langroid 0.33.6__py3-none-any.whl → 0.33.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (129) hide show
  1. langroid/__init__.py +106 -0
  2. langroid/agent/__init__.py +41 -0
  3. langroid/agent/base.py +1983 -0
  4. langroid/agent/batch.py +398 -0
  5. langroid/agent/callbacks/__init__.py +0 -0
  6. langroid/agent/callbacks/chainlit.py +598 -0
  7. langroid/agent/chat_agent.py +1899 -0
  8. langroid/agent/chat_document.py +454 -0
  9. langroid/agent/openai_assistant.py +882 -0
  10. langroid/agent/special/__init__.py +59 -0
  11. langroid/agent/special/arangodb/__init__.py +0 -0
  12. langroid/agent/special/arangodb/arangodb_agent.py +656 -0
  13. langroid/agent/special/arangodb/system_messages.py +186 -0
  14. langroid/agent/special/arangodb/tools.py +107 -0
  15. langroid/agent/special/arangodb/utils.py +36 -0
  16. langroid/agent/special/doc_chat_agent.py +1466 -0
  17. langroid/agent/special/lance_doc_chat_agent.py +262 -0
  18. langroid/agent/special/lance_rag/__init__.py +9 -0
  19. langroid/agent/special/lance_rag/critic_agent.py +198 -0
  20. langroid/agent/special/lance_rag/lance_rag_task.py +82 -0
  21. langroid/agent/special/lance_rag/query_planner_agent.py +260 -0
  22. langroid/agent/special/lance_tools.py +61 -0
  23. langroid/agent/special/neo4j/__init__.py +0 -0
  24. langroid/agent/special/neo4j/csv_kg_chat.py +174 -0
  25. langroid/agent/special/neo4j/neo4j_chat_agent.py +433 -0
  26. langroid/agent/special/neo4j/system_messages.py +120 -0
  27. langroid/agent/special/neo4j/tools.py +32 -0
  28. langroid/agent/special/relevance_extractor_agent.py +127 -0
  29. langroid/agent/special/retriever_agent.py +56 -0
  30. langroid/agent/special/sql/__init__.py +17 -0
  31. langroid/agent/special/sql/sql_chat_agent.py +654 -0
  32. langroid/agent/special/sql/utils/__init__.py +21 -0
  33. langroid/agent/special/sql/utils/description_extractors.py +190 -0
  34. langroid/agent/special/sql/utils/populate_metadata.py +85 -0
  35. langroid/agent/special/sql/utils/system_message.py +35 -0
  36. langroid/agent/special/sql/utils/tools.py +64 -0
  37. langroid/agent/special/table_chat_agent.py +263 -0
  38. langroid/agent/task.py +2095 -0
  39. langroid/agent/tool_message.py +393 -0
  40. langroid/agent/tools/__init__.py +38 -0
  41. langroid/agent/tools/duckduckgo_search_tool.py +50 -0
  42. langroid/agent/tools/file_tools.py +234 -0
  43. langroid/agent/tools/google_search_tool.py +39 -0
  44. langroid/agent/tools/metaphor_search_tool.py +68 -0
  45. langroid/agent/tools/orchestration.py +303 -0
  46. langroid/agent/tools/recipient_tool.py +235 -0
  47. langroid/agent/tools/retrieval_tool.py +32 -0
  48. langroid/agent/tools/rewind_tool.py +137 -0
  49. langroid/agent/tools/segment_extract_tool.py +41 -0
  50. langroid/agent/xml_tool_message.py +382 -0
  51. langroid/cachedb/__init__.py +17 -0
  52. langroid/cachedb/base.py +58 -0
  53. langroid/cachedb/momento_cachedb.py +108 -0
  54. langroid/cachedb/redis_cachedb.py +153 -0
  55. langroid/embedding_models/__init__.py +39 -0
  56. langroid/embedding_models/base.py +74 -0
  57. langroid/embedding_models/models.py +461 -0
  58. langroid/embedding_models/protoc/__init__.py +0 -0
  59. langroid/embedding_models/protoc/embeddings.proto +19 -0
  60. langroid/embedding_models/protoc/embeddings_pb2.py +33 -0
  61. langroid/embedding_models/protoc/embeddings_pb2.pyi +50 -0
  62. langroid/embedding_models/protoc/embeddings_pb2_grpc.py +79 -0
  63. langroid/embedding_models/remote_embeds.py +153 -0
  64. langroid/exceptions.py +71 -0
  65. langroid/language_models/__init__.py +53 -0
  66. langroid/language_models/azure_openai.py +153 -0
  67. langroid/language_models/base.py +678 -0
  68. langroid/language_models/config.py +18 -0
  69. langroid/language_models/mock_lm.py +124 -0
  70. langroid/language_models/openai_gpt.py +1964 -0
  71. langroid/language_models/prompt_formatter/__init__.py +16 -0
  72. langroid/language_models/prompt_formatter/base.py +40 -0
  73. langroid/language_models/prompt_formatter/hf_formatter.py +132 -0
  74. langroid/language_models/prompt_formatter/llama2_formatter.py +75 -0
  75. langroid/language_models/utils.py +151 -0
  76. langroid/mytypes.py +84 -0
  77. langroid/parsing/__init__.py +52 -0
  78. langroid/parsing/agent_chats.py +38 -0
  79. langroid/parsing/code_parser.py +121 -0
  80. langroid/parsing/document_parser.py +718 -0
  81. langroid/parsing/para_sentence_split.py +62 -0
  82. langroid/parsing/parse_json.py +155 -0
  83. langroid/parsing/parser.py +313 -0
  84. langroid/parsing/repo_loader.py +790 -0
  85. langroid/parsing/routing.py +36 -0
  86. langroid/parsing/search.py +275 -0
  87. langroid/parsing/spider.py +102 -0
  88. langroid/parsing/table_loader.py +94 -0
  89. langroid/parsing/url_loader.py +111 -0
  90. langroid/parsing/urls.py +273 -0
  91. langroid/parsing/utils.py +373 -0
  92. langroid/parsing/web_search.py +156 -0
  93. langroid/prompts/__init__.py +9 -0
  94. langroid/prompts/dialog.py +17 -0
  95. langroid/prompts/prompts_config.py +5 -0
  96. langroid/prompts/templates.py +141 -0
  97. langroid/pydantic_v1/__init__.py +10 -0
  98. langroid/pydantic_v1/main.py +4 -0
  99. langroid/utils/__init__.py +19 -0
  100. langroid/utils/algorithms/__init__.py +3 -0
  101. langroid/utils/algorithms/graph.py +103 -0
  102. langroid/utils/configuration.py +98 -0
  103. langroid/utils/constants.py +30 -0
  104. langroid/utils/git_utils.py +252 -0
  105. langroid/utils/globals.py +49 -0
  106. langroid/utils/logging.py +135 -0
  107. langroid/utils/object_registry.py +66 -0
  108. langroid/utils/output/__init__.py +20 -0
  109. langroid/utils/output/citations.py +41 -0
  110. langroid/utils/output/printing.py +99 -0
  111. langroid/utils/output/status.py +40 -0
  112. langroid/utils/pandas_utils.py +30 -0
  113. langroid/utils/pydantic_utils.py +602 -0
  114. langroid/utils/system.py +286 -0
  115. langroid/utils/types.py +93 -0
  116. langroid/vector_store/__init__.py +50 -0
  117. langroid/vector_store/base.py +359 -0
  118. langroid/vector_store/chromadb.py +214 -0
  119. langroid/vector_store/lancedb.py +406 -0
  120. langroid/vector_store/meilisearch.py +299 -0
  121. langroid/vector_store/momento.py +278 -0
  122. langroid/vector_store/qdrantdb.py +468 -0
  123. {langroid-0.33.6.dist-info → langroid-0.33.7.dist-info}/METADATA +95 -94
  124. langroid-0.33.7.dist-info/RECORD +127 -0
  125. {langroid-0.33.6.dist-info → langroid-0.33.7.dist-info}/WHEEL +1 -1
  126. langroid-0.33.6.dist-info/RECORD +0 -7
  127. langroid-0.33.6.dist-info/entry_points.txt +0 -4
  128. pyproject.toml +0 -356
  129. {langroid-0.33.6.dist-info → langroid-0.33.7.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,260 @@
1
+ """
2
+ LanceQueryPlanAgent is a ChatAgent created with a specific document schema.
3
+ Given a QUERY, the LLM constructs a Query Plan consisting of:
4
+ - filter condition if needed (or empty string if no filter is needed)
5
+ - query - a possibly rephrased query that can be used to match the `content` field
6
+ - dataframe_calc - a Pandas-dataframe calculation/aggregation string, possibly empty
7
+ - original_query - the original query for reference
8
+
9
+ This agent has access to two tools:
10
+ - QueryPlanTool, which is used to generate the Query Plan, and the handler of
11
+ this tool simply passes it on to the RAG agent named in config.doc_agent_name.
12
+ - QueryPlanFeedbackTool, which is used to handle feedback on the Query Plan and
13
+ Result from the RAG agent. The QueryPlanFeedbackTool is used by
14
+ the QueryPlanCritic, who inserts feedback into the `feedback` field
15
+ """
16
+
17
+ import logging
18
+ from typing import Optional
19
+
20
+ from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
21
+ from langroid.agent.chat_document import ChatDocument
22
+ from langroid.agent.special.lance_tools import (
23
+ AnswerTool,
24
+ QueryPlan,
25
+ QueryPlanAnswerTool,
26
+ QueryPlanFeedbackTool,
27
+ QueryPlanTool,
28
+ )
29
+ from langroid.agent.tools.orchestration import AgentDoneTool, ForwardTool
30
+ from langroid.utils.constants import NO_ANSWER
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+
35
+ class LanceQueryPlanAgentConfig(ChatAgentConfig):
36
+ name: str = "LancePlanner"
37
+ critic_name: str = "QueryPlanCritic"
38
+ doc_agent_name: str = "LanceRAG"
39
+ doc_schema: str = ""
40
+ use_tools = False
41
+ max_retries: int = 5 # max number of retries for query plan
42
+ use_functions_api = True
43
+
44
+ system_message = """
45
+ You will receive a QUERY, to be answered based on an EXTREMELY LARGE collection
46
+ of documents you DO NOT have access to, but your ASSISTANT does.
47
+ You only know that these documents have a special `content` field
48
+ and additional FILTERABLE fields in the SCHEMA below, along with the
49
+ SAMPLE VALUES for each field, and the DTYPE in PANDAS TERMINOLOGY.
50
+
51
+ {doc_schema}
52
+
53
+ Based on the QUERY and the above SCHEMA, your task is to determine a QUERY PLAN,
54
+ consisting of:
55
+ - a PANDAS-TYPE FILTER (can be empty string) that would help the ASSISTANT to
56
+ answer the query.
57
+ Remember the FILTER can refer to ANY fields in the above SCHEMA
58
+ EXCEPT the `content` field of the documents.
59
+ ONLY USE A FILTER IF EXPLICITLY MENTIONED IN THE QUERY.
60
+ TO get good results, for STRING MATCHES, consider using LIKE instead of =, e.g.
61
+ "CEO LIKE '%Jobs%'" instead of "CEO = 'Steve Jobs'"
62
+ YOUR FILTER MUST BE A PANDAS-TYPE FILTER, respecting the shown DTYPES.
63
+ - a possibly REPHRASED QUERY (CANNOT BE EMPTY) to be answerable given the FILTER.
64
+ Keep in mind that the ASSISTANT does NOT know anything about the FILTER fields,
65
+ so the REPHRASED QUERY should NOT mention ANY FILTER fields.
66
+ The assistant will answer based on documents whose CONTENTS match the QUERY,
67
+ possibly REPHRASED.
68
+ !!!!****THE REPHRASED QUERY SHOULD NEVER BE EMPTY****!!!
69
+ - an OPTIONAL SINGLE-LINE Pandas-dataframe calculation/aggregation string
70
+ that can be used to calculate the answer to the original query,
71
+ e.g. "df["rating"].mean()",
72
+ or "df.groupby("director").mean()["rating"]",
73
+ or EMPTY string if no calc is needed.
74
+ The dataframe calc CAN refer to the `content` field.
75
+ If a DataFrame calculation is NOT needed, leave this field EMPTY.
76
+
77
+ IMPORTANT: The DataFrame `df` in this calculation is the result of
78
+ applying the FILTER AND REPHRASED QUERY to the documents.
79
+
80
+ WATCH OUT!! When deciding the dataframe calc, if any, CAREFULLY
81
+ note what the query is asking, and ensure that the result of your
82
+ dataframe calc expression would answer the query.
83
+
84
+
85
+ EXAMPLE:
86
+ -------
87
+ Suppose there is a document-set about crime reports, where:
88
+ CONTENT = crime report,
89
+ Filterable SCHEMA consists of City, Year, num_deaths.
90
+
91
+ Then given this ORIGINAL QUERY:
92
+
93
+ Total deaths in shoplifting crimes in Los Angeles in 2023?
94
+
95
+ A POSSIBLE QUERY PLAN could be:
96
+
97
+ FILTER: "City LIKE '%Los Angeles%' AND Year = 2023"
98
+ REPHRASED QUERY: "shoplifting crime" --> this will be used to MATCH content of docs
99
+ [NOTE: we dropped the FILTER fields City and Year since the
100
+ ASSISTANT does not know about them and only uses the query to
101
+ match the CONTENT of the docs.]
102
+ DATAFRAME CALCULATION: "df["num_deaths"].sum()"
103
+ NOTE!!! The DataFrame `df` in this calculation is the result of
104
+ applying the FILTER AND REPHRASED QUERY to the documents,
105
+ hence this computation will give the total deaths in shoplifting crimes.
106
+ ------------- END OF EXAMPLE ----------------
107
+
108
+ The FILTER must be a PANDAS-like condition, e.g.
109
+ "year > 2000 AND genre = 'ScienceFiction'".
110
+ To ensure you get useful results, you should make your FILTER
111
+ NOT TOO STRICT, e.g. look for approximate match using LIKE, etc.
112
+ E.g. "CEO LIKE '%Jobs%'" instead of "CEO = 'Steve Jobs'"
113
+ Use DOT NOTATION to refer to nested fields, e.g. `metadata.year`, etc.
114
+
115
+ You must FIRST present the QUERY PLAN using the `query_plan` tool/function.
116
+ This will be handled by your document assistant, who will produce an ANSWER.
117
+
118
+ You may receive FEEDBACK on your QUERY PLAN and received ANSWER,
119
+ from the 'QueryPlanCritic' who may offer suggestions for
120
+ a better FILTER, REPHRASED QUERY, or DATAFRAME CALCULATION.
121
+
122
+ At the BEGINNING if there is no query, ASK the user what they want to know.
123
+ """
124
+
125
+ def set_system_message(self) -> None:
126
+ self.system_message = self.system_message.format(
127
+ doc_schema=self.doc_schema,
128
+ )
129
+
130
+
131
+ class LanceQueryPlanAgent(ChatAgent):
132
+ def __init__(self, config: LanceQueryPlanAgentConfig):
133
+ super().__init__(config)
134
+ self.config: LanceQueryPlanAgentConfig = config
135
+ # This agent should generate the QueryPlanTool
136
+ # as well as handle it for validation
137
+ self.enable_message(QueryPlanTool, use=True, handle=True)
138
+ self.enable_message(QueryPlanFeedbackTool, use=False, handle=True)
139
+ self.enable_message(AnswerTool, use=False, handle=True)
140
+ # neither use nor handle! Added to "known" tools so that the Planner agent
141
+ # can avoid processing it
142
+ self.enable_message(QueryPlanAnswerTool, use=False, handle=False)
143
+ # LLM will not use this, so set use=False (Agent generates it)
144
+ self.enable_message(AgentDoneTool, use=False, handle=True)
145
+
146
+ def init_state(self) -> None:
147
+ super().init_state()
148
+ self.curr_query_plan: QueryPlan | None = None
149
+ self.expecting_query_plan: bool = False
150
+ # how many times re-trying query plan in response to feedback:
151
+ self.n_retries: int = 0
152
+ self.n_query_plan_reminders: int = 0
153
+ self.result: str = "" # answer received from LanceRAG
154
+
155
+ def llm_response(
156
+ self, message: Optional[str | ChatDocument] = None
157
+ ) -> Optional[ChatDocument]:
158
+ self.expecting_query_plan = True
159
+ return super().llm_response(message)
160
+
161
+ def query_plan(self, msg: QueryPlanTool) -> ForwardTool | str:
162
+ """Valid, tool msg, forward chat_doc to RAG Agent.
163
+ Note this chat_doc will already have the
164
+ QueryPlanTool in its tool_messages list.
165
+ We just update the recipient to the doc_agent_name.
166
+ """
167
+ # save, to be used to assemble QueryPlanResultTool
168
+ if len(msg.plan.dataframe_calc.split("\n")) > 1:
169
+ return "DATAFRAME CALCULATION must be a SINGLE LINE; Retry the `query_plan`"
170
+ self.curr_query_plan = msg.plan
171
+ self.expecting_query_plan = False
172
+
173
+ # To forward the QueryPlanTool to doc_agent, we could either:
174
+
175
+ # (a) insert `recipient` in the QueryPlanTool:
176
+ # QPWithRecipient = QueryPlanTool.require_recipient()
177
+ # qp = QPWithRecipient(**msg.dict(), recipient=self.config.doc_agent_name)
178
+ # return qp
179
+ #
180
+ # OR
181
+ #
182
+ # (b) create an agent response with recipient and tool_messages.
183
+ # response = self.create_agent_response(
184
+ # recipient=self.config.doc_agent_name, tool_messages=[msg]
185
+ # )
186
+ # return response
187
+
188
+ # OR
189
+ # (c) use the ForwardTool:
190
+ return ForwardTool(agent=self.config.doc_agent_name)
191
+
192
+ def query_plan_feedback(self, msg: QueryPlanFeedbackTool) -> str | AgentDoneTool:
193
+ """Process Critic feedback on QueryPlan + Answer from RAG Agent"""
194
+ # We should have saved answer in self.result by this time,
195
+ # since this Agent seeks feedback only after receiving RAG answer.
196
+ if (
197
+ msg.suggested_fix == ""
198
+ and NO_ANSWER not in self.result
199
+ and self.result != ""
200
+ ):
201
+ # This means the result is good AND Query Plan is fine,
202
+ # as judged by Critic
203
+ # (Note sometimes critic may have empty suggested_fix even when
204
+ # the result is NO_ANSWER)
205
+ self.n_retries = 0 # good answer, so reset this
206
+ return AgentDoneTool(content=self.result)
207
+ self.n_retries += 1
208
+ if self.n_retries >= self.config.max_retries:
209
+ # bail out to avoid infinite loop
210
+ self.n_retries = 0
211
+ return AgentDoneTool(content=NO_ANSWER)
212
+
213
+ # there is a suggested_fix, OR the result is empty or NO_ANSWER
214
+ if self.result == "" or NO_ANSWER in self.result:
215
+ # if result is empty or NO_ANSWER, we should retry the query plan
216
+ feedback = """
217
+ There was no answer, which might mean there is a problem in your query.
218
+ """
219
+ suggested = "Retry the `query_plan` to try to get a non-null answer"
220
+ else:
221
+ feedback = msg.feedback
222
+ suggested = msg.suggested_fix
223
+
224
+ self.expecting_query_plan = True
225
+
226
+ return f"""
227
+ here is FEEDBACK about your QUERY PLAN, and a SUGGESTED FIX.
228
+ Modify the QUERY PLAN if needed:
229
+ ANSWER: {self.result}
230
+ FEEDBACK: {feedback}
231
+ SUGGESTED FIX: {suggested}
232
+ """
233
+
234
+ def answer_tool(self, msg: AnswerTool) -> QueryPlanAnswerTool:
235
+ """Handle AnswerTool received from LanceRagAgent:
236
+ Construct a QueryPlanAnswerTool with the answer"""
237
+ self.result = msg.answer # save answer to interpret feedback later
238
+ assert self.curr_query_plan is not None
239
+ query_plan_answer_tool = QueryPlanAnswerTool(
240
+ plan=self.curr_query_plan,
241
+ answer=msg.answer,
242
+ )
243
+ self.curr_query_plan = None # reset
244
+ return query_plan_answer_tool
245
+
246
+ def handle_message_fallback(
247
+ self, msg: str | ChatDocument
248
+ ) -> str | ChatDocument | None:
249
+ """
250
+ Remind to use QueryPlanTool if we are expecting it.
251
+ """
252
+ if self.expecting_query_plan and self.n_query_plan_reminders < 5:
253
+ self.n_query_plan_reminders += 1
254
+ return """
255
+ You FORGOT to use the `query_plan` tool/function,
256
+ OR you had a WRONG JSON SYNTAX when trying to use it.
257
+ Re-try your response using the `query_plan` tool/function CORRECTLY.
258
+ """
259
+ self.n_query_plan_reminders = 0 # reset
260
+ return None
@@ -0,0 +1,61 @@
1
+ import logging
2
+
3
+ from langroid.agent.tool_message import ToolMessage
4
+ from langroid.pydantic_v1 import BaseModel, Field
5
+
6
+ logger = logging.getLogger(__name__)
7
+
8
+
9
+ class QueryPlan(BaseModel):
10
+ original_query: str = Field(..., description="The original query for reference")
11
+ query: str = Field(..., description="A possibly NON-EMPTY rephrased query")
12
+ filter: str = Field(
13
+ "",
14
+ description="Filter condition if needed (or empty if no filter is needed)",
15
+ )
16
+ dataframe_calc: str = Field(
17
+ "", description="An optional Pandas-dataframe calculation/aggregation string"
18
+ )
19
+
20
+
21
+ class QueryPlanTool(ToolMessage):
22
+ request = "query_plan" # the agent method name that handles this tool
23
+ purpose = """
24
+ Given a user's query, generate a query <plan> consisting of:
25
+ - <original_query> - the original query for reference
26
+ - <filter> condition if needed (or empty string if no filter is needed)
27
+ - <query> - a possibly NON-EMPTY rephrased query that can be used to match the
28
+ CONTENT of the documents
29
+ (can be same as <original_query> if no rephrasing is needed)
30
+ - <dataframe_calc> - a Pandas-dataframe calculation/aggregation string
31
+ that can be used to calculate the answer
32
+ (or empty string if no calculation is needed).
33
+ """
34
+ plan: QueryPlan
35
+
36
+
37
+ class AnswerTool(ToolMessage):
38
+ """Wrapper for answer from LanceDocChatAgent"""
39
+
40
+ purpose: str = "To package the answer from LanceDocChatAgent"
41
+ request: str = "answer_tool"
42
+ answer: str
43
+
44
+
45
+ class QueryPlanAnswerTool(ToolMessage):
46
+ request: str = "query_plan_answer" # the agent method name that handles this tool
47
+ purpose: str = """
48
+ Assemble query <plan> and <answer>
49
+ """
50
+ plan: QueryPlan
51
+ answer: str = Field(..., description="The answer received from the assistant")
52
+
53
+
54
+ class QueryPlanFeedbackTool(ToolMessage):
55
+ request = "query_plan_feedback"
56
+ purpose = """
57
+ To give <feedback> regarding the query plan,
58
+ along with a <suggested_fix> if any (empty string if no fix is suggested).
59
+ """
60
+ feedback: str
61
+ suggested_fix: str
File without changes
@@ -0,0 +1,174 @@
1
+ from typing import List, Optional, Tuple
2
+
3
+ import pandas as pd
4
+ import typer
5
+
6
+ from langroid.agent.special.neo4j.neo4j_chat_agent import (
7
+ Neo4jChatAgent,
8
+ Neo4jChatAgentConfig,
9
+ )
10
+ from langroid.agent.tool_message import ToolMessage
11
+ from langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig
12
+ from langroid.parsing.table_loader import read_tabular_data
13
+ from langroid.utils.output import status
14
+ from langroid.vector_store.base import VectorStoreConfig
15
+
16
+ app = typer.Typer()
17
+
18
+
19
+ BUILD_KG_INSTRUCTIONS = """
20
+ Your task is to build a knowledge graph based on a CSV file.
21
+
22
+ You need to generate the graph database based on this
23
+ header:
24
+
25
+ {header}
26
+
27
+ and these sample rows:
28
+
29
+ {sample_rows}.
30
+
31
+ Leverage the above information to:
32
+ - Define node labels and their properties
33
+ - Infer relationships
34
+ - Infer constraints
35
+ ASK me if you need further information to figure out the schema.
36
+ You can use the tool/function `pandas_to_kg` to display and confirm
37
+ the nodes and relationships.
38
+ """
39
+
40
+ DEFAULT_CSV_KG_CHAT_SYSTEM_MESSAGE = """
41
+ You are an expert in Knowledge Graphs and analyzing them using Neo4j.
42
+ You will be asked to answer questions based on the knowledge graph.
43
+ """
44
+
45
+
46
+ def _preprocess_dataframe_for_neo4j(
47
+ df: pd.DataFrame, default_value: Optional[str] = None, remove_null_rows: bool = True
48
+ ) -> pd.DataFrame:
49
+ """
50
+ Preprocess a DataFrame for Neo4j import by fixing mismatched quotes in string
51
+ columns and handling null or missing values.
52
+
53
+ Args:
54
+ df (DataFrame): The DataFrame to be preprocessed.
55
+ default_value (str, optional): The default value to replace null values.
56
+ This is ignored if remove_null_rows is True. Defaults to None.
57
+ remove_null_rows (bool, optional): If True, rows with any null values will
58
+ be removed.
59
+ If False, null values will be filled with default_value. Defaults to False.
60
+
61
+ Returns:
62
+ DataFrame: The preprocessed DataFrame ready for Neo4j import.
63
+ """
64
+
65
+ # Fix mismatched quotes in string columns
66
+ for column in df.select_dtypes(include=["object"]):
67
+ df[column] = df[column].apply(
68
+ lambda x: x + '"' if (isinstance(x, str) and x.count('"') % 2 != 0) else x
69
+ )
70
+
71
+ # Handle null or missing values
72
+ if remove_null_rows:
73
+ df = df.dropna()
74
+ else:
75
+ if default_value is not None:
76
+ df = df.fillna(default_value)
77
+
78
+ return df
79
+
80
+
81
+ class CSVGraphAgentConfig(Neo4jChatAgentConfig):
82
+ system_message: str = DEFAULT_CSV_KG_CHAT_SYSTEM_MESSAGE
83
+ data: str | pd.DataFrame | None # data file, URL, or DataFrame
84
+ separator: None | str = None # separator for data file
85
+ vecdb: None | VectorStoreConfig = None
86
+ llm: OpenAIGPTConfig = OpenAIGPTConfig(
87
+ chat_model=OpenAIChatModel.GPT4_TURBO,
88
+ )
89
+
90
+
91
+ class PandasToKGTool(ToolMessage):
92
+ request: str = "pandas_to_kg"
93
+ purpose: str = """Use this tool to create ONLY nodes and their relationships based
94
+ on the created model.
95
+ Take into account that the Cypher query will be executed while iterating
96
+ over the rows in the CSV file (e.g. `index, row in df.iterrows()`),
97
+ so there NO NEED to load the CSV.
98
+ Make sure you send me the cypher query in this format:
99
+ - placeholders in <cypherQuery> should be based on the CSV header.
100
+ - <args> an array wherein each element corresponds to a placeholder in the
101
+ <cypherQuery> and provided in the same order as the headers.
102
+ SO the <args> should be the result of: `[row_dict[header] for header in headers]`
103
+ """
104
+ cypherQuery: str
105
+ args: list[str]
106
+
107
+ @classmethod
108
+ def examples(cls) -> List["ToolMessage" | Tuple[str, "ToolMessage"]]:
109
+ return [
110
+ cls(
111
+ cypherQuery="""MERGE (employee:Employee {name: $employeeName,
112
+ id: $employeeId})\n
113
+ MERGE (department:Department {name: $departmentName})\n
114
+ MERGE (employee)-[:WORKS_IN]->(department)\n
115
+ SET employee.email = $employeeEmail""",
116
+ args=["employeeName", "employeeId", "departmentName", "employeeEmail"],
117
+ ),
118
+ ]
119
+
120
+
121
+ class CSVGraphAgent(Neo4jChatAgent):
122
+ def __init__(self, config: CSVGraphAgentConfig):
123
+ formatted_build_instr = ""
124
+ if isinstance(config.data, pd.DataFrame):
125
+ df = config.data
126
+ self.df = df
127
+ else:
128
+ if config.data:
129
+ df = read_tabular_data(config.data, config.separator)
130
+ df_cleaned = _preprocess_dataframe_for_neo4j(df)
131
+
132
+ df_cleaned.columns = df_cleaned.columns.str.strip().str.replace(
133
+ " +", "_", regex=True
134
+ )
135
+
136
+ self.df = df_cleaned
137
+
138
+ formatted_build_instr = BUILD_KG_INSTRUCTIONS.format(
139
+ header=self.df.columns, sample_rows=self.df.head(3)
140
+ )
141
+
142
+ config.system_message = config.system_message + formatted_build_instr
143
+ super().__init__(config)
144
+
145
+ self.config: Neo4jChatAgentConfig = config
146
+
147
+ self.enable_message(PandasToKGTool)
148
+
149
+ def pandas_to_kg(self, msg: PandasToKGTool) -> str:
150
+ """
151
+ Creates nodes and relationships in the graph database based on the data in
152
+ a CSV file.
153
+
154
+ Args:
155
+ msg (PandasToKGTool): An instance of the PandasToKGTool class containing
156
+ the necessary information for generating nodes.
157
+
158
+ Returns:
159
+ str: A string indicating the success or failure of the operation.
160
+ """
161
+ with status("[cyan]Generating graph database..."):
162
+ if self.df is not None and hasattr(self.df, "iterrows"):
163
+ for counter, (index, row) in enumerate(self.df.iterrows()):
164
+ row_dict = row.to_dict()
165
+ response = self.write_query(
166
+ msg.cypherQuery,
167
+ parameters={header: row_dict[header] for header in msg.args},
168
+ )
169
+ # there is a possibility the generated cypher query is not correct
170
+ # so we need to check the response before continuing to the
171
+ # iteration
172
+ if counter == 0 and not response.success:
173
+ return str(response.data)
174
+ return "Graph database successfully generated"