langroid 0.37.7__py3-none-any.whl → 0.39.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
langroid/agent/base.py CHANGED
@@ -333,6 +333,11 @@ class Agent(ABC):
333
333
  if hasattr(message_class, "handle_message_fallback") and (
334
334
  inspect.isfunction(message_class.handle_message_fallback)
335
335
  ):
336
+ # When a ToolMessage has a `handle_message_fallback` method,
337
+ # we inject it into the agent as a method, overriding the default
338
+ # `handle_message_fallback` method (which does nothing).
339
+ # It's possible multiple tool messages have a `handle_message_fallback`,
340
+ # in which case, the last one inserted will be used.
336
341
  setattr(
337
342
  self,
338
343
  "handle_message_fallback",
@@ -5,7 +5,7 @@ import logging
5
5
  import textwrap
6
6
  from contextlib import ExitStack
7
7
  from inspect import isclass
8
- from typing import Dict, List, Optional, Self, Set, Tuple, Type, Union, cast
8
+ from typing import Any, Dict, List, Optional, Self, Set, Tuple, Type, Union, cast
9
9
 
10
10
  import openai
11
11
  from rich import print
@@ -31,6 +31,7 @@ from langroid.language_models.base import (
31
31
  ToolChoiceTypes,
32
32
  )
33
33
  from langroid.language_models.openai_gpt import OpenAIGPT
34
+ from langroid.mytypes import Entity, Routing
34
35
  from langroid.pydantic_v1 import BaseModel, ValidationError
35
36
  from langroid.utils.configuration import settings
36
37
  from langroid.utils.object_registry import ObjectRegistry
@@ -52,6 +53,7 @@ class ChatAgentConfig(AgentConfig):
52
53
  user_message: user message to include in message sequence.
53
54
  Used only if `task` is not specified in the constructor.
54
55
  use_tools: whether to use our own ToolMessages mechanism
56
+ non_tool_routing (Routing|str): routing when LLM generates non-tool msg.
55
57
  use_functions_api: whether to use functions/tools native to the LLM API
56
58
  (e.g. OpenAI's `function_call` or `tool_call` mechanism)
57
59
  use_tools_api: When `use_functions_api` is True, if this is also True,
@@ -84,6 +86,7 @@ class ChatAgentConfig(AgentConfig):
84
86
 
85
87
  system_message: str = "You are a helpful assistant."
86
88
  user_message: Optional[str] = None
89
+ non_tool_routing: Routing | None = None
87
90
  use_tools: bool = False
88
91
  use_functions_api: bool = True
89
92
  use_tools_api: bool = False
@@ -579,6 +582,31 @@ class ChatAgent(Agent):
579
582
  # remove leading and trailing newlines and other whitespace
580
583
  return LLMMessage(role=Role.SYSTEM, content=content.strip())
581
584
 
585
+ def handle_message_fallback(self, msg: str | ChatDocument) -> Any:
586
+ """
587
+ Fallback method for the "no-tools" scenario.
588
+ Users the self.config.non_tool_routing to determine the action to take.
589
+
590
+ This method can be overridden by subclasses, e.g.,
591
+ to create a "reminder" message when a tool is expected but the LLM "forgot"
592
+ to generate one.
593
+
594
+ Args:
595
+ msg (str | ChatDocument): The input msg to handle
596
+ Returns:
597
+ Any: The result of the handler method
598
+ """
599
+ if self.config.non_tool_routing is None:
600
+ return None
601
+ if isinstance(msg, ChatDocument) and msg.metadata.sender == Entity.LLM:
602
+ from langroid.agent.tools.orchestration import AgentDoneTool, ForwardTool
603
+
604
+ match self.config.non_tool_routing:
605
+ case Routing.FORWARD_USER:
606
+ return ForwardTool(agent="User")
607
+ case Routing.DONE:
608
+ return AgentDoneTool(content=msg.content, tools=msg.tool_messages)
609
+
582
610
  def unhandled_tools(self) -> set[str]:
583
611
  """The set of tools that are known but not handled.
584
612
  Useful in task flow: an agent can refuse to accept an incoming msg
@@ -13,6 +13,8 @@ from .models import (
13
13
  SentenceTransformerEmbeddingsConfig,
14
14
  LlamaCppServerEmbeddings,
15
15
  LlamaCppServerEmbeddingsConfig,
16
+ GeminiEmbeddings,
17
+ GeminiEmbeddingsConfig,
16
18
  embedding_model,
17
19
  )
18
20
  from .remote_embeds import (
@@ -33,6 +35,8 @@ __all__ = [
33
35
  "SentenceTransformerEmbeddingsConfig",
34
36
  "LlamaCppServerEmbeddings",
35
37
  "LlamaCppServerEmbeddingsConfig",
38
+ "GeminiEmbeddings",
39
+ "GeminiEmbeddingsConfig",
36
40
  "embedding_model",
37
41
  "RemoteEmbeddingsConfig",
38
42
  "RemoteEmbeddings",
@@ -28,6 +28,8 @@ class EmbeddingModel(ABC):
28
28
  AzureOpenAIEmbeddingsConfig,
29
29
  FastEmbedEmbeddings,
30
30
  FastEmbedEmbeddingsConfig,
31
+ GeminiEmbeddings,
32
+ GeminiEmbeddingsConfig,
31
33
  LlamaCppServerEmbeddings,
32
34
  LlamaCppServerEmbeddingsConfig,
33
35
  OpenAIEmbeddings,
@@ -52,6 +54,8 @@ class EmbeddingModel(ABC):
52
54
  return FastEmbedEmbeddings(config)
53
55
  elif isinstance(config, LlamaCppServerEmbeddingsConfig):
54
56
  return LlamaCppServerEmbeddings(config)
57
+ elif isinstance(config, GeminiEmbeddingsConfig):
58
+ return GeminiEmbeddings(config)
55
59
  else:
56
60
  raise ValueError(f"Unknown embedding config: {config.__repr_name__}")
57
61
 
@@ -77,6 +77,14 @@ class LlamaCppServerEmbeddingsConfig(EmbeddingModelsConfig):
77
77
  batch_size: int = 2048
78
78
 
79
79
 
80
+ class GeminiEmbeddingsConfig(EmbeddingModelsConfig):
81
+ model_type: str = "gemini"
82
+ model_name: str = "models/text-embedding-004"
83
+ api_key: str = ""
84
+ dims: int = 768
85
+ batch_size: int = 512
86
+
87
+
80
88
  class EmbeddingFunctionCallable:
81
89
  """
82
90
  A callable class designed to generate embeddings for a list of texts using
@@ -160,6 +168,8 @@ class EmbeddingFunctionCallable:
160
168
  self.embed_model.detokenize_string(list(token_batch))
161
169
  )
162
170
  embeds.append(gen_embedding)
171
+ elif isinstance(self.embed_model, GeminiEmbeddings):
172
+ embeds = self.embed_model.generate_embeddings(input)
163
173
  return embeds
164
174
 
165
175
 
@@ -437,6 +447,54 @@ class LlamaCppServerEmbeddings(EmbeddingModel):
437
447
  return self.config.dims
438
448
 
439
449
 
450
+ class GeminiEmbeddings(EmbeddingModel):
451
+ def __init__(self, config: GeminiEmbeddingsConfig = GeminiEmbeddingsConfig()):
452
+ try:
453
+ import google.generativeai as genai
454
+ except ImportError as e:
455
+ raise LangroidImportError(extra="google-generativeai", error=str(e))
456
+ super().__init__()
457
+ self.config = config
458
+ load_dotenv()
459
+ self.config.api_key = os.getenv("GEMINI_API_KEY", "")
460
+
461
+ if self.config.api_key == "":
462
+ raise ValueError(
463
+ """
464
+ GEMINI_API_KEY env variable must be set to use GeminiEmbeddings.
465
+ """
466
+ )
467
+ genai.configure(api_key=self.config.api_key) # type: ignore[attr-defined]
468
+ self.client = genai
469
+
470
+ def embedding_fn(self) -> Callable[[List[str]], Embeddings]:
471
+ return EmbeddingFunctionCallable(self, self.config.batch_size)
472
+
473
+ def generate_embeddings(self, texts: List[str]) -> Embeddings:
474
+ all_embeddings = [] # More precise type hint
475
+ for batch in batched(texts, self.config.batch_size):
476
+ result = self.client.embed_content( # type: ignore[attr-defined]
477
+ model=self.config.model_name,
478
+ content=batch,
479
+ task_type="RETRIEVAL_DOCUMENT",
480
+ )
481
+
482
+ embeddings = result["embedding"]
483
+ if not isinstance(embeddings, list):
484
+ raise ValueError("Unexpected format for embeddings: not a list")
485
+
486
+ if embeddings and isinstance(embeddings[0], list):
487
+ all_embeddings.extend(embeddings)
488
+ else:
489
+ all_embeddings.append(embeddings)
490
+
491
+ return all_embeddings
492
+
493
+ @property
494
+ def embedding_dims(self) -> int:
495
+ return self.config.dims
496
+
497
+
440
498
  def embedding_model(embedding_fn_type: str = "openai") -> EmbeddingModel:
441
499
  """
442
500
  Args:
@@ -457,5 +515,7 @@ def embedding_model(embedding_fn_type: str = "openai") -> EmbeddingModel:
457
515
  return FastEmbedEmbeddings # type: ignore
458
516
  elif embedding_fn_type == "llamacppserver":
459
517
  return LlamaCppServerEmbeddings # type: ignore
518
+ elif embedding_fn_type == "gemini":
519
+ return GeminiEmbeddings # type: ignore
460
520
  else: # default sentence transformer
461
521
  return SentenceTransformerEmbeddings # type: ignore
langroid/mytypes.py CHANGED
@@ -93,3 +93,12 @@ class Document(BaseModel):
93
93
  SOURCE:{self.metadata.source}
94
94
  """
95
95
  )
96
+
97
+
98
+ class Routing(str, Enum):
99
+ """
100
+ Possible Routing options. Mainly used to handle non-tool msgs from LLM.
101
+ """
102
+
103
+ FORWARD_USER = "user" # forward msg to user
104
+ DONE = "done" # task done
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langroid
3
- Version: 0.37.7
3
+ Version: 0.39.0
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  Author-email: Prasad Chalasani <pchalasani@gmail.com>
6
6
  License: MIT
@@ -106,6 +106,8 @@ Provides-Extra: docx
106
106
  Requires-Dist: python-docx<2.0.0,>=1.1.0; extra == 'docx'
107
107
  Provides-Extra: fastembed
108
108
  Requires-Dist: fastembed<0.4.0,>=0.3.1; extra == 'fastembed'
109
+ Provides-Extra: google-generativeai
110
+ Requires-Dist: google-generativeai>=0.8.4; extra == 'google-generativeai'
109
111
  Provides-Extra: hf-embeddings
110
112
  Requires-Dist: sentence-transformers<3.0.0,>=2.2.2; extra == 'hf-embeddings'
111
113
  Requires-Dist: torch<3.0.0,>=2.0.0; extra == 'hf-embeddings'
@@ -1,11 +1,11 @@
1
1
  langroid/__init__.py,sha256=z_fCOLQJPOw3LLRPBlFB5-2HyCjpPgQa4m4iY5Fvb8Y,1800
2
2
  langroid/exceptions.py,sha256=OPjece_8cwg94DLPcOGA1ddzy5bGh65pxzcHMnssTz8,2995
3
- langroid/mytypes.py,sha256=h1eMq1ZwTLVezObPfCseWNWbEOzP7mAKu2XoS63W1cM,2647
3
+ langroid/mytypes.py,sha256=NVLwkiP404ekwnRTfn-6B2iWqS69b3fZDNOo9VB_7Vc,2848
4
4
  langroid/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  langroid/agent/__init__.py,sha256=ll0Cubd2DZ-fsCMl7e10hf9ZjFGKzphfBco396IKITY,786
6
- langroid/agent/base.py,sha256=oThlrYygKDu1-bKjAfygldJ511gMKT8Z0qCrD52DdDM,77834
6
+ langroid/agent/base.py,sha256=o406IulFni4y0L8u8g0MWphASX-d57jZgXLeS61iMko,78204
7
7
  langroid/agent/batch.py,sha256=vi1r5i1-vN80WfqHDSwjEym_KfGsqPGUtwktmiK1nuk,20635
8
- langroid/agent/chat_agent.py,sha256=_7vOhTauPpPiOih2hnec8hz0rytaxGN110ja9wRCLJ0,82276
8
+ langroid/agent/chat_agent.py,sha256=9WgxuMibiF0jC6s0x721p6XJ_MH6NXM1hqriZ_iqTLQ,83499
9
9
  langroid/agent/chat_document.py,sha256=xzMtrPbaW-Y-BnF7kuhr2dorsD-D5rMWzfOqJ8HAoo8,17885
10
10
  langroid/agent/openai_assistant.py,sha256=JkAcs02bIrgPNVvUWVR06VCthc5-ulla2QMBzux_q6o,34340
11
11
  langroid/agent/task.py,sha256=XrXUbSoiFasvpIsZPn_cBpdWaTCKljJPRimtLMrSZrs,90347
@@ -55,9 +55,9 @@ langroid/cachedb/__init__.py,sha256=icAT2s7Vhf-ZGUeqpDQGNU6ob6o0aFEyjwcxxUGRFjg,
55
55
  langroid/cachedb/base.py,sha256=ztVjB1DtN6pLCujCWnR6xruHxwVj3XkYniRTYAKKqk0,1354
56
56
  langroid/cachedb/momento_cachedb.py,sha256=YEOJ62hEcV6iIeMr5aGgRYgWQqFYaej9gEDEcY0sm7M,3172
57
57
  langroid/cachedb/redis_cachedb.py,sha256=7kgnbf4b5CKsCrlL97mHWKvdvlLt8zgn7lc528jEpiE,5141
58
- langroid/embedding_models/__init__.py,sha256=XhVIMQJbQRpImcnhA9sJR7h6r7QgPo1SKDCvwEUD9j4,851
59
- langroid/embedding_models/base.py,sha256=DUhvzALoW2UMbtmLxP4eJTfPii99WjUNX7bwFpj_K-0,2395
60
- langroid/embedding_models/models.py,sha256=W8BG_OFgpA7lkEU0Fk4Qt7AzxuN0JjGf7Y-29EXZQ4E,16776
58
+ langroid/embedding_models/__init__.py,sha256=KyYxR3jDFUCfYjSuCL86qjAmrq6mXXjOT4lFNOKVj6Y,955
59
+ langroid/embedding_models/base.py,sha256=Ml7oA6PzQm0wZmIYn3fhF7dvZCi-amviWUwOeBegH3A,2562
60
+ langroid/embedding_models/models.py,sha256=fKQBiaaG7uYoeELDbAiNxwLdn-CWN8dyiVEZcdk_bjI,18959
61
61
  langroid/embedding_models/remote_embeds.py,sha256=6_kjXByVbqhY9cGwl9R83ZcYC2km-nGieNNAo1McHaY,5151
62
62
  langroid/embedding_models/protoc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
63
  langroid/embedding_models/protoc/embeddings.proto,sha256=_O-SgFpTaylQeOTgSpxhEJ7CUw7PeCQQJLaPqpPYKJg,321
@@ -123,7 +123,7 @@ langroid/vector_store/meilisearch.py,sha256=6frB7GFWeWmeKzRfLZIvzRjllniZ1cYj3Hmh
123
123
  langroid/vector_store/momento.py,sha256=xOaU7Hlyyn_5ihb0ARS5JHtmrKrTCt2IdRA-ioMM5ek,10307
124
124
  langroid/vector_store/qdrantdb.py,sha256=v7TAsIoj_vxeKDYS9tpwJLBZA8fuTweTYxHo0X_uawM,17949
125
125
  langroid/vector_store/weaviatedb.py,sha256=FOzgvqLqvdN5jJebVtJ-8tu2CeBzBfSP3ih4_ODEOOw,10605
126
- langroid-0.37.7.dist-info/METADATA,sha256=iaVoVKbhBTjGSt00U8RQAKJ1LRfLaUcGDQrrCvkIvAA,60524
127
- langroid-0.37.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
128
- langroid-0.37.7.dist-info/licenses/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
129
- langroid-0.37.7.dist-info/RECORD,,
126
+ langroid-0.39.0.dist-info/METADATA,sha256=hhbwLxNJulTOPXHqMK0F_arDZ0FASsY_7WBIrCJXE0g,60634
127
+ langroid-0.39.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
128
+ langroid-0.39.0.dist-info/licenses/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
129
+ langroid-0.39.0.dist-info/RECORD,,