langroid 0.1.73__py3-none-any.whl → 0.1.77__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -81,6 +81,7 @@ class DocChatAgentConfig(ChatAgentConfig):
81
81
  # and use the embed(A) to find similar chunks in vecdb.
82
82
  # Referred to as HyDE in the paper:
83
83
  # https://arxiv.org/pdf/2212.10496.pdf
84
+ # It is False by default; its benefits depends on the context.
84
85
  hypothetical_answer: bool = False
85
86
  n_query_rephrases: int = 0
86
87
  use_fuzzy_match: bool = True
@@ -391,13 +392,14 @@ class DocChatAgent(ChatAgent):
391
392
  if self.config.hypothetical_answer:
392
393
  with console.status("[cyan]LLM generating hypothetical answer..."):
393
394
  with StreamingIfAllowed(self.llm, False):
395
+ # TODO: provide an easy way to
396
+ # Adjust this prompt depending on context.
394
397
  answer = self.llm_response_forget(
395
398
  f"""
396
- Give a sample answer to the following query,
399
+ Give an ideal answer to the following query,
397
400
  in up to 3 sentences. Do not explain yourself,
398
401
  and do not apologize, just show
399
- a possible answer. Guess a hypothetical answer
400
- even if you do not have any information.
402
+ a good possible answer, even if you do not have any information.
401
403
  Preface your answer with "HYPOTHETICAL ANSWER: "
402
404
 
403
405
  QUERY: {query}
@@ -504,7 +506,7 @@ class DocChatAgent(ChatAgent):
504
506
 
505
507
  with console.status("[cyan]LLM Extracting verbatim passages..."):
506
508
  with StreamingIfAllowed(self.llm, False):
507
- # these are async calls, one per passage
509
+ # these are async calls, one per passage; turn off streaming
508
510
  extracts = self.llm.get_verbatim_extracts(query, passages)
509
511
  extracts = [e for e in extracts if e.content != NO_ANSWER]
510
512
 
@@ -0,0 +1,25 @@
1
+ """
2
+ A tool to generate a message from the current pending message.
3
+ The idea is that when an LLM is generating text that is a deterministic transformation
4
+ of known text, then specifying the transformation can be much cheaper than actually
5
+ generating the transformation.
6
+ """
7
+
8
+ from langroid.agent.tool_message import ToolMessage
9
+
10
+ class GeneratorTool(ToolMessage):
11
+ request: str = "generate"
12
+ purpose: str = """
13
+ To generate a message where the parts within curly braces
14
+ are derived from previous previous messages in the conversation,
15
+ using
16
+ message are
17
+ obtained from a previous message numbered <n>,
18
+ using the <rules>.
19
+ """
20
+ rules: str
21
+
22
+
23
+ def handle(self) -> str:
24
+ pass
25
+
@@ -19,7 +19,7 @@ class OpenAIEmbeddingsConfig(EmbeddingModelsConfig):
19
19
  class SentenceTransformerEmbeddingsConfig(EmbeddingModelsConfig):
20
20
  model_type: str = "sentence-transformer"
21
21
  model_name: str = "BAAI/bge-large-en-v1.5"
22
- dims: int = 384
22
+ dims: int = 1024 # should correspond to the model's embedding dims
23
23
 
24
24
 
25
25
  class OpenAIEmbeddings(EmbeddingModel):
@@ -1,5 +1,6 @@
1
1
  import re
2
2
  from abc import abstractmethod
3
+ from enum import Enum
3
4
  from io import BytesIO
4
5
  from typing import Any, Generator, List, Tuple
5
6
 
@@ -12,35 +13,56 @@ from langroid.mytypes import DocMetaData, Document
12
13
  from langroid.parsing.parser import Parser, ParsingConfig
13
14
 
14
15
 
15
- class PdfParser(Parser):
16
+ class DocumentType(str, Enum):
17
+ PDF = "pdf"
18
+ DOCX = "docx"
19
+
20
+
21
+ class DocumentParser(Parser):
16
22
  """
17
- Abstract base class for extracting text from PDFs.
23
+ Abstract base class for extracting text from special types of docs
24
+ such as PDFs or Docx.
18
25
 
19
26
  Attributes:
20
- source (str): The PDF source, either a URL or a file path.
21
- pdf_bytes (BytesIO): BytesIO object containing the PDF data.
27
+ source (str): The source, either a URL or a file path.
28
+ doc_bytes (BytesIO): BytesIO object containing the doc data.
22
29
  """
23
30
 
24
31
  @classmethod
25
- def create(cls, source: str, config: ParsingConfig) -> "PdfParser":
32
+ def create(cls, source: str, config: ParsingConfig) -> "DocumentParser":
26
33
  """
27
- Create a PDF Parser instance based on config.library specified.
34
+ Create a DocumentParser instance based on source type
35
+ and config.<source_type>.library specified.
28
36
 
29
37
  Args:
30
38
  source (str): The source of the PDF, either a URL or a file path.
31
39
  config (ParserConfig): The parser configuration.
32
40
 
33
41
  Returns:
34
- PdfParser: An instance of a PDF Parser subclass.
35
- """
36
- if config.pdf.library == "fitz":
37
- return FitzPdfParser(source, config)
38
- elif config.pdf.library == "pypdf":
39
- return PyPdfParser(source, config)
40
- elif config.pdf.library == "pdfplumber":
41
- return PdfPlumberParser(source, config)
42
+ DocumentParser: An instance of a DocumentParser subclass.
43
+ """
44
+ if DocumentParser._document_type(source) == DocumentType.PDF:
45
+ if config.pdf.library == "fitz":
46
+ return FitzPDFParser(source, config)
47
+ elif config.pdf.library == "pypdf":
48
+ return PyPDFParser(source, config)
49
+ elif config.pdf.library == "pdfplumber":
50
+ return PDFPlumberParser(source, config)
51
+ elif config.pdf.library == "unstructured":
52
+ return UnstructuredPDFParser(source, config)
53
+ else:
54
+ raise ValueError(
55
+ f"Unsupported PDF library specified: {config.pdf.library}"
56
+ )
57
+ elif DocumentParser._document_type(source) == DocumentType.DOCX:
58
+ if config.docx.library == "unstructured":
59
+ return UnstructuredDocxParser(source, config)
60
+ else:
61
+ raise ValueError(
62
+ f"Unsupported DOCX library specified: {config.docx.library}"
63
+ )
42
64
  else:
43
- raise ValueError(f"Unsupported library specified: {config.pdf.library}")
65
+ raise ValueError(f"Unsupported document type: {source}")
44
66
 
45
67
  def __init__(self, source: str, config: ParsingConfig):
46
68
  """
@@ -52,14 +74,32 @@ class PdfParser(Parser):
52
74
  super().__init__(config)
53
75
  self.source = source
54
76
  self.config = config
55
- self.pdf_bytes = self._load_pdf_as_bytesio()
77
+ self.doc_bytes = self._load_doc_as_bytesio()
78
+
79
+ @staticmethod
80
+ def _document_type(source: str) -> DocumentType:
81
+ """
82
+ Determine the type of document based on the source.
83
+
84
+ Args:
85
+ source (str): The source of the PDF, either a URL or a file path.
86
+
87
+ Returns:
88
+ str: The document type.
89
+ """
90
+ if source.lower().endswith(".pdf"):
91
+ return DocumentType.PDF
92
+ elif source.lower().endswith(".docx"):
93
+ return DocumentType.DOCX
94
+ else:
95
+ raise ValueError(f"Unsupported document type: {source}")
56
96
 
57
- def _load_pdf_as_bytesio(self) -> BytesIO:
97
+ def _load_doc_as_bytesio(self) -> BytesIO:
58
98
  """
59
- Load the PDF into a BytesIO object.
99
+ Load the docs into a BytesIO object.
60
100
 
61
101
  Returns:
62
- BytesIO: A BytesIO object containing the PDF data.
102
+ BytesIO: A BytesIO object containing the doc data.
63
103
  """
64
104
  if self.source.startswith(("http://", "https://")):
65
105
  response = requests.get(self.source)
@@ -159,7 +199,7 @@ class PdfParser(Parser):
159
199
  return docs
160
200
 
161
201
 
162
- class FitzPdfParser(PdfParser):
202
+ class FitzPDFParser(DocumentParser):
163
203
  """
164
204
  Parser for processing PDFs using the `fitz` library.
165
205
  """
@@ -171,7 +211,7 @@ class FitzPdfParser(PdfParser):
171
211
  Returns:
172
212
  Generator[fitz.Page]: Generator yielding each page.
173
213
  """
174
- doc = fitz.open(stream=self.pdf_bytes, filetype="pdf")
214
+ doc = fitz.open(stream=self.doc_bytes, filetype="pdf")
175
215
  for i, page in enumerate(doc):
176
216
  yield i, page
177
217
  doc.close()
@@ -189,7 +229,7 @@ class FitzPdfParser(PdfParser):
189
229
  return self.fix_text(page.get_text())
190
230
 
191
231
 
192
- class PyPdfParser(PdfParser):
232
+ class PyPDFParser(DocumentParser):
193
233
  """
194
234
  Parser for processing PDFs using the `pypdf` library.
195
235
  """
@@ -201,7 +241,7 @@ class PyPdfParser(PdfParser):
201
241
  Returns:
202
242
  Generator[pypdf.pdf.PageObject]: Generator yielding each page.
203
243
  """
204
- reader = pypdf.PdfReader(self.pdf_bytes)
244
+ reader = pypdf.PdfReader(self.doc_bytes)
205
245
  for i, page in enumerate(reader.pages):
206
246
  yield i, page
207
247
 
@@ -218,7 +258,7 @@ class PyPdfParser(PdfParser):
218
258
  return self.fix_text(page.extract_text())
219
259
 
220
260
 
221
- class PdfPlumberParser(PdfParser):
261
+ class PDFPlumberParser(DocumentParser):
222
262
  """
223
263
  Parser for processing PDFs using the `pdfplumber` library.
224
264
  """
@@ -232,7 +272,7 @@ class PdfPlumberParser(PdfParser):
232
272
  Returns:
233
273
  Generator[pdfplumber.Page]: Generator yielding each page.
234
274
  """
235
- with pdfplumber.open(self.pdf_bytes) as pdf:
275
+ with pdfplumber.open(self.doc_bytes) as pdf:
236
276
  for i, page in enumerate(pdf.pages):
237
277
  yield i, page
238
278
 
@@ -247,3 +287,60 @@ class PdfPlumberParser(PdfParser):
247
287
  str: Extracted text from the page.
248
288
  """
249
289
  return self.fix_text(page.extract_text())
290
+
291
+
292
+ class UnstructuredPDFParser(DocumentParser):
293
+ """
294
+ Parser for processing PDF files using the `unstructured` library.
295
+ """
296
+
297
+ def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
298
+ from unstructured.partition.pdf import partition_pdf
299
+
300
+ elements = partition_pdf(file=self.doc_bytes, include_page_breaks=True)
301
+ for i, el in enumerate(elements):
302
+ yield i, el
303
+
304
+ def extract_text_from_page(self, page: Any) -> str:
305
+ """
306
+ Extract text from a given `unstructured` element.
307
+
308
+ Args:
309
+ page (unstructured element): The `unstructured` element object.
310
+
311
+ Returns:
312
+ str: Extracted text from the element.
313
+ """
314
+ return self.fix_text(str(page))
315
+
316
+
317
+ class UnstructuredDocxParser(DocumentParser):
318
+ """
319
+ Parser for processing DOCX files using the `unstructured` library.
320
+ """
321
+
322
+ def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
323
+ from unstructured.partition.docx import partition_docx
324
+
325
+ elements = partition_docx(file=self.doc_bytes)
326
+ for i, el in enumerate(elements):
327
+ yield i, el
328
+
329
+ def extract_text_from_page(self, page: Any) -> str:
330
+ """
331
+ Extract text from a given `unstructured` element.
332
+
333
+ Note:
334
+ The concept of "pages" doesn't actually exist in the .docx file format in
335
+ the same way it does in formats like .pdf. A .docx file is made up of a
336
+ series of elements like paragraphs and tables, but the division into
337
+ pages is done dynamically based on the rendering settings (like the page
338
+ size, margin size, font size, etc.).
339
+
340
+ Args:
341
+ page (unstructured element): The `unstructured` element object.
342
+
343
+ Returns:
344
+ str: Extracted text from the element.
345
+ """
346
+ return self.fix_text(str(page))
@@ -23,6 +23,10 @@ class PdfParsingConfig(BaseSettings):
23
23
  library: str = "pdfplumber"
24
24
 
25
25
 
26
+ class DocxParsingConfig(BaseSettings):
27
+ library: str = "unstructured"
28
+
29
+
26
30
  class ParsingConfig(BaseSettings):
27
31
  splitter: str = Splitter.TOKENS
28
32
  chunk_size: int = 200 # aim for this many tokens per chunk
@@ -35,6 +39,7 @@ class ParsingConfig(BaseSettings):
35
39
  separators: List[str] = ["\n\n", "\n", " ", ""]
36
40
  token_encoding_model: str = "text-embedding-ada-002"
37
41
  pdf: PdfParsingConfig = PdfParsingConfig()
42
+ docx: DocxParsingConfig = DocxParsingConfig()
38
43
 
39
44
 
40
45
  class Parser:
@@ -18,8 +18,8 @@ from github.Repository import Repository
18
18
  from pydantic import BaseSettings
19
19
 
20
20
  from langroid.mytypes import DocMetaData, Document
21
+ from langroid.parsing.document_parser import DocumentParser
21
22
  from langroid.parsing.parser import Parser, ParsingConfig
22
- from langroid.parsing.pdf_parser import PdfParser
23
23
 
24
24
  logger = logging.getLogger(__name__)
25
25
 
@@ -493,12 +493,12 @@ class RepoLoader:
493
493
 
494
494
  for file_path in file_paths:
495
495
  _, file_extension = os.path.splitext(file_path)
496
- if file_extension.lower() == ".pdf":
497
- pdf_parser = PdfParser.create(
496
+ if file_extension.lower() in [".pdf", ".docx"]:
497
+ doc_parser = DocumentParser.create(
498
498
  file_path,
499
499
  parser.config,
500
500
  )
501
- docs.extend(pdf_parser.get_doc_chunks())
501
+ docs.extend(doc_parser.get_doc_chunks())
502
502
  else:
503
503
  with open(file_path, "r") as f:
504
504
  if lines is not None:
@@ -9,8 +9,8 @@ from trafilatura.downloads import (
9
9
  )
10
10
 
11
11
  from langroid.mytypes import DocMetaData, Document
12
+ from langroid.parsing.document_parser import DocumentParser
12
13
  from langroid.parsing.parser import Parser, ParsingConfig
13
- from langroid.parsing.pdf_parser import PdfParser
14
14
 
15
15
  logging.getLogger("trafilatura").setLevel(logging.ERROR)
16
16
 
@@ -44,12 +44,12 @@ class URLLoader:
44
44
  sleep_time=5,
45
45
  )
46
46
  for url, result in buffered_downloads(buffer, threads):
47
- if url.lower().endswith(".pdf"):
48
- pdf_parser = PdfParser.create(
47
+ if url.lower().endswith(".pdf") or url.lower().endswith(".docx"):
48
+ doc_parser = DocumentParser.create(
49
49
  url,
50
50
  self.parser.config,
51
51
  )
52
- docs.extend(pdf_parser.get_doc_chunks())
52
+ docs.extend(doc_parser.get_doc_chunks())
53
53
  else:
54
54
  text = trafilatura.extract(
55
55
  result,
@@ -132,4 +132,4 @@ class VectorStore(ABC):
132
132
  def show_if_debug(self, doc_score_pairs: List[Tuple[Document, float]]) -> None:
133
133
  if settings.debug:
134
134
  for i, (d, s) in enumerate(doc_score_pairs):
135
- print_long_text("red", "italic red", f"MATCH-{i}", d.content)
135
+ print_long_text("red", "italic red", f"\nMATCH-{i}\n", d.content)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langroid
3
- Version: 0.1.73
3
+ Version: 0.1.77
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  License: MIT
6
6
  Author: Prasad Chalasani
@@ -70,6 +70,7 @@ Requires-Dist: trafilatura (>=1.5.0,<2.0.0)
70
70
  Requires-Dist: typer (>=0.7.0,<0.8.0)
71
71
  Requires-Dist: types-redis (>=4.5.5.2,<5.0.0.0)
72
72
  Requires-Dist: types-requests (>=2.31.0.1,<3.0.0.0)
73
+ Requires-Dist: unstructured[docx,pdf,pptx] (>=0.10.16,<0.11.0)
73
74
  Requires-Dist: wget (>=3.2,<4.0)
74
75
  Description-Content-Type: text/markdown
75
76
 
@@ -130,8 +131,8 @@ This Multi-Agent paradigm is inspired by the
130
131
  [Actor Framework](https://en.wikipedia.org/wiki/Actor_model)
131
132
  (but you do not need to know anything about this!).
132
133
 
133
- Langroid is a fresh take on LLM app-development, where considerable thought has gone
134
- into simplifying the developer experience. It does not use `Langchain` or `Llama-Index`.
134
+ `Langroid` is a fresh take on LLM app-development, where considerable thought has gone
135
+ into simplifying the developer experience; it does not use `Langchain`.
135
136
 
136
137
  We welcome contributions -- See the [contributions](./CONTRIBUTING.md) document
137
138
  for ideas on what to contribute.
@@ -142,6 +143,7 @@ for ideas on what to contribute.
142
143
  <summary> <b>:fire: Updates/Releases</b></summary>
143
144
 
144
145
  - **Sep 2023:**
146
+ - **0.1.76:** DocChatAgent: support for loading `docx` files (preliminary).
145
147
  - **0.1.72:** Many improvements to DocChatAgent: better embedding model,
146
148
  hybrid search to improve retrieval, better pdf parsing, re-ranking retrieved results with cross-encoders.
147
149
  - **Use with local LLama Models:** see tutorial [here](https://langroid.github.io/langroid/blog/2023/09/14/using-langroid-with-local-llms/)
@@ -169,7 +171,7 @@ See [this test](tests/main/test_recipient_tool.py) for example usage.
169
171
  - **0.1.27**: Added [support](langroid/cachedb/momento_cachedb.py)
170
172
  for [Momento Serverless Cache](https://www.gomomento.com/) as an alternative to Redis.
171
173
  - **0.1.24**: [`DocChatAgent`](langroid/agent/special/doc_chat_agent.py)
172
- now [accepts](langroid/parsing/pdf_parser.py) PDF files or URLs.
174
+ now [accepts](langroid/parsing/document_parser.py) PDF files or URLs.
173
175
 
174
176
  </details>
175
177
 
@@ -233,9 +235,6 @@ Here is what it looks like in action:
233
235
 
234
236
  # :gear: Installation and Setup
235
237
 
236
- :whale: For a simpler setup, see the Docker section below, which lets you get started just
237
- by setting up environment variables in a `.env` file.
238
-
239
238
  ### Install `langroid`
240
239
  Langroid requires Python 3.11+. We recommend using a virtual environment.
241
240
  Use `pip` to install `langroid` (from PyPi) to your virtual environment:
@@ -243,12 +242,11 @@ Use `pip` to install `langroid` (from PyPi) to your virtual environment:
243
242
  pip install langroid
244
243
  ```
245
244
  The core Langroid package lets you use OpenAI Embeddings models via their API.
246
- If you instead want to use the `all-MiniLM-L6-v2` embeddings model
247
- from from HuggingFace, install Langroid like this:
245
+ If you instead want to use the `sentence-transformers` embedding models from HuggingFace,
246
+ install Langroid like this:
248
247
  ```bash
249
248
  pip install langroid[hf-embeddings]
250
249
  ```
251
- Note that this will install `torch` and `sentence-transformers` libraries.
252
250
 
253
251
  <details>
254
252
  <summary><b>Optional Installs for using SQL Chat with a PostgreSQL DB </b></summary>
@@ -6,7 +6,7 @@ langroid/agent/chat_document.py,sha256=k7Klav3FIBTf2w95bQtxgqBrf2fMo1ydSlklQvv4R
6
6
  langroid/agent/helpers.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  langroid/agent/junk,sha256=LxfuuW7Cijsg0szAzT81OjWWv1PMNI-6w_-DspVIO2s,339
8
8
  langroid/agent/special/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- langroid/agent/special/doc_chat_agent.py,sha256=G_xBlGzGlHBieICROiZw7JvBf_bWmuEc5algTFH6pRc,23744
9
+ langroid/agent/special/doc_chat_agent.py,sha256=oBy9K6ScT01AWmdSBvKyhuivjv6ZWD6mYcpxY8kGZQk,23897
10
10
  langroid/agent/special/recipient_validator_agent.py,sha256=R3Rit93BNWQar_9stuDBGzmLr2W-IYOQ7oq-tlNNlps,6035
11
11
  langroid/agent/special/retriever_agent.py,sha256=c4FKTLnMVuHAIDfdKXSHxhvigYeTEccRWVsO_dHrSNg,7181
12
12
  langroid/agent/special/sql/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -20,6 +20,7 @@ langroid/agent/special/table_chat_agent.py,sha256=2nRGW25WDEbR-ukQjeV3mzsC0qk2gO
20
20
  langroid/agent/task.py,sha256=UqbjZP4hiG3yRrPWf-nqIyLtK8i0c3fWUEYKbcZ3n50,28275
21
21
  langroid/agent/tool_message.py,sha256=8I59BMkqfH_qpWazhv9_rpPjlaG826vVG5dyJGeOn3o,5936
22
22
  langroid/agent/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ langroid/agent/tools/generator_tool.py,sha256=LcLlucujJVGORGLHwIT3tsOzVE1wIhgiDLOcXeeylAI,775
23
24
  langroid/agent/tools/google_search_tool.py,sha256=64F9oMNdS237BBOitrvYXN4Il_ES_fNrHkh35tBEDfA,1160
24
25
  langroid/agent/tools/recipient_tool.py,sha256=-2QWXHhnbTkUsg-jNig6yKt8RnSQ1SLwR6KmBzvYhYk,10217
25
26
  langroid/agent_config.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -30,7 +31,7 @@ langroid/cachedb/redis_cachedb.py,sha256=xuQ96FAqcHTfK8PEt1tjrh1BkMWUjojFHIgjDfF
30
31
  langroid/embedding_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
32
  langroid/embedding_models/base.py,sha256=7QD9IlsiKNmDn8TAu92IVmSWHHlpZcMsSUlsQxUMUZE,1161
32
33
  langroid/embedding_models/clustering.py,sha256=tZWElUqXl9Etqla0FAa7og96iDKgjqWjucZR_Egtp-A,6684
33
- langroid/embedding_models/models.py,sha256=MWKXvSA3TbkSz6qL4-y1_2RkjLlECim7GxnEsID26_E,3093
34
+ langroid/embedding_models/models.py,sha256=0YJPWWqMk17R2WcQWRQEI3S51QergDRb-IWhGQVkPF4,3144
34
35
  langroid/language_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
36
  langroid/language_models/azure_openai.py,sha256=9NLr9s9l7JlCHSuMooxYLLgs1d04IwE_bO7r22bhrg8,3458
36
37
  langroid/language_models/base.py,sha256=zHCZIEmIk-sFMq7GWooZe8qq4GjaJ3YRhTzTC4irgGM,19931
@@ -46,14 +47,14 @@ langroid/parsing/agent_chats.py,sha256=sbZRV9ujdM5QXvvuHVjIi2ysYSYlap-uqfMMUKulr
46
47
  langroid/parsing/code-parsing.md,sha256=--cyyNiSZSDlIwcjAV4-shKrSiRe2ytF3AdSoS_hD2g,3294
47
48
  langroid/parsing/code_parser.py,sha256=BbDAzp35wkYQ9U1dpf1ARL0lVyi0tfqEc6_eox2C090,3727
48
49
  langroid/parsing/config.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
+ langroid/parsing/document_parser.py,sha256=w31HvTt8aijusYUk9XN9FpEUo-xc8_-iTK1UGdEM-jg,11212
49
51
  langroid/parsing/json.py,sha256=MVqBUfInALQm1QKbcfEvLzWxBz_UztCIyGk7AK5uFPo,1650
50
52
  langroid/parsing/para_sentence_split.py,sha256=AJBzZojP3zpB-_IMiiHismhqcvkrVBQ3ZINoQyx_bE4,2000
51
- langroid/parsing/parser.py,sha256=PxYsZD2nEPhGjL6czR98DABS6sLnJ_AWdvRbIrZk6PQ,7945
52
- langroid/parsing/pdf_parser.py,sha256=wB5PnNXxhcRssiVUH6nDQ2Fxp0O3VqJcT3vlA7-J38M,7858
53
- langroid/parsing/repo_loader.py,sha256=lXREULMd6ftmHLeoUMzQlr_QuYkQhfUBQs2-zeC4fhY,27306
53
+ langroid/parsing/parser.py,sha256=99RE4sQg5CHH4xEznuJOE_yl3lIIehkRyGmUdq4hmuo,8070
54
+ langroid/parsing/repo_loader.py,sha256=2OWCNZg6PjoXpIxCusumCb-LIItXPE9ROx53kXdrxAE,27332
54
55
  langroid/parsing/search.py,sha256=nyJYyKcXZ5fOtT8vLfveejq4AYAOoloTGappU9HMSpM,4414
55
56
  langroid/parsing/table_loader.py,sha256=uqbupGr4y_7os18RtaY5GpD0hWcgzROoNy8dQIHB4kc,1767
56
- langroid/parsing/url_loader.py,sha256=i2UsVKdcB65AQoDV_sjQAddoRmmvnNh3TG06cEVODn0,2105
57
+ langroid/parsing/url_loader.py,sha256=dhmUTysS_YZyIXVAekxCGPiCbFsOsHXj_eHMow0xoGQ,2153
57
58
  langroid/parsing/url_loader_cookies.py,sha256=Lg4sNpRz9MByWq2mde6T0hKv68VZSV3mtMjNEHuFeSU,2327
58
59
  langroid/parsing/urls.py,sha256=_Bcf1iRdT7cQrQ8hnbPX0Jtzxc0lVFaucTS5rJoKA14,3709
59
60
  langroid/parsing/utils.py,sha256=zqvZWpZktRJTKx_JAqxaIyoudMdKVdB1zzjnOhVYHS4,2196
@@ -80,11 +81,11 @@ langroid/utils/web/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuF
80
81
  langroid/utils/web/login.py,sha256=1iz9eUAHa87vpKIkzwkmFa00avwFWivDSAr7QUhK7U0,2528
81
82
  langroid/utils/web/selenium_login.py,sha256=mYI6EvVmne34N9RajlsxxRqJQJvV-WG4LGp6sEECHPw,1156
82
83
  langroid/vector_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
83
- langroid/vector_store/base.py,sha256=YNUjdrqJMIDP235bxJPGV7BeXIBO8PdFy2yQubKePsk,4461
84
+ langroid/vector_store/base.py,sha256=mw36zLzdQeG_c1KIWeRmycXnXIzFvqRW2RG7xf6jTGk,4465
84
85
  langroid/vector_store/chromadb.py,sha256=2a68iLkgBGoGmuJ80ogJ0rRuoh-Wqdj3rlxVGagMxWk,5384
85
86
  langroid/vector_store/qdrant_cloud.py,sha256=3im4Mip0QXLkR6wiqVsjV1QvhSElfxdFSuDKddBDQ-4,188
86
87
  langroid/vector_store/qdrantdb.py,sha256=RxLCLaaampLS-Gi-ccYEydUjzI0qUJC9jEvc8g2OXEE,9857
87
- langroid-0.1.73.dist-info/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
88
- langroid-0.1.73.dist-info/WHEEL,sha256=vVCvjcmxuUltf8cYhJ0sJMRDLr1XsPuxEId8YDzbyCY,88
89
- langroid-0.1.73.dist-info/METADATA,sha256=_EuiKeBEewZeP-W5h3yf3matXQ7T82zGxdFBdyv2w44,36171
90
- langroid-0.1.73.dist-info/RECORD,,
88
+ langroid-0.1.77.dist-info/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
89
+ langroid-0.1.77.dist-info/WHEEL,sha256=vVCvjcmxuUltf8cYhJ0sJMRDLr1XsPuxEId8YDzbyCY,88
90
+ langroid-0.1.77.dist-info/METADATA,sha256=Wh4Sg4QTZjSCK4pU_5S942dJAGZ1ci1dRUQYdxD7rBk,36083
91
+ langroid-0.1.77.dist-info/RECORD,,