langroid 0.3.0__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langroid/agent/base.py +42 -6
- langroid/agent/chat_agent.py +2 -2
- langroid/agent/special/doc_chat_agent.py +14 -4
- langroid/agent/special/lance_doc_chat_agent.py +25 -28
- langroid/agent/special/lance_rag/critic_agent.py +16 -6
- langroid/agent/special/lance_rag/query_planner_agent.py +8 -4
- langroid/agent/special/lance_tools.py +14 -8
- langroid/agent/team.py +1758 -0
- langroid/agent/tool_message.py +6 -10
- langroid/language_models/azure_openai.py +10 -5
- langroid/language_models/base.py +1 -0
- langroid/language_models/openai_gpt.py +18 -5
- langroid/parsing/parse_json.py +27 -1
- langroid/utils/pydantic_utils.py +0 -50
- langroid/vector_store/base.py +6 -4
- langroid/vector_store/chromadb.py +4 -2
- langroid/vector_store/lancedb.py +40 -172
- langroid/vector_store/momento.py +1 -0
- langroid/vector_store/qdrantdb.py +22 -4
- {langroid-0.3.0.dist-info → langroid-0.5.0.dist-info}/METADATA +4 -2
- {langroid-0.3.0.dist-info → langroid-0.5.0.dist-info}/RECORD +24 -23
- pyproject.toml +2 -2
- {langroid-0.3.0.dist-info → langroid-0.5.0.dist-info}/LICENSE +0 -0
- {langroid-0.3.0.dist-info → langroid-0.5.0.dist-info}/WHEEL +0 -0
langroid/agent/base.py
CHANGED
@@ -784,15 +784,51 @@ class Agent(ABC):
|
|
784
784
|
# ]
|
785
785
|
# }
|
786
786
|
|
787
|
+
if not isinstance(json_data, dict):
|
788
|
+
return None
|
789
|
+
|
787
790
|
properties = json_data.get("properties")
|
788
|
-
if properties
|
791
|
+
if isinstance(properties, dict):
|
789
792
|
json_data = properties
|
790
793
|
request = json_data.get("request")
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
794
|
+
|
795
|
+
if request is None:
|
796
|
+
handled = [self.llm_tools_map[r] for r in self.llm_tools_handled]
|
797
|
+
default_keys = set(ToolMessage.__fields__.keys())
|
798
|
+
request_keys = set(json_data.keys())
|
799
|
+
|
800
|
+
def maybe_parse(tool: type[ToolMessage]) -> Optional[ToolMessage]:
|
801
|
+
all_keys = set(tool.__fields__.keys())
|
802
|
+
non_inherited_keys = all_keys.difference(default_keys)
|
803
|
+
# If the request has any keys not valid for the tool and
|
804
|
+
# does not specify some key specific to the type
|
805
|
+
# (e.g. not just `purpose`), the LLM must explicitly specify `request`
|
806
|
+
if not (
|
807
|
+
request_keys.issubset(all_keys)
|
808
|
+
and len(request_keys.intersection(non_inherited_keys)) > 0
|
809
|
+
):
|
810
|
+
return None
|
811
|
+
|
812
|
+
try:
|
813
|
+
return tool.parse_obj(json_data)
|
814
|
+
except ValidationError:
|
815
|
+
return None
|
816
|
+
|
817
|
+
candidate_tools = list(
|
818
|
+
filter(
|
819
|
+
lambda t: t is not None,
|
820
|
+
map(maybe_parse, handled),
|
821
|
+
)
|
822
|
+
)
|
823
|
+
|
824
|
+
# If only one valid candidate exists, we infer
|
825
|
+
# "request" to be the only possible value
|
826
|
+
if len(candidate_tools) == 1:
|
827
|
+
return candidate_tools[0]
|
828
|
+
else:
|
829
|
+
return None
|
830
|
+
|
831
|
+
if not isinstance(request, str) or request not in self.llm_tools_handled:
|
796
832
|
return None
|
797
833
|
|
798
834
|
message_class = self.llm_tools_map.get(request)
|
langroid/agent/chat_agent.py
CHANGED
@@ -427,11 +427,11 @@ class ChatAgent(Agent):
|
|
427
427
|
but the Assistant fn-calling seems to pay attn to these,
|
428
428
|
and if we don't want this, we should set this to False.)
|
429
429
|
"""
|
430
|
+
if require_recipient and message_class is not None:
|
431
|
+
message_class = message_class.require_recipient()
|
430
432
|
super().enable_message_handling(message_class) # enables handling only
|
431
433
|
tools = self._get_tool_list(message_class)
|
432
434
|
if message_class is not None:
|
433
|
-
if require_recipient:
|
434
|
-
message_class = message_class.require_recipient()
|
435
435
|
request = message_class.default_value("request")
|
436
436
|
llm_function = message_class.llm_function_schema(defaults=include_defaults)
|
437
437
|
self.llm_functions_map[request] = llm_function
|
@@ -538,12 +538,13 @@ class DocChatAgent(ChatAgent):
|
|
538
538
|
]
|
539
539
|
|
540
540
|
def get_field_values(self, fields: list[str]) -> Dict[str, str]:
|
541
|
-
"""Get string-listing of possible values of each
|
541
|
+
"""Get string-listing of possible values of each field,
|
542
542
|
e.g.
|
543
543
|
{
|
544
544
|
"genre": "crime, drama, mystery, ... (10 more)",
|
545
545
|
"certificate": "R, PG-13, PG, R",
|
546
546
|
}
|
547
|
+
The field names may have "metadata." prefix, e.g. "metadata.genre".
|
547
548
|
"""
|
548
549
|
field_values: Dict[str, Set[str]] = {}
|
549
550
|
# make empty set for each field
|
@@ -556,8 +557,11 @@ class DocChatAgent(ChatAgent):
|
|
556
557
|
for d in docs:
|
557
558
|
# extract fields from d
|
558
559
|
doc_field_vals = extract_fields(d, fields)
|
559
|
-
|
560
|
-
|
560
|
+
# the `field` returned by extract_fields may contain only the last
|
561
|
+
# part of the field name, e.g. "genre" instead of "metadata.genre",
|
562
|
+
# so we use the orig_field name to fill in the values
|
563
|
+
for (field, val), orig_field in zip(doc_field_vals.items(), fields):
|
564
|
+
field_values[orig_field].add(val)
|
561
565
|
# For each field make a string showing list of possible values,
|
562
566
|
# truncate to 20 values, and if there are more, indicate how many
|
563
567
|
# more there are, e.g. Genre: crime, drama, mystery, ... (20 more)
|
@@ -680,7 +684,13 @@ class DocChatAgent(ChatAgent):
|
|
680
684
|
)
|
681
685
|
return response
|
682
686
|
if query_str == "":
|
683
|
-
return
|
687
|
+
return ChatDocument(
|
688
|
+
content=NO_ANSWER + " since query was empty",
|
689
|
+
metadata=ChatDocMetaData(
|
690
|
+
source="No query provided",
|
691
|
+
sender=Entity.LLM,
|
692
|
+
),
|
693
|
+
)
|
684
694
|
elif query_str == "?" and self.response is not None:
|
685
695
|
return self.justify_response()
|
686
696
|
elif (query_str.startswith(("summar", "?")) and self.response is None) or (
|
@@ -22,7 +22,6 @@ from langroid.mytypes import DocMetaData, Document
|
|
22
22
|
from langroid.parsing.table_loader import describe_dataframe
|
23
23
|
from langroid.utils.constants import DONE, NO_ANSWER
|
24
24
|
from langroid.utils.pydantic_utils import (
|
25
|
-
clean_schema,
|
26
25
|
dataframe_to_documents,
|
27
26
|
)
|
28
27
|
from langroid.vector_store.lancedb import LanceDB
|
@@ -41,24 +40,26 @@ class LanceDocChatAgent(DocChatAgent):
|
|
41
40
|
def _get_clean_vecdb_schema(self) -> str:
|
42
41
|
"""Get a cleaned schema of the vector-db, to pass to the LLM
|
43
42
|
as part of instructions on how to generate a SQL filter."""
|
43
|
+
|
44
|
+
tbl_pandas = (
|
45
|
+
self.vecdb.client.open_table(self.vecdb.config.collection_name)
|
46
|
+
.search()
|
47
|
+
.limit(1)
|
48
|
+
.to_pandas(flatten=True)
|
49
|
+
)
|
44
50
|
if len(self.config.filter_fields) == 0:
|
45
|
-
filterable_fields = (
|
46
|
-
self.vecdb.client.open_table(self.vecdb.config.collection_name)
|
47
|
-
.search()
|
48
|
-
.limit(1)
|
49
|
-
.to_pandas(flatten=True)
|
50
|
-
.columns.tolist()
|
51
|
-
)
|
51
|
+
filterable_fields = tbl_pandas.columns.tolist()
|
52
52
|
# drop id, vector, metadata.id, metadata.window_ids, metadata.is_chunk
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
53
|
+
filterable_fields = list(
|
54
|
+
set(filterable_fields)
|
55
|
+
- {
|
56
|
+
"id",
|
57
|
+
"vector",
|
58
|
+
"metadata.id",
|
59
|
+
"metadata.window_ids",
|
60
|
+
"metadata.is_chunk",
|
61
|
+
}
|
62
|
+
)
|
62
63
|
logger.warning(
|
63
64
|
f"""
|
64
65
|
No filter_fields set in config, so using these fields as filterable fields:
|
@@ -69,15 +70,7 @@ class LanceDocChatAgent(DocChatAgent):
|
|
69
70
|
|
70
71
|
if self.from_dataframe:
|
71
72
|
return self.df_description
|
72
|
-
|
73
|
-
self.vecdb.schema,
|
74
|
-
excludes=["id", "vector"],
|
75
|
-
)
|
76
|
-
# intersect config.filter_fields with schema_dict.keys() in case
|
77
|
-
# there are extraneous fields in config.filter_fields
|
78
|
-
filter_fields_set = set(
|
79
|
-
self.config.filter_fields or schema_dict.keys()
|
80
|
-
).intersection(schema_dict.keys())
|
73
|
+
filter_fields_set = set(self.config.filter_fields)
|
81
74
|
|
82
75
|
# remove 'content' from filter_fields_set, even if it's not in filter_fields_set
|
83
76
|
filter_fields_set.discard("content")
|
@@ -85,10 +78,14 @@ class LanceDocChatAgent(DocChatAgent):
|
|
85
78
|
# possible values of filterable fields
|
86
79
|
filter_field_values = self.get_field_values(list(filter_fields_set))
|
87
80
|
|
81
|
+
schema_dict: Dict[str, Dict[str, Any]] = dict(
|
82
|
+
(field, {}) for field in filter_fields_set
|
83
|
+
)
|
88
84
|
# add field values to schema_dict as another field `values` for each field
|
89
85
|
for field, values in filter_field_values.items():
|
90
|
-
|
91
|
-
|
86
|
+
schema_dict[field]["values"] = values
|
87
|
+
dtype = tbl_pandas[field].dtype.name
|
88
|
+
schema_dict[field]["dtype"] = dtype
|
92
89
|
# if self.config.filter_fields is set, restrict to these:
|
93
90
|
if len(self.config.filter_fields) > 0:
|
94
91
|
schema_dict = {
|
@@ -37,20 +37,30 @@ class QueryPlanCriticConfig(LanceQueryPlanAgentConfig):
|
|
37
37
|
system_message = f"""
|
38
38
|
You are an expert at carefully planning a query that needs to be answered
|
39
39
|
based on a large collection of documents. These docs have a special `content` field
|
40
|
-
and additional FILTERABLE fields in the SCHEMA below
|
40
|
+
and additional FILTERABLE fields in the SCHEMA below, along with the
|
41
|
+
SAMPLE VALUES for each field, and the DTYPE in PANDAS TERMINOLOGY.
|
41
42
|
|
42
43
|
{{doc_schema}}
|
43
44
|
|
45
|
+
The ORIGINAL QUERY is handled by a QUERY PLANNER who sends the PLAN to an ASSISTANT,
|
46
|
+
who returns an ANSWER.
|
47
|
+
|
44
48
|
You will receive a QUERY PLAN consisting of:
|
45
|
-
- ORIGINAL QUERY,
|
46
|
-
|
49
|
+
- ORIGINAL QUERY from the user, which a QUERY PLANNER processes,
|
50
|
+
to create a QUERY PLAN, to be handled by an ASSISTANT.
|
51
|
+
- PANDAS-LIKE FILTER, WHICH CAN BE EMPTY (and it's fine if results sound reasonable)
|
47
52
|
FILTER SHOULD ONLY BE USED IF EXPLICITLY REQUIRED BY THE QUERY.
|
48
|
-
- REPHRASED QUERY that will be used to match against the
|
49
|
-
|
53
|
+
- REPHRASED QUERY (CANNOT BE EMPTY) that will be used to match against the
|
54
|
+
CONTENT (not filterable) of the documents.
|
50
55
|
In general the REPHRASED QUERY should be relied upon to match the CONTENT
|
51
56
|
of the docs. Thus the REPHRASED QUERY itself acts like a
|
52
57
|
SEMANTIC/LEXICAL/FUZZY FILTER since the Assistant is able to use it to match
|
53
|
-
the CONTENT of the docs in various ways (semantic, lexical, fuzzy, etc.).
|
58
|
+
the CONTENT of the docs in various ways (semantic, lexical, fuzzy, etc.).
|
59
|
+
Keep in mind that the ASSISTANT does NOT know anything about the FILTER fields,
|
60
|
+
so the REPHRASED QUERY should NOT mention ANY FILTER fields.
|
61
|
+
The assistant will answer based on documents whose CONTENTS match the QUERY,
|
62
|
+
possibly REPHRASED.
|
63
|
+
!!!!****THE REPHRASED QUERY SHOULD NEVER BE EMPTY****!!!
|
54
64
|
- DATAFRAME CALCULATION, which must be a SINGLE LINE calculation (or empty),
|
55
65
|
[NOTE ==> This calculation is applied AFTER the FILTER and REPHRASED QUERY.],
|
56
66
|
- ANSWER received from an assistant that used this QUERY PLAN.
|
@@ -43,23 +43,27 @@ class LanceQueryPlanAgentConfig(ChatAgentConfig):
|
|
43
43
|
You will receive a QUERY, to be answered based on an EXTREMELY LARGE collection
|
44
44
|
of documents you DO NOT have access to, but your ASSISTANT does.
|
45
45
|
You only know that these documents have a special `content` field
|
46
|
-
and additional FILTERABLE fields in the SCHEMA below
|
46
|
+
and additional FILTERABLE fields in the SCHEMA below, along with the
|
47
|
+
SAMPLE VALUES for each field, and the DTYPE in PANDAS TERMINOLOGY.
|
47
48
|
|
48
49
|
{{doc_schema}}
|
49
50
|
|
50
51
|
Based on the QUERY and the above SCHEMA, your task is to determine a QUERY PLAN,
|
51
52
|
consisting of:
|
52
|
-
- a FILTER (can be empty string) that would help the ASSISTANT to
|
53
|
+
- a PANDAS-TYPE FILTER (can be empty string) that would help the ASSISTANT to
|
54
|
+
answer the query.
|
53
55
|
Remember the FILTER can refer to ANY fields in the above SCHEMA
|
54
56
|
EXCEPT the `content` field of the documents.
|
55
57
|
ONLY USE A FILTER IF EXPLICITLY MENTIONED IN THE QUERY.
|
56
58
|
TO get good results, for STRING MATCHES, consider using LIKE instead of =, e.g.
|
57
59
|
"CEO LIKE '%Jobs%'" instead of "CEO = 'Steve Jobs'"
|
58
|
-
|
60
|
+
YOUR FILTER MUST BE A PANDAS-TYPE FILTER, respecting the shown DTYPES.
|
61
|
+
- a possibly REPHRASED QUERY (CANNOT BE EMPTY) to be answerable given the FILTER.
|
59
62
|
Keep in mind that the ASSISTANT does NOT know anything about the FILTER fields,
|
60
63
|
so the REPHRASED QUERY should NOT mention ANY FILTER fields.
|
61
64
|
The assistant will answer based on documents whose CONTENTS match the QUERY,
|
62
65
|
possibly REPHRASED.
|
66
|
+
!!!!****THE REPHRASED QUERY SHOULD NEVER BE EMPTY****!!!
|
63
67
|
- an OPTIONAL SINGLE-LINE Pandas-dataframe calculation/aggregation string
|
64
68
|
that can be used to calculate the answer to the original query,
|
65
69
|
e.g. "df["rating"].mean()",
|
@@ -99,7 +103,7 @@ class LanceQueryPlanAgentConfig(ChatAgentConfig):
|
|
99
103
|
hence this computation will give the total deaths in shoplifting crimes.
|
100
104
|
------------- END OF EXAMPLE ----------------
|
101
105
|
|
102
|
-
The FILTER must be a
|
106
|
+
The FILTER must be a PANDAS-like condition, e.g.
|
103
107
|
"year > 2000 AND genre = 'ScienceFiction'".
|
104
108
|
To ensure you get useful results, you should make your FILTER
|
105
109
|
NOT TOO STRICT, e.g. look for approximate match using LIKE, etc.
|
@@ -1,16 +1,21 @@
|
|
1
1
|
import logging
|
2
2
|
|
3
3
|
from langroid.agent.tool_message import ToolMessage
|
4
|
-
from langroid.pydantic_v1 import BaseModel
|
4
|
+
from langroid.pydantic_v1 import BaseModel, Field
|
5
5
|
|
6
6
|
logger = logging.getLogger(__name__)
|
7
7
|
|
8
8
|
|
9
9
|
class QueryPlan(BaseModel):
|
10
|
-
original_query: str
|
11
|
-
query: str
|
12
|
-
filter: str
|
13
|
-
|
10
|
+
original_query: str = Field(..., description="The original query for reference")
|
11
|
+
query: str = Field(..., description="A possibly NON-EMPTY rephrased query")
|
12
|
+
filter: str = Field(
|
13
|
+
"",
|
14
|
+
description="Filter condition if needed (or empty if no filter is needed)",
|
15
|
+
)
|
16
|
+
dataframe_calc: str = Field(
|
17
|
+
"", description="An optional Pandas-dataframe calculation/aggregation string"
|
18
|
+
)
|
14
19
|
|
15
20
|
|
16
21
|
class QueryPlanTool(ToolMessage):
|
@@ -19,8 +24,9 @@ class QueryPlanTool(ToolMessage):
|
|
19
24
|
Given a user's query, generate a query <plan> consisting of:
|
20
25
|
- <original_query> - the original query for reference
|
21
26
|
- <filter> condition if needed (or empty string if no filter is needed)
|
22
|
-
- <query> - a possibly rephrased query that can be used to match the
|
23
|
-
of the documents
|
27
|
+
- <query> - a possibly NON-EMPTY rephrased query that can be used to match the
|
28
|
+
CONTENT of the documents
|
29
|
+
(can be same as <original_query> if no rephrasing is needed)
|
24
30
|
- <dataframe_calc> - a Pandas-dataframe calculation/aggregation string
|
25
31
|
that can be used to calculate the answer
|
26
32
|
(or empty string if no calculation is needed).
|
@@ -34,7 +40,7 @@ class QueryPlanAnswerTool(ToolMessage):
|
|
34
40
|
Assemble query <plan> and <answer>
|
35
41
|
"""
|
36
42
|
plan: QueryPlan
|
37
|
-
answer: str
|
43
|
+
answer: str = Field(..., description="The answer received from the assistant")
|
38
44
|
|
39
45
|
|
40
46
|
class QueryPlanFeedbackTool(ToolMessage):
|