langroid 0.41.4__py3-none-any.whl → 0.41.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -64,6 +64,7 @@ class GeminiModel(ModelName):
64
64
  GEMINI_1_5_FLASH_8B = "gemini/gemini-1.5-flash-8b"
65
65
  GEMINI_1_5_PRO = "gemini/gemini-1.5-pro"
66
66
  GEMINI_2_FLASH = "gemini/gemini-2.0-flash"
67
+ GEMINI_2_FLASH_LITE = "gemini/gemini-2.0-flash-lite-preview"
67
68
  GEMINI_2_FLASH_THINKING = "gemini/gemini-2.0-flash-thinking-exp"
68
69
 
69
70
 
@@ -282,9 +283,21 @@ MODEL_INFO: Dict[str, ModelInfo] = {
282
283
  provider=ModelProvider.GOOGLE,
283
284
  context_length=1_056_768,
284
285
  max_output_tokens=8192,
286
+ input_cost_per_million=0.10,
287
+ output_cost_per_million=0.40,
285
288
  rename_params={"max_tokens": "max_completion_tokens"},
286
289
  description="Gemini 2.0 Flash",
287
290
  ),
291
+ GeminiModel.GEMINI_2_FLASH_LITE.value: ModelInfo(
292
+ name=GeminiModel.GEMINI_2_FLASH_LITE.value,
293
+ provider=ModelProvider.GOOGLE,
294
+ context_length=1_056_768,
295
+ max_output_tokens=8192,
296
+ input_cost_per_million=0.075,
297
+ output_cost_per_million=0.30,
298
+ rename_params={"max_tokens": "max_completion_tokens"},
299
+ description="Gemini 2.0 Flash Lite Preview",
300
+ ),
288
301
  GeminiModel.GEMINI_1_5_FLASH.value: ModelInfo(
289
302
  name=GeminiModel.GEMINI_1_5_FLASH.value,
290
303
  provider=ModelProvider.GOOGLE,
@@ -45,6 +45,9 @@ class WeaviateDBConfig(VectorStoreConfig):
45
45
  embedding: EmbeddingModelsConfig = OpenAIEmbeddingsConfig()
46
46
  distance: str = VectorDistances.COSINE
47
47
  cloud: bool = False
48
+ docker: bool = False
49
+ host: str = "127.0.0.1"
50
+ port: int = 8080
48
51
  storage_path: str = ".weaviate_embedded/data"
49
52
 
50
53
 
@@ -55,11 +58,13 @@ class WeaviateDB(VectorStore):
55
58
  raise LangroidImportError("weaviate", "weaviate")
56
59
  self.config: WeaviateDBConfig = config
57
60
  load_dotenv()
58
- if not self.config.cloud:
59
- self.client = weaviate.connect_to_embedded(
60
- version="latest", persistence_data_path=self.config.storage_path
61
+ if self.config.docker:
62
+ self.client = weaviate.connect_to_local(
63
+ host=self.config.host,
64
+ port=self.config.port,
61
65
  )
62
- else: # Cloud mode
66
+ self.config.cloud = False
67
+ elif self.config.cloud:
63
68
  key = os.getenv("WEAVIATE_API_KEY")
64
69
  url = os.getenv("WEAVIATE_API_URL")
65
70
  if url is None or key is None:
@@ -73,6 +78,10 @@ class WeaviateDB(VectorStore):
73
78
  cluster_url=url,
74
79
  auth_credentials=Auth.api_key(key),
75
80
  )
81
+ else:
82
+ self.client = weaviate.connect_to_embedded(
83
+ version="latest", persistence_data_path=self.config.storage_path
84
+ )
76
85
 
77
86
  if config.collection_name is not None:
78
87
  WeaviateDB.validate_and_format_collection_name(config.collection_name)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langroid
3
- Version: 0.41.4
3
+ Version: 0.41.5
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  Author-email: Prasad Chalasani <pchalasani@gmail.com>
6
6
  License: MIT
@@ -71,7 +71,7 @@ langroid/language_models/azure_openai.py,sha256=zNQzzsERxNestq-hFfQZbvTzK43G2vjR
71
71
  langroid/language_models/base.py,sha256=is4l3x858tdPHbrJU2jxJXe2j9PCGb9kk_c5nyfShxs,26150
72
72
  langroid/language_models/config.py,sha256=9Q8wk5a7RQr8LGMT_0WkpjY8S4ywK06SalVRjXlfCiI,378
73
73
  langroid/language_models/mock_lm.py,sha256=5BgHKDVRWFbUwDT_PFgTZXz9-k8wJSA2e3PZmyDgQ1k,4022
74
- langroid/language_models/model_info.py,sha256=yKAaKoCanPoqaoHCzRVNPjg-M9a4S2Vm2AJGnwMeO-M,11360
74
+ langroid/language_models/model_info.py,sha256=GEIyfypSzuev6ZG81-nb8OhvSxH4PHQ_m5UhBAQ8kSA,11910
75
75
  langroid/language_models/openai_gpt.py,sha256=aajZ3ZvGkwI-3QdsNWgJ4QSyGpnyXJ5n4p2fYGUmdo4,77317
76
76
  langroid/language_models/utils.py,sha256=L4_CbihDMTGcsg0TOG1Yd5JFEto46--h7CX_14m89sQ,5016
77
77
  langroid/language_models/prompt_formatter/__init__.py,sha256=2-5cdE24XoFDhifOLl8yiscohil1ogbP1ECkYdBlBsk,372
@@ -127,8 +127,8 @@ langroid/vector_store/momento.py,sha256=xOaU7Hlyyn_5ihb0ARS5JHtmrKrTCt2IdRA-ioMM
127
127
  langroid/vector_store/pineconedb.py,sha256=otxXZNaBKb9f_H75HTaU3lMHiaR2NUp5MqwLZXpEY9M,14994
128
128
  langroid/vector_store/postgres.py,sha256=DQHd6dt-OcV_QVNm-ymn28rlTfhI6hqgcpLTPCsm0jI,15990
129
129
  langroid/vector_store/qdrantdb.py,sha256=v7TAsIoj_vxeKDYS9tpwJLBZA8fuTweTYxHo0X_uawM,17949
130
- langroid/vector_store/weaviatedb.py,sha256=ONEr2iGS0Ii73oMe7tRk6bB-BEXQUa70fYSrdI8d3yo,11481
131
- langroid-0.41.4.dist-info/METADATA,sha256=hU062qh537keZYiNQZhdKWffOldsn_lz5BWYew1TQbg,61331
132
- langroid-0.41.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
133
- langroid-0.41.4.dist-info/licenses/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
134
- langroid-0.41.4.dist-info/RECORD,,
130
+ langroid/vector_store/weaviatedb.py,sha256=tjlqEtkwrhykelt-nbr2WIuHWJBuSAGjZuG6gsAMBsc,11753
131
+ langroid-0.41.5.dist-info/METADATA,sha256=Ii6nQYMNZlMmeJ27AVkt7m6d5useGfOXIunF3BAlVzI,61331
132
+ langroid-0.41.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
133
+ langroid-0.41.5.dist-info/licenses/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
134
+ langroid-0.41.5.dist-info/RECORD,,