langroid 0.1.73__py3-none-any.whl → 0.1.77__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langroid/agent/special/doc_chat_agent.py +6 -4
- langroid/agent/tools/generator_tool.py +25 -0
- langroid/embedding_models/models.py +1 -1
- langroid/parsing/{pdf_parser.py → document_parser.py} +122 -25
- langroid/parsing/parser.py +5 -0
- langroid/parsing/repo_loader.py +4 -4
- langroid/parsing/url_loader.py +4 -4
- langroid/vector_store/base.py +1 -1
- {langroid-0.1.73.dist-info → langroid-0.1.77.dist-info}/METADATA +8 -10
- {langroid-0.1.73.dist-info → langroid-0.1.77.dist-info}/RECORD +12 -11
- {langroid-0.1.73.dist-info → langroid-0.1.77.dist-info}/LICENSE +0 -0
- {langroid-0.1.73.dist-info → langroid-0.1.77.dist-info}/WHEEL +0 -0
@@ -81,6 +81,7 @@ class DocChatAgentConfig(ChatAgentConfig):
|
|
81
81
|
# and use the embed(A) to find similar chunks in vecdb.
|
82
82
|
# Referred to as HyDE in the paper:
|
83
83
|
# https://arxiv.org/pdf/2212.10496.pdf
|
84
|
+
# It is False by default; its benefits depends on the context.
|
84
85
|
hypothetical_answer: bool = False
|
85
86
|
n_query_rephrases: int = 0
|
86
87
|
use_fuzzy_match: bool = True
|
@@ -391,13 +392,14 @@ class DocChatAgent(ChatAgent):
|
|
391
392
|
if self.config.hypothetical_answer:
|
392
393
|
with console.status("[cyan]LLM generating hypothetical answer..."):
|
393
394
|
with StreamingIfAllowed(self.llm, False):
|
395
|
+
# TODO: provide an easy way to
|
396
|
+
# Adjust this prompt depending on context.
|
394
397
|
answer = self.llm_response_forget(
|
395
398
|
f"""
|
396
|
-
Give
|
399
|
+
Give an ideal answer to the following query,
|
397
400
|
in up to 3 sentences. Do not explain yourself,
|
398
401
|
and do not apologize, just show
|
399
|
-
a possible answer
|
400
|
-
even if you do not have any information.
|
402
|
+
a good possible answer, even if you do not have any information.
|
401
403
|
Preface your answer with "HYPOTHETICAL ANSWER: "
|
402
404
|
|
403
405
|
QUERY: {query}
|
@@ -504,7 +506,7 @@ class DocChatAgent(ChatAgent):
|
|
504
506
|
|
505
507
|
with console.status("[cyan]LLM Extracting verbatim passages..."):
|
506
508
|
with StreamingIfAllowed(self.llm, False):
|
507
|
-
# these are async calls, one per passage
|
509
|
+
# these are async calls, one per passage; turn off streaming
|
508
510
|
extracts = self.llm.get_verbatim_extracts(query, passages)
|
509
511
|
extracts = [e for e in extracts if e.content != NO_ANSWER]
|
510
512
|
|
@@ -0,0 +1,25 @@
|
|
1
|
+
"""
|
2
|
+
A tool to generate a message from the current pending message.
|
3
|
+
The idea is that when an LLM is generating text that is a deterministic transformation
|
4
|
+
of known text, then specifying the transformation can be much cheaper than actually
|
5
|
+
generating the transformation.
|
6
|
+
"""
|
7
|
+
|
8
|
+
from langroid.agent.tool_message import ToolMessage
|
9
|
+
|
10
|
+
class GeneratorTool(ToolMessage):
|
11
|
+
request: str = "generate"
|
12
|
+
purpose: str = """
|
13
|
+
To generate a message where the parts within curly braces
|
14
|
+
are derived from previous previous messages in the conversation,
|
15
|
+
using
|
16
|
+
message are
|
17
|
+
obtained from a previous message numbered <n>,
|
18
|
+
using the <rules>.
|
19
|
+
"""
|
20
|
+
rules: str
|
21
|
+
|
22
|
+
|
23
|
+
def handle(self) -> str:
|
24
|
+
pass
|
25
|
+
|
@@ -19,7 +19,7 @@ class OpenAIEmbeddingsConfig(EmbeddingModelsConfig):
|
|
19
19
|
class SentenceTransformerEmbeddingsConfig(EmbeddingModelsConfig):
|
20
20
|
model_type: str = "sentence-transformer"
|
21
21
|
model_name: str = "BAAI/bge-large-en-v1.5"
|
22
|
-
dims: int =
|
22
|
+
dims: int = 1024 # should correspond to the model's embedding dims
|
23
23
|
|
24
24
|
|
25
25
|
class OpenAIEmbeddings(EmbeddingModel):
|
@@ -1,5 +1,6 @@
|
|
1
1
|
import re
|
2
2
|
from abc import abstractmethod
|
3
|
+
from enum import Enum
|
3
4
|
from io import BytesIO
|
4
5
|
from typing import Any, Generator, List, Tuple
|
5
6
|
|
@@ -12,35 +13,56 @@ from langroid.mytypes import DocMetaData, Document
|
|
12
13
|
from langroid.parsing.parser import Parser, ParsingConfig
|
13
14
|
|
14
15
|
|
15
|
-
class
|
16
|
+
class DocumentType(str, Enum):
|
17
|
+
PDF = "pdf"
|
18
|
+
DOCX = "docx"
|
19
|
+
|
20
|
+
|
21
|
+
class DocumentParser(Parser):
|
16
22
|
"""
|
17
|
-
Abstract base class for extracting text from
|
23
|
+
Abstract base class for extracting text from special types of docs
|
24
|
+
such as PDFs or Docx.
|
18
25
|
|
19
26
|
Attributes:
|
20
|
-
source (str): The
|
21
|
-
|
27
|
+
source (str): The source, either a URL or a file path.
|
28
|
+
doc_bytes (BytesIO): BytesIO object containing the doc data.
|
22
29
|
"""
|
23
30
|
|
24
31
|
@classmethod
|
25
|
-
def create(cls, source: str, config: ParsingConfig) -> "
|
32
|
+
def create(cls, source: str, config: ParsingConfig) -> "DocumentParser":
|
26
33
|
"""
|
27
|
-
Create a
|
34
|
+
Create a DocumentParser instance based on source type
|
35
|
+
and config.<source_type>.library specified.
|
28
36
|
|
29
37
|
Args:
|
30
38
|
source (str): The source of the PDF, either a URL or a file path.
|
31
39
|
config (ParserConfig): The parser configuration.
|
32
40
|
|
33
41
|
Returns:
|
34
|
-
|
35
|
-
"""
|
36
|
-
if
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
+
DocumentParser: An instance of a DocumentParser subclass.
|
43
|
+
"""
|
44
|
+
if DocumentParser._document_type(source) == DocumentType.PDF:
|
45
|
+
if config.pdf.library == "fitz":
|
46
|
+
return FitzPDFParser(source, config)
|
47
|
+
elif config.pdf.library == "pypdf":
|
48
|
+
return PyPDFParser(source, config)
|
49
|
+
elif config.pdf.library == "pdfplumber":
|
50
|
+
return PDFPlumberParser(source, config)
|
51
|
+
elif config.pdf.library == "unstructured":
|
52
|
+
return UnstructuredPDFParser(source, config)
|
53
|
+
else:
|
54
|
+
raise ValueError(
|
55
|
+
f"Unsupported PDF library specified: {config.pdf.library}"
|
56
|
+
)
|
57
|
+
elif DocumentParser._document_type(source) == DocumentType.DOCX:
|
58
|
+
if config.docx.library == "unstructured":
|
59
|
+
return UnstructuredDocxParser(source, config)
|
60
|
+
else:
|
61
|
+
raise ValueError(
|
62
|
+
f"Unsupported DOCX library specified: {config.docx.library}"
|
63
|
+
)
|
42
64
|
else:
|
43
|
-
raise ValueError(f"Unsupported
|
65
|
+
raise ValueError(f"Unsupported document type: {source}")
|
44
66
|
|
45
67
|
def __init__(self, source: str, config: ParsingConfig):
|
46
68
|
"""
|
@@ -52,14 +74,32 @@ class PdfParser(Parser):
|
|
52
74
|
super().__init__(config)
|
53
75
|
self.source = source
|
54
76
|
self.config = config
|
55
|
-
self.
|
77
|
+
self.doc_bytes = self._load_doc_as_bytesio()
|
78
|
+
|
79
|
+
@staticmethod
|
80
|
+
def _document_type(source: str) -> DocumentType:
|
81
|
+
"""
|
82
|
+
Determine the type of document based on the source.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
source (str): The source of the PDF, either a URL or a file path.
|
86
|
+
|
87
|
+
Returns:
|
88
|
+
str: The document type.
|
89
|
+
"""
|
90
|
+
if source.lower().endswith(".pdf"):
|
91
|
+
return DocumentType.PDF
|
92
|
+
elif source.lower().endswith(".docx"):
|
93
|
+
return DocumentType.DOCX
|
94
|
+
else:
|
95
|
+
raise ValueError(f"Unsupported document type: {source}")
|
56
96
|
|
57
|
-
def
|
97
|
+
def _load_doc_as_bytesio(self) -> BytesIO:
|
58
98
|
"""
|
59
|
-
Load the
|
99
|
+
Load the docs into a BytesIO object.
|
60
100
|
|
61
101
|
Returns:
|
62
|
-
BytesIO: A BytesIO object containing the
|
102
|
+
BytesIO: A BytesIO object containing the doc data.
|
63
103
|
"""
|
64
104
|
if self.source.startswith(("http://", "https://")):
|
65
105
|
response = requests.get(self.source)
|
@@ -159,7 +199,7 @@ class PdfParser(Parser):
|
|
159
199
|
return docs
|
160
200
|
|
161
201
|
|
162
|
-
class
|
202
|
+
class FitzPDFParser(DocumentParser):
|
163
203
|
"""
|
164
204
|
Parser for processing PDFs using the `fitz` library.
|
165
205
|
"""
|
@@ -171,7 +211,7 @@ class FitzPdfParser(PdfParser):
|
|
171
211
|
Returns:
|
172
212
|
Generator[fitz.Page]: Generator yielding each page.
|
173
213
|
"""
|
174
|
-
doc = fitz.open(stream=self.
|
214
|
+
doc = fitz.open(stream=self.doc_bytes, filetype="pdf")
|
175
215
|
for i, page in enumerate(doc):
|
176
216
|
yield i, page
|
177
217
|
doc.close()
|
@@ -189,7 +229,7 @@ class FitzPdfParser(PdfParser):
|
|
189
229
|
return self.fix_text(page.get_text())
|
190
230
|
|
191
231
|
|
192
|
-
class
|
232
|
+
class PyPDFParser(DocumentParser):
|
193
233
|
"""
|
194
234
|
Parser for processing PDFs using the `pypdf` library.
|
195
235
|
"""
|
@@ -201,7 +241,7 @@ class PyPdfParser(PdfParser):
|
|
201
241
|
Returns:
|
202
242
|
Generator[pypdf.pdf.PageObject]: Generator yielding each page.
|
203
243
|
"""
|
204
|
-
reader = pypdf.PdfReader(self.
|
244
|
+
reader = pypdf.PdfReader(self.doc_bytes)
|
205
245
|
for i, page in enumerate(reader.pages):
|
206
246
|
yield i, page
|
207
247
|
|
@@ -218,7 +258,7 @@ class PyPdfParser(PdfParser):
|
|
218
258
|
return self.fix_text(page.extract_text())
|
219
259
|
|
220
260
|
|
221
|
-
class
|
261
|
+
class PDFPlumberParser(DocumentParser):
|
222
262
|
"""
|
223
263
|
Parser for processing PDFs using the `pdfplumber` library.
|
224
264
|
"""
|
@@ -232,7 +272,7 @@ class PdfPlumberParser(PdfParser):
|
|
232
272
|
Returns:
|
233
273
|
Generator[pdfplumber.Page]: Generator yielding each page.
|
234
274
|
"""
|
235
|
-
with pdfplumber.open(self.
|
275
|
+
with pdfplumber.open(self.doc_bytes) as pdf:
|
236
276
|
for i, page in enumerate(pdf.pages):
|
237
277
|
yield i, page
|
238
278
|
|
@@ -247,3 +287,60 @@ class PdfPlumberParser(PdfParser):
|
|
247
287
|
str: Extracted text from the page.
|
248
288
|
"""
|
249
289
|
return self.fix_text(page.extract_text())
|
290
|
+
|
291
|
+
|
292
|
+
class UnstructuredPDFParser(DocumentParser):
|
293
|
+
"""
|
294
|
+
Parser for processing PDF files using the `unstructured` library.
|
295
|
+
"""
|
296
|
+
|
297
|
+
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
|
298
|
+
from unstructured.partition.pdf import partition_pdf
|
299
|
+
|
300
|
+
elements = partition_pdf(file=self.doc_bytes, include_page_breaks=True)
|
301
|
+
for i, el in enumerate(elements):
|
302
|
+
yield i, el
|
303
|
+
|
304
|
+
def extract_text_from_page(self, page: Any) -> str:
|
305
|
+
"""
|
306
|
+
Extract text from a given `unstructured` element.
|
307
|
+
|
308
|
+
Args:
|
309
|
+
page (unstructured element): The `unstructured` element object.
|
310
|
+
|
311
|
+
Returns:
|
312
|
+
str: Extracted text from the element.
|
313
|
+
"""
|
314
|
+
return self.fix_text(str(page))
|
315
|
+
|
316
|
+
|
317
|
+
class UnstructuredDocxParser(DocumentParser):
|
318
|
+
"""
|
319
|
+
Parser for processing DOCX files using the `unstructured` library.
|
320
|
+
"""
|
321
|
+
|
322
|
+
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
|
323
|
+
from unstructured.partition.docx import partition_docx
|
324
|
+
|
325
|
+
elements = partition_docx(file=self.doc_bytes)
|
326
|
+
for i, el in enumerate(elements):
|
327
|
+
yield i, el
|
328
|
+
|
329
|
+
def extract_text_from_page(self, page: Any) -> str:
|
330
|
+
"""
|
331
|
+
Extract text from a given `unstructured` element.
|
332
|
+
|
333
|
+
Note:
|
334
|
+
The concept of "pages" doesn't actually exist in the .docx file format in
|
335
|
+
the same way it does in formats like .pdf. A .docx file is made up of a
|
336
|
+
series of elements like paragraphs and tables, but the division into
|
337
|
+
pages is done dynamically based on the rendering settings (like the page
|
338
|
+
size, margin size, font size, etc.).
|
339
|
+
|
340
|
+
Args:
|
341
|
+
page (unstructured element): The `unstructured` element object.
|
342
|
+
|
343
|
+
Returns:
|
344
|
+
str: Extracted text from the element.
|
345
|
+
"""
|
346
|
+
return self.fix_text(str(page))
|
langroid/parsing/parser.py
CHANGED
@@ -23,6 +23,10 @@ class PdfParsingConfig(BaseSettings):
|
|
23
23
|
library: str = "pdfplumber"
|
24
24
|
|
25
25
|
|
26
|
+
class DocxParsingConfig(BaseSettings):
|
27
|
+
library: str = "unstructured"
|
28
|
+
|
29
|
+
|
26
30
|
class ParsingConfig(BaseSettings):
|
27
31
|
splitter: str = Splitter.TOKENS
|
28
32
|
chunk_size: int = 200 # aim for this many tokens per chunk
|
@@ -35,6 +39,7 @@ class ParsingConfig(BaseSettings):
|
|
35
39
|
separators: List[str] = ["\n\n", "\n", " ", ""]
|
36
40
|
token_encoding_model: str = "text-embedding-ada-002"
|
37
41
|
pdf: PdfParsingConfig = PdfParsingConfig()
|
42
|
+
docx: DocxParsingConfig = DocxParsingConfig()
|
38
43
|
|
39
44
|
|
40
45
|
class Parser:
|
langroid/parsing/repo_loader.py
CHANGED
@@ -18,8 +18,8 @@ from github.Repository import Repository
|
|
18
18
|
from pydantic import BaseSettings
|
19
19
|
|
20
20
|
from langroid.mytypes import DocMetaData, Document
|
21
|
+
from langroid.parsing.document_parser import DocumentParser
|
21
22
|
from langroid.parsing.parser import Parser, ParsingConfig
|
22
|
-
from langroid.parsing.pdf_parser import PdfParser
|
23
23
|
|
24
24
|
logger = logging.getLogger(__name__)
|
25
25
|
|
@@ -493,12 +493,12 @@ class RepoLoader:
|
|
493
493
|
|
494
494
|
for file_path in file_paths:
|
495
495
|
_, file_extension = os.path.splitext(file_path)
|
496
|
-
if file_extension.lower()
|
497
|
-
|
496
|
+
if file_extension.lower() in [".pdf", ".docx"]:
|
497
|
+
doc_parser = DocumentParser.create(
|
498
498
|
file_path,
|
499
499
|
parser.config,
|
500
500
|
)
|
501
|
-
docs.extend(
|
501
|
+
docs.extend(doc_parser.get_doc_chunks())
|
502
502
|
else:
|
503
503
|
with open(file_path, "r") as f:
|
504
504
|
if lines is not None:
|
langroid/parsing/url_loader.py
CHANGED
@@ -9,8 +9,8 @@ from trafilatura.downloads import (
|
|
9
9
|
)
|
10
10
|
|
11
11
|
from langroid.mytypes import DocMetaData, Document
|
12
|
+
from langroid.parsing.document_parser import DocumentParser
|
12
13
|
from langroid.parsing.parser import Parser, ParsingConfig
|
13
|
-
from langroid.parsing.pdf_parser import PdfParser
|
14
14
|
|
15
15
|
logging.getLogger("trafilatura").setLevel(logging.ERROR)
|
16
16
|
|
@@ -44,12 +44,12 @@ class URLLoader:
|
|
44
44
|
sleep_time=5,
|
45
45
|
)
|
46
46
|
for url, result in buffered_downloads(buffer, threads):
|
47
|
-
if url.lower().endswith(".pdf"):
|
48
|
-
|
47
|
+
if url.lower().endswith(".pdf") or url.lower().endswith(".docx"):
|
48
|
+
doc_parser = DocumentParser.create(
|
49
49
|
url,
|
50
50
|
self.parser.config,
|
51
51
|
)
|
52
|
-
docs.extend(
|
52
|
+
docs.extend(doc_parser.get_doc_chunks())
|
53
53
|
else:
|
54
54
|
text = trafilatura.extract(
|
55
55
|
result,
|
langroid/vector_store/base.py
CHANGED
@@ -132,4 +132,4 @@ class VectorStore(ABC):
|
|
132
132
|
def show_if_debug(self, doc_score_pairs: List[Tuple[Document, float]]) -> None:
|
133
133
|
if settings.debug:
|
134
134
|
for i, (d, s) in enumerate(doc_score_pairs):
|
135
|
-
print_long_text("red", "italic red", f"
|
135
|
+
print_long_text("red", "italic red", f"\nMATCH-{i}\n", d.content)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: langroid
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.77
|
4
4
|
Summary: Harness LLMs with Multi-Agent Programming
|
5
5
|
License: MIT
|
6
6
|
Author: Prasad Chalasani
|
@@ -70,6 +70,7 @@ Requires-Dist: trafilatura (>=1.5.0,<2.0.0)
|
|
70
70
|
Requires-Dist: typer (>=0.7.0,<0.8.0)
|
71
71
|
Requires-Dist: types-redis (>=4.5.5.2,<5.0.0.0)
|
72
72
|
Requires-Dist: types-requests (>=2.31.0.1,<3.0.0.0)
|
73
|
+
Requires-Dist: unstructured[docx,pdf,pptx] (>=0.10.16,<0.11.0)
|
73
74
|
Requires-Dist: wget (>=3.2,<4.0)
|
74
75
|
Description-Content-Type: text/markdown
|
75
76
|
|
@@ -130,8 +131,8 @@ This Multi-Agent paradigm is inspired by the
|
|
130
131
|
[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)
|
131
132
|
(but you do not need to know anything about this!).
|
132
133
|
|
133
|
-
Langroid is a fresh take on LLM app-development, where considerable thought has gone
|
134
|
-
into simplifying the developer experience
|
134
|
+
`Langroid` is a fresh take on LLM app-development, where considerable thought has gone
|
135
|
+
into simplifying the developer experience; it does not use `Langchain`.
|
135
136
|
|
136
137
|
We welcome contributions -- See the [contributions](./CONTRIBUTING.md) document
|
137
138
|
for ideas on what to contribute.
|
@@ -142,6 +143,7 @@ for ideas on what to contribute.
|
|
142
143
|
<summary> <b>:fire: Updates/Releases</b></summary>
|
143
144
|
|
144
145
|
- **Sep 2023:**
|
146
|
+
- **0.1.76:** DocChatAgent: support for loading `docx` files (preliminary).
|
145
147
|
- **0.1.72:** Many improvements to DocChatAgent: better embedding model,
|
146
148
|
hybrid search to improve retrieval, better pdf parsing, re-ranking retrieved results with cross-encoders.
|
147
149
|
- **Use with local LLama Models:** see tutorial [here](https://langroid.github.io/langroid/blog/2023/09/14/using-langroid-with-local-llms/)
|
@@ -169,7 +171,7 @@ See [this test](tests/main/test_recipient_tool.py) for example usage.
|
|
169
171
|
- **0.1.27**: Added [support](langroid/cachedb/momento_cachedb.py)
|
170
172
|
for [Momento Serverless Cache](https://www.gomomento.com/) as an alternative to Redis.
|
171
173
|
- **0.1.24**: [`DocChatAgent`](langroid/agent/special/doc_chat_agent.py)
|
172
|
-
now [accepts](langroid/parsing/
|
174
|
+
now [accepts](langroid/parsing/document_parser.py) PDF files or URLs.
|
173
175
|
|
174
176
|
</details>
|
175
177
|
|
@@ -233,9 +235,6 @@ Here is what it looks like in action:
|
|
233
235
|
|
234
236
|
# :gear: Installation and Setup
|
235
237
|
|
236
|
-
:whale: For a simpler setup, see the Docker section below, which lets you get started just
|
237
|
-
by setting up environment variables in a `.env` file.
|
238
|
-
|
239
238
|
### Install `langroid`
|
240
239
|
Langroid requires Python 3.11+. We recommend using a virtual environment.
|
241
240
|
Use `pip` to install `langroid` (from PyPi) to your virtual environment:
|
@@ -243,12 +242,11 @@ Use `pip` to install `langroid` (from PyPi) to your virtual environment:
|
|
243
242
|
pip install langroid
|
244
243
|
```
|
245
244
|
The core Langroid package lets you use OpenAI Embeddings models via their API.
|
246
|
-
If you instead want to use the `
|
247
|
-
|
245
|
+
If you instead want to use the `sentence-transformers` embedding models from HuggingFace,
|
246
|
+
install Langroid like this:
|
248
247
|
```bash
|
249
248
|
pip install langroid[hf-embeddings]
|
250
249
|
```
|
251
|
-
Note that this will install `torch` and `sentence-transformers` libraries.
|
252
250
|
|
253
251
|
<details>
|
254
252
|
<summary><b>Optional Installs for using SQL Chat with a PostgreSQL DB </b></summary>
|
@@ -6,7 +6,7 @@ langroid/agent/chat_document.py,sha256=k7Klav3FIBTf2w95bQtxgqBrf2fMo1ydSlklQvv4R
|
|
6
6
|
langroid/agent/helpers.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
langroid/agent/junk,sha256=LxfuuW7Cijsg0szAzT81OjWWv1PMNI-6w_-DspVIO2s,339
|
8
8
|
langroid/agent/special/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
langroid/agent/special/doc_chat_agent.py,sha256=
|
9
|
+
langroid/agent/special/doc_chat_agent.py,sha256=oBy9K6ScT01AWmdSBvKyhuivjv6ZWD6mYcpxY8kGZQk,23897
|
10
10
|
langroid/agent/special/recipient_validator_agent.py,sha256=R3Rit93BNWQar_9stuDBGzmLr2W-IYOQ7oq-tlNNlps,6035
|
11
11
|
langroid/agent/special/retriever_agent.py,sha256=c4FKTLnMVuHAIDfdKXSHxhvigYeTEccRWVsO_dHrSNg,7181
|
12
12
|
langroid/agent/special/sql/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -20,6 +20,7 @@ langroid/agent/special/table_chat_agent.py,sha256=2nRGW25WDEbR-ukQjeV3mzsC0qk2gO
|
|
20
20
|
langroid/agent/task.py,sha256=UqbjZP4hiG3yRrPWf-nqIyLtK8i0c3fWUEYKbcZ3n50,28275
|
21
21
|
langroid/agent/tool_message.py,sha256=8I59BMkqfH_qpWazhv9_rpPjlaG826vVG5dyJGeOn3o,5936
|
22
22
|
langroid/agent/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
|
+
langroid/agent/tools/generator_tool.py,sha256=LcLlucujJVGORGLHwIT3tsOzVE1wIhgiDLOcXeeylAI,775
|
23
24
|
langroid/agent/tools/google_search_tool.py,sha256=64F9oMNdS237BBOitrvYXN4Il_ES_fNrHkh35tBEDfA,1160
|
24
25
|
langroid/agent/tools/recipient_tool.py,sha256=-2QWXHhnbTkUsg-jNig6yKt8RnSQ1SLwR6KmBzvYhYk,10217
|
25
26
|
langroid/agent_config.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -30,7 +31,7 @@ langroid/cachedb/redis_cachedb.py,sha256=xuQ96FAqcHTfK8PEt1tjrh1BkMWUjojFHIgjDfF
|
|
30
31
|
langroid/embedding_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
31
32
|
langroid/embedding_models/base.py,sha256=7QD9IlsiKNmDn8TAu92IVmSWHHlpZcMsSUlsQxUMUZE,1161
|
32
33
|
langroid/embedding_models/clustering.py,sha256=tZWElUqXl9Etqla0FAa7og96iDKgjqWjucZR_Egtp-A,6684
|
33
|
-
langroid/embedding_models/models.py,sha256=
|
34
|
+
langroid/embedding_models/models.py,sha256=0YJPWWqMk17R2WcQWRQEI3S51QergDRb-IWhGQVkPF4,3144
|
34
35
|
langroid/language_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
35
36
|
langroid/language_models/azure_openai.py,sha256=9NLr9s9l7JlCHSuMooxYLLgs1d04IwE_bO7r22bhrg8,3458
|
36
37
|
langroid/language_models/base.py,sha256=zHCZIEmIk-sFMq7GWooZe8qq4GjaJ3YRhTzTC4irgGM,19931
|
@@ -46,14 +47,14 @@ langroid/parsing/agent_chats.py,sha256=sbZRV9ujdM5QXvvuHVjIi2ysYSYlap-uqfMMUKulr
|
|
46
47
|
langroid/parsing/code-parsing.md,sha256=--cyyNiSZSDlIwcjAV4-shKrSiRe2ytF3AdSoS_hD2g,3294
|
47
48
|
langroid/parsing/code_parser.py,sha256=BbDAzp35wkYQ9U1dpf1ARL0lVyi0tfqEc6_eox2C090,3727
|
48
49
|
langroid/parsing/config.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
50
|
+
langroid/parsing/document_parser.py,sha256=w31HvTt8aijusYUk9XN9FpEUo-xc8_-iTK1UGdEM-jg,11212
|
49
51
|
langroid/parsing/json.py,sha256=MVqBUfInALQm1QKbcfEvLzWxBz_UztCIyGk7AK5uFPo,1650
|
50
52
|
langroid/parsing/para_sentence_split.py,sha256=AJBzZojP3zpB-_IMiiHismhqcvkrVBQ3ZINoQyx_bE4,2000
|
51
|
-
langroid/parsing/parser.py,sha256=
|
52
|
-
langroid/parsing/
|
53
|
-
langroid/parsing/repo_loader.py,sha256=lXREULMd6ftmHLeoUMzQlr_QuYkQhfUBQs2-zeC4fhY,27306
|
53
|
+
langroid/parsing/parser.py,sha256=99RE4sQg5CHH4xEznuJOE_yl3lIIehkRyGmUdq4hmuo,8070
|
54
|
+
langroid/parsing/repo_loader.py,sha256=2OWCNZg6PjoXpIxCusumCb-LIItXPE9ROx53kXdrxAE,27332
|
54
55
|
langroid/parsing/search.py,sha256=nyJYyKcXZ5fOtT8vLfveejq4AYAOoloTGappU9HMSpM,4414
|
55
56
|
langroid/parsing/table_loader.py,sha256=uqbupGr4y_7os18RtaY5GpD0hWcgzROoNy8dQIHB4kc,1767
|
56
|
-
langroid/parsing/url_loader.py,sha256=
|
57
|
+
langroid/parsing/url_loader.py,sha256=dhmUTysS_YZyIXVAekxCGPiCbFsOsHXj_eHMow0xoGQ,2153
|
57
58
|
langroid/parsing/url_loader_cookies.py,sha256=Lg4sNpRz9MByWq2mde6T0hKv68VZSV3mtMjNEHuFeSU,2327
|
58
59
|
langroid/parsing/urls.py,sha256=_Bcf1iRdT7cQrQ8hnbPX0Jtzxc0lVFaucTS5rJoKA14,3709
|
59
60
|
langroid/parsing/utils.py,sha256=zqvZWpZktRJTKx_JAqxaIyoudMdKVdB1zzjnOhVYHS4,2196
|
@@ -80,11 +81,11 @@ langroid/utils/web/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuF
|
|
80
81
|
langroid/utils/web/login.py,sha256=1iz9eUAHa87vpKIkzwkmFa00avwFWivDSAr7QUhK7U0,2528
|
81
82
|
langroid/utils/web/selenium_login.py,sha256=mYI6EvVmne34N9RajlsxxRqJQJvV-WG4LGp6sEECHPw,1156
|
82
83
|
langroid/vector_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
83
|
-
langroid/vector_store/base.py,sha256=
|
84
|
+
langroid/vector_store/base.py,sha256=mw36zLzdQeG_c1KIWeRmycXnXIzFvqRW2RG7xf6jTGk,4465
|
84
85
|
langroid/vector_store/chromadb.py,sha256=2a68iLkgBGoGmuJ80ogJ0rRuoh-Wqdj3rlxVGagMxWk,5384
|
85
86
|
langroid/vector_store/qdrant_cloud.py,sha256=3im4Mip0QXLkR6wiqVsjV1QvhSElfxdFSuDKddBDQ-4,188
|
86
87
|
langroid/vector_store/qdrantdb.py,sha256=RxLCLaaampLS-Gi-ccYEydUjzI0qUJC9jEvc8g2OXEE,9857
|
87
|
-
langroid-0.1.
|
88
|
-
langroid-0.1.
|
89
|
-
langroid-0.1.
|
90
|
-
langroid-0.1.
|
88
|
+
langroid-0.1.77.dist-info/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
|
89
|
+
langroid-0.1.77.dist-info/WHEEL,sha256=vVCvjcmxuUltf8cYhJ0sJMRDLr1XsPuxEId8YDzbyCY,88
|
90
|
+
langroid-0.1.77.dist-info/METADATA,sha256=Wh4Sg4QTZjSCK4pU_5S942dJAGZ1ci1dRUQYdxD7rBk,36083
|
91
|
+
langroid-0.1.77.dist-info/RECORD,,
|
File without changes
|
File without changes
|