ORIGINAL QUERY and FILTER.
106
+ If this is the problem, then ONLY SUBMIT FEEDBACK ON THE REPHRASED QUERY,
107
+ and DO NOT SUGGEST ANYTHING ELSE.
108
+ - If the REPHRASED QUERY looks correct, then check if the FILTER makes sense.
109
+ REMEMBER: A filter should ONLY be used if EXPLICITLY REQUIRED BY THE QUERY.
110
+
111
+
112
+ IMPORTANT!! The DATAFRAME CALCULATION is done AFTER applying the
113
+ FILTER and REPHRASED QUERY! Keep this in mind when evaluating
114
+ the correctness of the DATAFRAME CALCULATION.
115
+
116
+ ALWAYS use `query_plan_feedback` tool/fn to present your feedback
117
+ in the `feedback` field, and if any fix is suggested,
118
+ present it in the `suggested_fix` field.
119
+ DO NOT SAY ANYTHING ELSE OUTSIDE THE TOOL/FN.
120
+ IF NO REVISION NEEDED, simply leave the `suggested_fix` field EMPTY,
121
+ and SAY NOTHING ELSE
122
+ and DO NOT EXPLAIN YOURSELF.
123
+ """
124
+
125
+
126
+ def plain_text_query_plan(msg: QueryPlanAnswerTool) -> str:
127
+ plan = f"""
128
+ OriginalQuery: {msg.plan.original_query}
129
+ Filter: {msg.plan.filter}
130
+ Rephrased Query: {msg.plan.query}
131
+ DataframeCalc: {msg.plan.dataframe_calc}
132
+ Answer: {msg.answer}
133
+ """
134
+ return plan
135
+
136
+
137
+ class QueryPlanCritic(ChatAgent):
138
+ """
139
+ Critic for LanceQueryPlanAgent, provides feedback on
140
+ query plan + answer.
141
+ """
142
+
143
+ def __init__(self, cfg: LanceQueryPlanAgentConfig):
144
+ super().__init__(cfg)
145
+ self.config = cfg
146
+ self.enable_message(QueryPlanAnswerTool, use=False, handle=True)
147
+ self.enable_message(QueryPlanFeedbackTool, use=True, handle=True)
148
+
149
+ def query_plan_answer(self, msg: QueryPlanAnswerTool) -> str:
150
+ """Present query plan + answer in plain text (not JSON)
151
+ so LLM can give feedback"""
152
+ return plain_text_query_plan(msg)
153
+
154
+ def query_plan_feedback(self, msg: QueryPlanFeedbackTool) -> ChatDocument:
155
+ """Format Valid so return to Query Planner"""
156
+ doc = self.create_agent_response(DONE)
157
+ doc.tool_messages = [msg]
158
+ return doc
159
+
160
+ def handle_message_fallback(
161
+ self, msg: str | ChatDocument
162
+ ) -> str | ChatDocument | None:
163
+ """Remind the LLM to use QueryPlanFeedbackTool since it forgot"""
164
+ if isinstance(msg, ChatDocument) and msg.metadata.sender == Entity.LLM:
165
+ return """
166
+ You forgot to use the `query_plan_feedback` tool/function.
167
+ Re-try your response using the `query_plan_feedback` tool/function,
168
+ remember to provide feedback in the `feedback` field,
169
+ and if any fix is suggested, provide it in the `suggested_fix` field.
170
+ """
171
+ return None
@@ -0,0 +1,144 @@
1
+ """
2
+ The LanceRAGTaskCreator.new() method creates a 3-Agent system that uses this agent.
3
+ It takes a LanceDocChatAgent instance as argument, and adds two more agents:
4
+ - LanceQueryPlanAgent, which is given the LanceDB schema in LanceDocChatAgent,
5
+ and based on this schema, for a given user query, creates a Query Plan
6
+ using the QueryPlanTool, which contains a filter, a rephrased query,
7
+ and a dataframe_calc.
8
+ - QueryPlanCritic, which is given the LanceDB schema in LanceDocChatAgent,
9
+ and gives feedback on the Query Plan and Result using the QueryPlanFeedbackTool.
10
+
11
+ The LanceRAGTaskCreator.new() method sets up the given LanceDocChatAgent and
12
+ QueryPlanCritic as sub-tasks of the LanceQueryPlanAgent's task.
13
+
14
+ Langroid's built-in task orchestration ensures that:
15
+ - the LanceQueryPlanAgent reformulates the plan based
16
+ on the QueryPlanCritics's feedback,
17
+ - LLM deviations are corrected via tools and overrides of ChatAgent methods.
18
+ """
19
+
20
+ import logging
21
+
22
+ from langroid.agent.special.lance_tools import (
23
+ QueryPlanAnswerTool,
24
+ )
25
+ from langroid.agent.task import Task
26
+ from langroid.mytypes import Entity
27
+ from langroid.utils.constants import NO_ANSWER
28
+
29
+ from ..lance_doc_chat_agent import LanceDocChatAgent
30
+ from .critic_agent import (
31
+ QueryPlanCritic,
32
+ QueryPlanCriticConfig,
33
+ )
34
+ from .query_planner_agent import (
35
+ LanceQueryPlanAgent,
36
+ LanceQueryPlanAgentConfig,
37
+ )
38
+
39
+ logger = logging.getLogger(__name__)
40
+
41
+
42
+ def run_lance_rag_task(
43
+ query: str,
44
+ agent: LanceDocChatAgent,
45
+ interactive: bool = True,
46
+ ) -> str:
47
+ """
48
+ Add a LanceFilterAgent to the LanceDocChatAgent,
49
+ set up the corresponding Tasks, connect them,
50
+ and return the top-level query_plan_task.
51
+ """
52
+ doc_agent_name = "LanceRAG"
53
+ critic_name = "QueryPlanCritic"
54
+ query_plan_agent_config = LanceQueryPlanAgentConfig(
55
+ critic_name=critic_name,
56
+ doc_agent_name=doc_agent_name,
57
+ doc_schema=agent._get_clean_vecdb_schema(),
58
+ )
59
+ query_plan_agent_config.set_system_message()
60
+
61
+ query_planner = LanceQueryPlanAgent(query_plan_agent_config)
62
+ query_plan_task = Task(
63
+ query_planner,
64
+ interactive=interactive,
65
+ restart=False,
66
+ done_if_response=[Entity.AGENT],
67
+ )
68
+ # TODO - figure out how to define the fns so we avoid re-creating
69
+ # agents in each invocation. Right now we are defining the fn
70
+ # inside this context, which may not be great.
71
+
72
+ rag_task = Task(
73
+ agent,
74
+ name="LanceRAG",
75
+ restart=True, # default; no need to accumulate dialog
76
+ interactive=False,
77
+ done_if_response=[Entity.LLM], # done when non-null response from LLM
78
+ done_if_no_response=[Entity.LLM], # done when null response from LLM
79
+ )
80
+
81
+ critic_config = QueryPlanCriticConfig(
82
+ doc_schema=agent._get_clean_vecdb_schema(),
83
+ )
84
+ critic_config.set_system_message()
85
+
86
+ critic_agent = QueryPlanCritic(critic_config)
87
+ critic_task = Task(
88
+ critic_agent,
89
+ interactive=False,
90
+ restart=True, # default; no need to accumulate dialog
91
+ )
92
+
93
+ no_answer = False
94
+ feedback = None
95
+ i = 0
96
+ while i := i + 1 < 5:
97
+ # query, feedback (QueryPlanFeedbackTool) => ChatDocument[QueryPlanTool]
98
+ if feedback is not None and feedback.suggested_fix != "":
99
+ prompt = f"""
100
+ A Critic has seen your Query Plan and the Answer, and has given the
101
+ following feedback. Take it into account and re-generate your Query Plan
102
+ for the QUERY:
103
+
104
+ QUERY: {query}
105
+ FEEDBACK: {feedback.feedback}
106
+ SUGGESTED FIX: {feedback.suggested_fix}
107
+ """
108
+ elif no_answer:
109
+ prompt = f"There was a {NO_ANSWER} response; try a different query plan"
110
+ else:
111
+ prompt = query
112
+
113
+ while True:
114
+ plan_doc = query_plan_task.run(prompt)
115
+ if len(plan_doc.tool_messages) > 0:
116
+ break
117
+ # forgot to use QueryPlanTool
118
+ prompt = """You forgot to use the `query_plan` tool/function. Try again."""
119
+
120
+ # TODO if plan_doc does NOT have a QueryPlan, remind the agent
121
+
122
+ # ChatDocument with QueryPlanTool => ChatDocument with answer
123
+ rag_answer_doc = rag_task.run(plan_doc)
124
+
125
+ if rag_answer_doc is None:
126
+ rag_answer_doc = rag_task.agent.create_llm_response(NO_ANSWER)
127
+ # QueryPlan, answer => QueryPlanAnswerTool
128
+ plan_answer_tool = QueryPlanAnswerTool(
129
+ plan=plan_doc.tool_messages[0].plan,
130
+ answer=rag_answer_doc.content,
131
+ )
132
+ # QueryPlanAnswerTool => ChatDocument[QueryPlanAnswerTool]
133
+ plan_answer_doc = agent.create_agent_response(tool_messages=[plan_answer_tool])
134
+
135
+ # ChatDocument[QueryPlanAnswerTool] => ChatDocument[QueryPlanFeedbackTool]
136
+ feedback_doc = critic_task.run(plan_answer_doc)
137
+ # ChatDocument[QueryPlanFeedbackTool] => QueryPlanFeedbackTool
138
+ feedback = feedback_doc.tool_messages[0] # QueryPlanFeedbackTool
139
+ no_answer = NO_ANSWER in rag_answer_doc.content
140
+ if feedback.suggested_fix == "" and not no_answer:
141
+ break
142
+
143
+ # query_plan_task.add_sub_task([critic_task, rag_task])
144
+ return rag_answer_doc.content
@@ -0,0 +1,222 @@
1
+ """
2
+ LanceQueryPlanAgent is a ChatAgent created with a specific document schema.
3
+ Given a QUERY, the LLM constructs a Query Plan consisting of:
4
+ - filter condition if needed (or empty string if no filter is needed)
5
+ - query - a possibly rephrased query that can be used to match the `content` field
6
+ - dataframe_calc - a Pandas-dataframe calculation/aggregation string, possibly empty
7
+ - original_query - the original query for reference
8
+
9
+ This agent has access to two tools:
10
+ - QueryPlanTool, which is used to generate the Query Plan, and the handler of
11
+ this tool simply passes it on to the RAG agent named in config.doc_agent_name.
12
+ - QueryPlanFeedbackTool, which is used to handle feedback on the Query Plan and
13
+ Result from the RAG agent. The QueryPlanFeedbackTool is used by
14
+ the QueryPlanCritic, who inserts feedback into the `feedback` field
15
+ """
16
+
17
+ import logging
18
+
19
+ import langroid as lr
20
+ from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
21
+ from langroid.agent.chat_document import ChatDocument
22
+ from langroid.agent.special.lance_tools import (
23
+ QueryPlan,
24
+ QueryPlanAnswerTool,
25
+ QueryPlanFeedbackTool,
26
+ QueryPlanTool,
27
+ )
28
+ from langroid.utils.constants import DONE, NO_ANSWER
29
+
30
+ logger = logging.getLogger(__name__)
31
+
32
+
33
+ class LanceQueryPlanAgentConfig(ChatAgentConfig):
34
+ name: str = "LancePlanner"
35
+ critic_name: str = "QueryPlanCritic"
36
+ doc_agent_name: str = "LanceRAG"
37
+ doc_schema: str = ""
38
+ use_tools = False
39
+ max_retries: int = 5 # max number of retries for query plan
40
+ use_functions_api = True
41
+
42
+ system_message = f"""
43
+ You will receive a QUERY, to be answered based on an EXTREMELY LARGE collection
44
+ of documents you DO NOT have access to, but your ASSISTANT does.
45
+ You only know that these documents have a special `content` field
46
+ and additional FILTERABLE fields in the SCHEMA below, along with the
47
+ SAMPLE VALUES for each field, and the DTYPE in PANDAS TERMINOLOGY.
48
+
49
+ {{doc_schema}}
50
+
51
+ Based on the QUERY and the above SCHEMA, your task is to determine a QUERY PLAN,
52
+ consisting of:
53
+ - a PANDAS-TYPE FILTER (can be empty string) that would help the ASSISTANT to
54
+ answer the query.
55
+ Remember the FILTER can refer to ANY fields in the above SCHEMA
56
+ EXCEPT the `content` field of the documents.
57
+ ONLY USE A FILTER IF EXPLICITLY MENTIONED IN THE QUERY.
58
+ TO get good results, for STRING MATCHES, consider using LIKE instead of =, e.g.
59
+ "CEO LIKE '%Jobs%'" instead of "CEO = 'Steve Jobs'"
60
+ YOUR FILTER MUST BE A PANDAS-TYPE FILTER, respecting the shown DTYPES.
61
+ - a possibly REPHRASED QUERY (CANNOT BE EMPTY) to be answerable given the FILTER.
62
+ Keep in mind that the ASSISTANT does NOT know anything about the FILTER fields,
63
+ so the REPHRASED QUERY should NOT mention ANY FILTER fields.
64
+ The assistant will answer based on documents whose CONTENTS match the QUERY,
65
+ possibly REPHRASED.
66
+ !!!!****THE REPHRASED QUERY SHOULD NEVER BE EMPTY****!!!
67
+ - an OPTIONAL SINGLE-LINE Pandas-dataframe calculation/aggregation string
68
+ that can be used to calculate the answer to the original query,
69
+ e.g. "df["rating"].mean()",
70
+ or "df.groupby("director").mean()["rating"]",
71
+ or EMPTY string if no calc is needed.
72
+ The dataframe calc CAN refer to the `content` field.
73
+ If a DataFrame calculation is NOT needed, leave this field EMPTY.
74
+
75
+ IMPORTANT: The DataFrame `df` in this calculation is the result of
76
+ applying the FILTER AND REPHRASED QUERY to the documents.
77
+
78
+ WATCH OUT!! When deciding the dataframe calc, if any, CAREFULLY
79
+ note what the query is asking, and ensure that the result of your
80
+ dataframe calc expression would answer the query.
81
+
82
+
83
+ EXAMPLE:
84
+ -------
85
+ Suppose there is a document-set about crime reports, where:
86
+ CONTENT = crime report,
87
+ Filterable SCHEMA consists of City, Year, num_deaths.
88
+
89
+ Then given this ORIGINAL QUERY:
90
+
91
+ Total deaths in shoplifting crimes in Los Angeles in 2023?
92
+
93
+ A POSSIBLE QUERY PLAN could be:
94
+
95
+ FILTER: "City LIKE '%Los Angeles%' AND Year = 2023"
96
+ REPHRASED QUERY: "shoplifting crime" --> this will be used to MATCH content of docs
97
+ [NOTE: we dropped the FILTER fields City and Year since the
98
+ ASSISTANT does not know about them and only uses the query to
99
+ match the CONTENT of the docs.]
100
+ DATAFRAME CALCULATION: "df["num_deaths"].sum()"
101
+ NOTE!!! The DataFrame `df` in this calculation is the result of
102
+ applying the FILTER AND REPHRASED QUERY to the documents,
103
+ hence this computation will give the total deaths in shoplifting crimes.
104
+ ------------- END OF EXAMPLE ----------------
105
+
106
+ The FILTER must be a PANDAS-like condition, e.g.
107
+ "year > 2000 AND genre = 'ScienceFiction'".
108
+ To ensure you get useful results, you should make your FILTER
109
+ NOT TOO STRICT, e.g. look for approximate match using LIKE, etc.
110
+ E.g. "CEO LIKE '%Jobs%'" instead of "CEO = 'Steve Jobs'"
111
+ Use DOT NOTATION to refer to nested fields, e.g. `metadata.year`, etc.
112
+
113
+ You must FIRST present the QUERY PLAN using the `query_plan` tool/function.
114
+ This will be handled by your document assistant, who will produce an ANSWER.
115
+
116
+ You may receive FEEDBACK on your QUERY PLAN and received ANSWER,
117
+ from the 'QueryPlanCritic' who may offer suggestions for
118
+ a better FILTER, REPHRASED QUERY, or DATAFRAME CALCULATION.
119
+
120
+ If you keep getting feedback or keep getting a {NO_ANSWER} from the assistant
121
+ at least 3 times, then simply say '{DONE} {NO_ANSWER}' and nothing else.
122
+
123
+ At the BEGINNING if there is no query, ASK the user what they want to know.
124
+ """
125
+
126
+ def set_system_message(self) -> None:
127
+ self.system_message = self.system_message.format(
128
+ doc_schema=self.doc_schema,
129
+ )
130
+
131
+
132
+ class LanceQueryPlanAgent(ChatAgent):
133
+ def __init__(self, config: LanceQueryPlanAgentConfig):
134
+ super().__init__(config)
135
+ self.config: LanceQueryPlanAgentConfig = config
136
+ self.curr_query_plan: QueryPlan | None = None
137
+ # how many times re-trying query plan in response to feedback:
138
+ self.n_retries: int = 0
139
+ self.result: str = "" # answer received from LanceRAG
140
+ # This agent should generate the QueryPlanTool
141
+ # as well as handle it for validation
142
+ self.enable_message(QueryPlanTool, use=True, handle=True)
143
+ self.enable_message(QueryPlanFeedbackTool, use=False, handle=True)
144
+
145
+ def query_plan(self, msg: QueryPlanTool) -> ChatDocument:
146
+ """Valid, forward to RAG Agent"""
147
+ # save, to be used to assemble QueryPlanResultTool
148
+ if len(msg.plan.dataframe_calc.split("\n")) > 1:
149
+ return "DATAFRAME CALCULATION must be a SINGLE LINE; Retry the `query_plan`"
150
+ self.curr_query_plan = msg.plan
151
+ # return a ChatDocument with tool_messages set to this tool,
152
+ # so caller can directly get the tool without parsing
153
+ return self.create_agent_response(tool_messages=[msg])
154
+
155
+ def query_plan_feedback(self, msg: QueryPlanFeedbackTool) -> str:
156
+ """Process Critic feedback on QueryPlan + Answer from RAG Agent"""
157
+ # We should have saved answer in self.result by this time,
158
+ # since this Agent seeks feedback only after receiving RAG answer.
159
+ if msg.suggested_fix == "":
160
+ self.n_retries = 0
161
+ # This means the Query Plan or Result is good, as judged by Critic
162
+ if self.result == "":
163
+ # This was feedback for query with no result
164
+ return "QUERY PLAN LOOKS GOOD!"
165
+ elif self.result == NO_ANSWER:
166
+ return NO_ANSWER
167
+ else: # non-empty and non-null answer
168
+ return DONE + " " + self.result
169
+ self.n_retries += 1
170
+ if self.n_retries >= self.config.max_retries:
171
+ # bail out to avoid infinite loop
172
+ self.n_retries = 0
173
+ return DONE + " " + NO_ANSWER
174
+ return f"""
175
+ here is FEEDBACK about your QUERY PLAN, and a SUGGESTED FIX.
176
+ Modify the QUERY PLAN if needed:
177
+ FEEDBACK: {msg.feedback}
178
+ SUGGESTED FIX: {msg.suggested_fix}
179
+ """
180
+
181
+ def handle_message_fallback(
182
+ self, msg: str | ChatDocument
183
+ ) -> str | ChatDocument | None:
184
+ """
185
+ Process answer received from RAG Agent:
186
+ Construct a QueryPlanAnswerTool with the answer,
187
+ and forward to Critic for feedback.
188
+ """
189
+ # TODO we don't need to use this fallback method. instead we can
190
+ # first call result = super().agent_response(), and if result is None,
191
+ # then we know there was no tool, so we run below code
192
+ if (
193
+ isinstance(msg, ChatDocument)
194
+ and self.curr_query_plan is not None
195
+ and msg.metadata.parent is not None
196
+ ):
197
+ # save result, to be used in query_plan_feedback()
198
+ self.result = msg.content
199
+ # assemble QueryPlanAnswerTool...
200
+ query_plan_answer_tool = QueryPlanAnswerTool( # type: ignore
201
+ plan=self.curr_query_plan,
202
+ answer=self.result,
203
+ )
204
+ response_tmpl = self.create_agent_response()
205
+ # ... add the QueryPlanAnswerTool to the response
206
+ # (Notice how the Agent is directly sending a tool, not the LLM)
207
+ response_tmpl.tool_messages = [query_plan_answer_tool]
208
+ # set the recipient to the Critic so it can give feedback
209
+ response_tmpl.metadata.recipient = self.config.critic_name
210
+ self.curr_query_plan = None # reset
211
+ return response_tmpl
212
+ if (
213
+ isinstance(msg, ChatDocument)
214
+ and not self.has_tool_message_attempt(msg)
215
+ and msg.metadata.sender == lr.Entity.LLM
216
+ ):
217
+ # remind LLM to use the QueryPlanFeedbackTool
218
+ return """
219
+ You forgot to use the `query_plan` tool/function.
220
+ Re-try your response using the `query_plan` tool/function.
221
+ """
222
+ return None
@@ -363,7 +363,7 @@ class Neo4jChatAgent(ChatAgent):
363
363
  content=content,
364
364
  metadata=ChatDocMetaData(
365
365
  # source=Entity.AGENT,
366
- sender=Entity.LLM,
366
+ sender=Entity.AGENT,
367
367
  sender_name=sender_name,
368
368
  recipient=recipient,
369
369
  ),
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langroid
3
- Version: 0.5.0
3
+ Version: 0.5.1
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  License: MIT
6
6
  Author: Prasad Chalasani
@@ -16,10 +16,14 @@ langroid/agent/special/lance_rag/__init__.py,sha256=QTbs0IVE2ZgDg8JJy1zN97rUUg4u
16
16
  langroid/agent/special/lance_rag/critic_agent.py,sha256=S3NA3OAO7XaXjCrmwhKB7qCPlgRZFvDxiB5Qra65Zhs,7959
17
17
  langroid/agent/special/lance_rag/lance_rag_task.py,sha256=l_HQgrYY-CX2FwIsS961aEF3bYog3GDYo98fj0C0mSk,2889
18
18
  langroid/agent/special/lance_rag/query_planner_agent.py,sha256=QB8UYITUCkgSPturEwu_3i4kU8jXxW_jXNGSLlH5tMc,10109
19
+ langroid/agent/special/lance_rag_new/__init__.py,sha256=QTbs0IVE2ZgDg8JJy1zN97rUUg4uEPH7SLGctFNumk4,174
20
+ langroid/agent/special/lance_rag_new/critic_agent.py,sha256=ksUjI4Wd3SgXsEwMpEmCIvJrKd3k1k_AyUIYaNV5pBw,8341
21
+ langroid/agent/special/lance_rag_new/lance_rag_task.py,sha256=mKo4lCC1ff5Jt9BlxwclQ_y3omw2S_f0MVIJfNmXM6w,5267
22
+ langroid/agent/special/lance_rag_new/query_planner_agent.py,sha256=JqO_5fKW8HPn-zqKsZzX1sl05RgtcT63qpDMR9-q33A,10251
19
23
  langroid/agent/special/lance_tools.py,sha256=BznV_r3LAFyybvBRa9KQ0oU7mPM3uQVfri7PFp7M_qc,1894
20
24
  langroid/agent/special/neo4j/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
25
  langroid/agent/special/neo4j/csv_kg_chat.py,sha256=dRsAgMBa1H_EMI2YYgJR2Xyv1D7e4o3G9M64mTewq_c,6409
22
- langroid/agent/special/neo4j/neo4j_chat_agent.py,sha256=Y4Zu-m8WKO1xjeBRarV_m4y00Y5n_NR2B-hepjZp_cY,13104
26
+ langroid/agent/special/neo4j/neo4j_chat_agent.py,sha256=ryXFx2-ddlNzip8Zssrg0bCyNcFyIu4vax_z3WBXkyI,13106
23
27
  langroid/agent/special/neo4j/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
28
  langroid/agent/special/neo4j/utils/system_message.py,sha256=vRpz1P-OYLLiC6OGYYoK6x77yxVzDxMTCEJSsYUIuG4,2242
25
29
  langroid/agent/special/relevance_extractor_agent.py,sha256=zIx8GUdVo1aGW6ASla0NPQjYYIpmriK_TYMijqAx3F8,4796
@@ -130,8 +134,8 @@ langroid/vector_store/meilisearch.py,sha256=6frB7GFWeWmeKzRfLZIvzRjllniZ1cYj3Hmh
130
134
  langroid/vector_store/momento.py,sha256=qR-zBF1RKVHQZPZQYW_7g-XpTwr46p8HJuYPCkfJbM4,10534
131
135
  langroid/vector_store/qdrant_cloud.py,sha256=3im4Mip0QXLkR6wiqVsjV1QvhSElfxdFSuDKddBDQ-4,188
132
136
  langroid/vector_store/qdrantdb.py,sha256=v88lqFkepADvlN6lByUj9I4NEKa9X9lWH16uTPPbYrE,17457
133
- pyproject.toml,sha256=pZsOBzFd2HoJ_P1_r3XSbCuD-wAllBqu6xr75947ITU,7063
134
- langroid-0.5.0.dist-info/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
135
- langroid-0.5.0.dist-info/METADATA,sha256=WRQVNy4M8RgAEw5hQwEh8YgjGX3RoqtbdQP6gxZ6ya4,54402
136
- langroid-0.5.0.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
137
- langroid-0.5.0.dist-info/RECORD,,
137
+ pyproject.toml,sha256=1jCGCKPNCobDsOptcZnMKZIsI044DCR2YSnEPpEL4sY,7063
138
+ langroid-0.5.1.dist-info/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
139
+ langroid-0.5.1.dist-info/METADATA,sha256=TK7kU-GZZPw3-m2A1UJZwBH3kdL5wEHb0umIVGCcmeg,54402
140
+ langroid-0.5.1.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
141
+ langroid-0.5.1.dist-info/RECORD,,
pyproject.toml CHANGED
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "langroid"
3
- version = "0.5.0"
3
+ version = "0.5.1"
4
4
  description = "Harness LLMs with Multi-Agent Programming"
5
5
  authors = ["Prasad Chalasani <pchalasani@gmail.com>"]
6
6
  readme = "README.md"