langroid 0.1.197__py3-none-any.whl → 0.1.198__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langroid/agent/special/doc_chat_agent.py +2 -2
- langroid/agent/tool_message.py +3 -0
- langroid/embedding_models/models.py +53 -14
- langroid/language_models/prompt_formatter/hf_formatter.py +28 -2
- langroid/parsing/document_parser.py +34 -53
- langroid/parsing/json.py +21 -0
- langroid/parsing/parser.py +1 -3
- langroid/vector_store/chromadb.py +10 -4
- {langroid-0.1.197.dist-info → langroid-0.1.198.dist-info}/METADATA +6 -5
- {langroid-0.1.197.dist-info → langroid-0.1.198.dist-info}/RECORD +12 -12
- {langroid-0.1.197.dist-info → langroid-0.1.198.dist-info}/LICENSE +0 -0
- {langroid-0.1.197.dist-info → langroid-0.1.198.dist-info}/WHEEL +0 -0
@@ -135,7 +135,7 @@ class DocChatAgentConfig(ChatAgentConfig):
|
|
135
135
|
# NOTE: PDF parsing is extremely challenging, and each library
|
136
136
|
# has its own strengths and weaknesses.
|
137
137
|
# Try one that works for your use case.
|
138
|
-
# or "
|
138
|
+
# or "unstructured", "pdfplumber", "fitz", "pypdf"
|
139
139
|
library="pdfplumber",
|
140
140
|
),
|
141
141
|
)
|
@@ -156,7 +156,7 @@ class DocChatAgentConfig(ChatAgentConfig):
|
|
156
156
|
collection_name="doc-chat-lancedb",
|
157
157
|
replace_collection=True,
|
158
158
|
storage_path=".lancedb/data/",
|
159
|
-
embedding=
|
159
|
+
embedding=oai_embed_config,
|
160
160
|
)
|
161
161
|
llm: OpenAIGPTConfig = OpenAIGPTConfig(
|
162
162
|
type="openai",
|
langroid/agent/tool_message.py
CHANGED
@@ -82,6 +82,9 @@ class ToolMessage(ABC, BaseModel):
|
|
82
82
|
ex = choice(cls.examples())
|
83
83
|
return ex.json_example()
|
84
84
|
|
85
|
+
def to_json(self) -> str:
|
86
|
+
return self.json(indent=4, exclude={"result", "purpose"})
|
87
|
+
|
85
88
|
def json_example(self) -> str:
|
86
89
|
return self.json(indent=4, exclude={"result", "purpose"})
|
87
90
|
|
@@ -6,7 +6,6 @@ from dotenv import load_dotenv
|
|
6
6
|
from openai import OpenAI
|
7
7
|
|
8
8
|
from langroid.embedding_models.base import EmbeddingModel, EmbeddingModelsConfig
|
9
|
-
from langroid.language_models.utils import retry_with_exponential_backoff
|
10
9
|
from langroid.mytypes import Embeddings
|
11
10
|
from langroid.parsing.utils import batched
|
12
11
|
|
@@ -26,6 +25,58 @@ class SentenceTransformerEmbeddingsConfig(EmbeddingModelsConfig):
|
|
26
25
|
context_length: int = 512
|
27
26
|
|
28
27
|
|
28
|
+
class EmbeddingFunctionCallable:
|
29
|
+
"""
|
30
|
+
A callable class designed to generate embeddings for a list of texts using
|
31
|
+
the OpenAI API, with automatic retries on failure.
|
32
|
+
|
33
|
+
Attributes:
|
34
|
+
model (OpenAIEmbeddings): An instance of OpenAIEmbeddings that provides
|
35
|
+
configuration and utilities for generating embeddings.
|
36
|
+
|
37
|
+
Methods:
|
38
|
+
__call__(input: List[str]) -> Embeddings: Generate embeddings for
|
39
|
+
a list of input texts.
|
40
|
+
"""
|
41
|
+
|
42
|
+
def __init__(self, model: "OpenAIEmbeddings"):
|
43
|
+
"""
|
44
|
+
Initialize the EmbeddingFunctionCallable with a specific model.
|
45
|
+
|
46
|
+
Args:
|
47
|
+
model (OpenAIEmbeddings): An instance of OpenAIEmbeddings to use for
|
48
|
+
generating embeddings.
|
49
|
+
"""
|
50
|
+
self.model = model
|
51
|
+
|
52
|
+
def __call__(self, input: List[str]) -> Embeddings:
|
53
|
+
"""
|
54
|
+
Generate embeddings for a given list of input texts using the OpenAI API,
|
55
|
+
with retries on failure.
|
56
|
+
|
57
|
+
This method:
|
58
|
+
- Truncates each text in the input list to the model's maximum context length.
|
59
|
+
- Processes the texts in batches to generate embeddings efficiently.
|
60
|
+
- Automatically retries the embedding generation process with exponential
|
61
|
+
backoff in case of failures.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
input (List[str]): A list of input texts to generate embeddings for.
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
Embeddings: A list of embedding vectors corresponding to the input texts.
|
68
|
+
"""
|
69
|
+
tokenized_texts = self.model.truncate_texts(input)
|
70
|
+
embeds = []
|
71
|
+
for batch in batched(tokenized_texts, 500):
|
72
|
+
result = self.model.client.embeddings.create(
|
73
|
+
input=batch, model=self.model.config.model_name
|
74
|
+
)
|
75
|
+
batch_embeds = [d.embedding for d in result.data]
|
76
|
+
embeds.extend(batch_embeds)
|
77
|
+
return embeds
|
78
|
+
|
79
|
+
|
29
80
|
class OpenAIEmbeddings(EmbeddingModel):
|
30
81
|
def __init__(self, config: OpenAIEmbeddingsConfig = OpenAIEmbeddingsConfig()):
|
31
82
|
super().__init__()
|
@@ -56,19 +107,7 @@ class OpenAIEmbeddings(EmbeddingModel):
|
|
56
107
|
]
|
57
108
|
|
58
109
|
def embedding_fn(self) -> Callable[[List[str]], Embeddings]:
|
59
|
-
|
60
|
-
def fn(texts: List[str]) -> Embeddings:
|
61
|
-
tokenized_texts = self.truncate_texts(texts)
|
62
|
-
embeds = []
|
63
|
-
for batch in batched(tokenized_texts, 500):
|
64
|
-
result = self.client.embeddings.create(
|
65
|
-
input=batch, model=self.config.model_name
|
66
|
-
)
|
67
|
-
batch_embeds = [d.embedding for d in result.data]
|
68
|
-
embeds.extend(batch_embeds)
|
69
|
-
return embeds
|
70
|
-
|
71
|
-
return fn
|
110
|
+
return EmbeddingFunctionCallable(self)
|
72
111
|
|
73
112
|
@property
|
74
113
|
def embedding_dims(self) -> int:
|
@@ -6,11 +6,10 @@ models will have the same tokenizer, so we just use the first one.
|
|
6
6
|
"""
|
7
7
|
import logging
|
8
8
|
import re
|
9
|
-
from typing import List, Set
|
9
|
+
from typing import Any, List, Set, Type
|
10
10
|
|
11
11
|
from huggingface_hub import HfApi, ModelFilter
|
12
12
|
from jinja2.exceptions import TemplateError
|
13
|
-
from transformers import AutoTokenizer
|
14
13
|
|
15
14
|
from langroid.language_models.base import LanguageModel, LLMMessage, Role
|
16
15
|
from langroid.language_models.config import HFPromptFormatterConfig
|
@@ -19,6 +18,31 @@ from langroid.language_models.prompt_formatter.base import PromptFormatter
|
|
19
18
|
logger = logging.getLogger(__name__)
|
20
19
|
|
21
20
|
|
21
|
+
def try_import_AutoTokenizer() -> Type[Any]:
|
22
|
+
"""
|
23
|
+
Attempts to import the AutoTokenizer class from the transformers package.
|
24
|
+
Returns:
|
25
|
+
The AutoTokenizer class if successful.
|
26
|
+
Raises:
|
27
|
+
ImportError: If the transformers package is not installed.
|
28
|
+
"""
|
29
|
+
try:
|
30
|
+
from transformers import AutoTokenizer
|
31
|
+
|
32
|
+
return AutoTokenizer # type: ignore
|
33
|
+
except ImportError:
|
34
|
+
raise ImportError(
|
35
|
+
"""
|
36
|
+
You are trying to use the HuggingFace transformers.AutoTokenizer,
|
37
|
+
but the `transformers` package is not installed
|
38
|
+
by default with Langroid. Please install langroid using the
|
39
|
+
`transformers` extra, like so:
|
40
|
+
pip install "langroid[transformers]"
|
41
|
+
or equivalent.
|
42
|
+
"""
|
43
|
+
)
|
44
|
+
|
45
|
+
|
22
46
|
def find_hf_formatter(model_name: str) -> str:
|
23
47
|
hf_api = HfApi()
|
24
48
|
# try to find a matching model, with progressivly shorter prefixes of model_name
|
@@ -37,6 +61,7 @@ def find_hf_formatter(model_name: str) -> str:
|
|
37
61
|
mdl = next(models)
|
38
62
|
except StopIteration:
|
39
63
|
continue
|
64
|
+
AutoTokenizer = try_import_AutoTokenizer()
|
40
65
|
tokenizer = AutoTokenizer.from_pretrained(mdl.id)
|
41
66
|
if tokenizer.chat_template is not None:
|
42
67
|
return str(mdl.id)
|
@@ -60,6 +85,7 @@ class HFFormatter(PromptFormatter):
|
|
60
85
|
mdl = next(models)
|
61
86
|
except StopIteration:
|
62
87
|
raise ValueError(f"Model {config.model_name} not found on HuggingFace Hub")
|
88
|
+
AutoTokenizer = try_import_AutoTokenizer()
|
63
89
|
self.tokenizer = AutoTokenizer.from_pretrained(mdl.id)
|
64
90
|
if self.tokenizer.chat_template is None:
|
65
91
|
raise ValueError(
|
@@ -11,7 +11,6 @@ import requests
|
|
11
11
|
|
12
12
|
from langroid.mytypes import DocMetaData, Document
|
13
13
|
from langroid.parsing.parser import Parser, ParsingConfig
|
14
|
-
from langroid.parsing.urls import url_to_tempfile
|
15
14
|
|
16
15
|
logger = logging.getLogger(__name__)
|
17
16
|
|
@@ -54,8 +53,6 @@ class DocumentParser(Parser):
|
|
54
53
|
return PDFPlumberParser(source, config)
|
55
54
|
elif config.pdf.library == "unstructured":
|
56
55
|
return UnstructuredPDFParser(source, config)
|
57
|
-
elif config.pdf.library == "haystack":
|
58
|
-
return HaystackPDFParser(source, config)
|
59
56
|
else:
|
60
57
|
raise ValueError(
|
61
58
|
f"Unsupported PDF library specified: {config.pdf.library}"
|
@@ -301,59 +298,23 @@ class PDFPlumberParser(DocumentParser):
|
|
301
298
|
return self.fix_text(page.extract_text())
|
302
299
|
|
303
300
|
|
304
|
-
class HaystackPDFParser(DocumentParser):
|
305
|
-
"""
|
306
|
-
Parser for processing PDFs using the `haystack` library.
|
307
|
-
"""
|
308
|
-
|
309
|
-
def get_doc_chunks(self) -> List[Document]:
|
310
|
-
"""
|
311
|
-
Overrides the base class method to use the `haystack` library.
|
312
|
-
See there for more details.
|
313
|
-
"""
|
314
|
-
|
315
|
-
from haystack.nodes import PDFToTextConverter, PreProcessor
|
316
|
-
|
317
|
-
converter = PDFToTextConverter(
|
318
|
-
remove_numeric_tables=True,
|
319
|
-
)
|
320
|
-
path = self.source
|
321
|
-
if path.startswith(("http://", "https://")):
|
322
|
-
path = url_to_tempfile(path)
|
323
|
-
doc = converter.convert(file_path=path, meta=None)
|
324
|
-
# note self.config.chunk_size is in token units,
|
325
|
-
# and we use an approximation of 75 words per 100 tokens
|
326
|
-
# to convert to word units
|
327
|
-
preprocessor = PreProcessor(
|
328
|
-
clean_empty_lines=True,
|
329
|
-
clean_whitespace=True,
|
330
|
-
clean_header_footer=False,
|
331
|
-
split_by="word",
|
332
|
-
split_length=int(0.75 * self.config.chunk_size),
|
333
|
-
split_overlap=int(0.75 * self.config.overlap),
|
334
|
-
split_respect_sentence_boundary=True,
|
335
|
-
add_page_number=True,
|
336
|
-
)
|
337
|
-
chunks = preprocessor.process(doc)
|
338
|
-
return [
|
339
|
-
Document(
|
340
|
-
content=chunk.content,
|
341
|
-
metadata=DocMetaData(
|
342
|
-
source=f"{self.source} page {chunk.meta['page']}",
|
343
|
-
is_chunk=True,
|
344
|
-
),
|
345
|
-
)
|
346
|
-
for chunk in chunks
|
347
|
-
]
|
348
|
-
|
349
|
-
|
350
301
|
class UnstructuredPDFParser(DocumentParser):
|
351
302
|
"""
|
352
303
|
Parser for processing PDF files using the `unstructured` library.
|
353
304
|
"""
|
354
305
|
|
355
306
|
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
|
356
|
-
|
307
|
+
try:
|
308
|
+
from unstructured.partition.pdf import partition_pdf
|
309
|
+
except ImportError:
|
310
|
+
raise ImportError(
|
311
|
+
"""
|
312
|
+
The `unstructured` library is not installed by default with langroid.
|
313
|
+
To include this library, please install langroid with the
|
314
|
+
`unstructured` extra by running `pip install "langroid[unstructured]"`
|
315
|
+
or equivalent.
|
316
|
+
"""
|
317
|
+
)
|
357
318
|
|
358
319
|
# from unstructured.chunking.title import chunk_by_title
|
359
320
|
|
@@ -367,7 +328,7 @@ class UnstructuredPDFParser(DocumentParser):
|
|
367
328
|
Please try a different library by setting the `library` field
|
368
329
|
in the `pdf` section of the `parsing` field in the config file.
|
369
330
|
Supported libraries are:
|
370
|
-
fitz, pypdf, pdfplumber, unstructured
|
331
|
+
fitz, pypdf, pdfplumber, unstructured
|
371
332
|
"""
|
372
333
|
)
|
373
334
|
|
@@ -406,7 +367,17 @@ class UnstructuredDocxParser(DocumentParser):
|
|
406
367
|
"""
|
407
368
|
|
408
369
|
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
|
409
|
-
|
370
|
+
try:
|
371
|
+
from unstructured.partition.docx import partition_docx
|
372
|
+
except ImportError:
|
373
|
+
raise ImportError(
|
374
|
+
"""
|
375
|
+
The `unstructured` library is not installed by default with langroid.
|
376
|
+
To include this library, please install langroid with the
|
377
|
+
`unstructured` extra by running `pip install "langroid[unstructured]"`
|
378
|
+
or equivalent.
|
379
|
+
"""
|
380
|
+
)
|
410
381
|
|
411
382
|
elements = partition_docx(file=self.doc_bytes, include_page_breaks=True)
|
412
383
|
|
@@ -447,7 +418,17 @@ class UnstructuredDocxParser(DocumentParser):
|
|
447
418
|
|
448
419
|
class UnstructuredDocParser(UnstructuredDocxParser):
|
449
420
|
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
|
450
|
-
|
421
|
+
try:
|
422
|
+
from unstructured.partition.doc import partition_doc
|
423
|
+
except ImportError:
|
424
|
+
raise ImportError(
|
425
|
+
"""
|
426
|
+
The `unstructured` library is not installed by default with langroid.
|
427
|
+
To include this library, please install langroid with the
|
428
|
+
`unstructured` extra by running `pip install "langroid[unstructured]"`
|
429
|
+
or equivalent.
|
430
|
+
"""
|
431
|
+
)
|
451
432
|
|
452
433
|
elements = partition_doc(filename=self.source, include_page_breaks=True)
|
453
434
|
|
langroid/parsing/json.py
CHANGED
@@ -79,6 +79,26 @@ def replace_undefined(s: str, undefined_placeholder: str = '"<undefined>"') -> s
|
|
79
79
|
return s
|
80
80
|
|
81
81
|
|
82
|
+
def repair_newlines(s: str) -> str:
|
83
|
+
"""
|
84
|
+
Attempt to load as json, and if it fails, try with newlines replaced by space.
|
85
|
+
Intended to handle cases where weak LLMs produce JSON-like strings where
|
86
|
+
some string-values contain explicit newlines, e.g.:
|
87
|
+
{"text": "This is a text\n with a newline"}
|
88
|
+
These would not be valid JSON, so we try to clean them up here.
|
89
|
+
"""
|
90
|
+
try:
|
91
|
+
json.loads(s)
|
92
|
+
return s
|
93
|
+
except Exception:
|
94
|
+
try:
|
95
|
+
s = s.replace("\n", " ")
|
96
|
+
json.loads(s)
|
97
|
+
return s
|
98
|
+
except Exception:
|
99
|
+
return s
|
100
|
+
|
101
|
+
|
82
102
|
def extract_top_level_json(s: str) -> List[str]:
|
83
103
|
"""Extract all top-level JSON-formatted substrings from a given string.
|
84
104
|
|
@@ -96,6 +116,7 @@ def extract_top_level_json(s: str) -> List[str]:
|
|
96
116
|
for candidate in json_candidates
|
97
117
|
]
|
98
118
|
candidates = [replace_undefined(candidate) for candidate in normalized_candidates]
|
119
|
+
candidates = [repair_newlines(candidate) for candidate in candidates]
|
99
120
|
top_level_jsons = [
|
100
121
|
candidate for candidate in candidates if is_valid_json(candidate)
|
101
122
|
]
|
langroid/parsing/parser.py
CHANGED
@@ -19,9 +19,7 @@ class Splitter(str, Enum):
|
|
19
19
|
|
20
20
|
|
21
21
|
class PdfParsingConfig(BaseSettings):
|
22
|
-
library: Literal[
|
23
|
-
"fitz", "pdfplumber", "pypdf", "unstructured", "haystack"
|
24
|
-
] = "pdfplumber"
|
22
|
+
library: Literal["fitz", "pdfplumber", "pypdf", "unstructured"] = "pdfplumber"
|
25
23
|
|
26
24
|
|
27
25
|
class DocxParsingConfig(BaseSettings):
|
@@ -141,10 +141,16 @@ class ChromaDB(VectorStore):
|
|
141
141
|
return self._docs_from_results(results)
|
142
142
|
|
143
143
|
def get_documents_by_ids(self, ids: List[str]) -> List[Document]:
|
144
|
-
|
145
|
-
|
146
|
-
results
|
147
|
-
|
144
|
+
# get them one by one since chroma mangles the order of the results
|
145
|
+
# when fetched from a list of ids.
|
146
|
+
results = [
|
147
|
+
self.collection.get(ids=[id], include=["documents", "metadatas"])
|
148
|
+
for id in ids
|
149
|
+
]
|
150
|
+
final_results = {}
|
151
|
+
final_results["documents"] = [[r["documents"][0] for r in results]]
|
152
|
+
final_results["metadatas"] = [[r["metadatas"][0] for r in results]]
|
153
|
+
return self._docs_from_results(final_results)
|
148
154
|
|
149
155
|
def delete_collection(self, collection_name: str) -> None:
|
150
156
|
self.client.delete_collection(name=collection_name)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: langroid
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.198
|
4
4
|
Summary: Harness LLMs with Multi-Agent Programming
|
5
5
|
License: MIT
|
6
6
|
Author: Prasad Chalasani
|
@@ -18,20 +18,21 @@ Provides-Extra: mysql
|
|
18
18
|
Provides-Extra: neo4j
|
19
19
|
Provides-Extra: postgres
|
20
20
|
Provides-Extra: sciphi
|
21
|
+
Provides-Extra: transformers
|
22
|
+
Provides-Extra: unstructured
|
21
23
|
Requires-Dist: agent-search (>=0.0.7,<0.0.8) ; extra == "sciphi"
|
22
24
|
Requires-Dist: aiohttp (>=3.9.1,<4.0.0)
|
23
25
|
Requires-Dist: async-generator (>=1.10,<2.0)
|
24
26
|
Requires-Dist: autopep8 (>=2.0.2,<3.0.0)
|
25
27
|
Requires-Dist: black[jupyter] (>=23.3.0,<24.0.0)
|
26
28
|
Requires-Dist: bs4 (>=0.0.1,<0.0.2)
|
27
|
-
Requires-Dist: chainlit (>=1.0.
|
28
|
-
Requires-Dist: chromadb (
|
29
|
+
Requires-Dist: chainlit (>=1.0.301,<2.0.0) ; extra == "chainlit"
|
30
|
+
Requires-Dist: chromadb (>=0.4.21,<=0.4.23)
|
29
31
|
Requires-Dist: colorlog (>=6.7.0,<7.0.0)
|
30
32
|
Requires-Dist: docstring-parser (>=0.15,<0.16)
|
31
33
|
Requires-Dist: duckduckgo-search (>=4.4,<5.0)
|
32
34
|
Requires-Dist: faker (>=18.9.0,<19.0.0)
|
33
35
|
Requires-Dist: fakeredis (>=2.12.1,<3.0.0)
|
34
|
-
Requires-Dist: farm-haystack[file-conversion,ocr,pdf,preprocessing] (>=1.21.1,<2.0.0)
|
35
36
|
Requires-Dist: fire (>=0.5.0,<0.6.0)
|
36
37
|
Requires-Dist: flake8 (>=6.0.0,<7.0.0)
|
37
38
|
Requires-Dist: google-api-python-client (>=2.95.0,<3.0.0)
|
@@ -95,7 +96,7 @@ Requires-Dist: trafilatura (>=1.5.0,<2.0.0)
|
|
95
96
|
Requires-Dist: typer (>=0.9.0,<0.10.0)
|
96
97
|
Requires-Dist: types-redis (>=4.5.5.2,<5.0.0.0)
|
97
98
|
Requires-Dist: types-requests (>=2.31.0.1,<3.0.0.0)
|
98
|
-
Requires-Dist: unstructured[docx,pdf,pptx] (>=0.10.16,<0.10.18)
|
99
|
+
Requires-Dist: unstructured[docx,pdf,pptx] (>=0.10.16,<0.10.18) ; extra == "unstructured"
|
99
100
|
Requires-Dist: wget (>=3.2,<4.0)
|
100
101
|
Description-Content-Type: text/markdown
|
101
102
|
|
@@ -10,7 +10,7 @@ langroid/agent/helpers.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
langroid/agent/junk,sha256=LxfuuW7Cijsg0szAzT81OjWWv1PMNI-6w_-DspVIO2s,339
|
11
11
|
langroid/agent/openai_assistant.py,sha256=yBtxis64XOnxtJzlkwUoTm-wCyvKr4DGo9-laXYMok0,32654
|
12
12
|
langroid/agent/special/__init__.py,sha256=xj4TvQ_oQX_xYPySbhmQAi2CPhuy_3yQPqqwzb4wsc0,943
|
13
|
-
langroid/agent/special/doc_chat_agent.py,sha256=
|
13
|
+
langroid/agent/special/doc_chat_agent.py,sha256=YRKhA_je3Tze1kpjqiOPBliopFw6Gea4ARlww4RmzM8,48982
|
14
14
|
langroid/agent/special/lance_doc_chat_agent.py,sha256=pAIJchnBOVZnd2fxTteF0KSyZHMzTLKDj8vziTRuUUk,10184
|
15
15
|
langroid/agent/special/lance_rag/__init__.py,sha256=-pq--upe-8vycYoTwxoomBnuUqrcRFUukmW3uBL1cFM,219
|
16
16
|
langroid/agent/special/lance_rag/critic_agent.py,sha256=9izW4keCxVZEqrFOgyVUHD7N1vTXLkRynXYYd1Vpwzw,5785
|
@@ -33,7 +33,7 @@ langroid/agent/special/sql/utils/system_message.py,sha256=qKLHkvQWRQodTtPLPxr1GS
|
|
33
33
|
langroid/agent/special/sql/utils/tools.py,sha256=6uB2424SLtmapui9ggcEr0ZTiB6_dL1-JRGgN8RK9Js,1332
|
34
34
|
langroid/agent/special/table_chat_agent.py,sha256=GEUTP-VdtMXq4CcPV80gDQrCEn-ZFb9IhuRMtLN5I1o,9030
|
35
35
|
langroid/agent/task.py,sha256=BxMGmwH0ZYbU5lylfQtU9qLMd9D9Qd6qqO1U2V_B0WM,49705
|
36
|
-
langroid/agent/tool_message.py,sha256=
|
36
|
+
langroid/agent/tool_message.py,sha256=2kPsQUwi3ZzINTUNj10huKnZLjLp5SXmefacTHx8QDc,8304
|
37
37
|
langroid/agent/tools/__init__.py,sha256=q-maq3k2BXhPAU99G0H6-j_ozoRvx15I1RFpPVicQIU,304
|
38
38
|
langroid/agent/tools/duckduckgo_search_tool.py,sha256=lgBFIPGdEffyxFuP6NUqRVBXyqypqHHSQBf-06xWsZE,2460
|
39
39
|
langroid/agent/tools/extract_tool.py,sha256=u5lL9rKBzaLBOrRyLnTAZ97pQ1uxyLP39XsWMnpaZpw,3789
|
@@ -52,7 +52,7 @@ langroid/cachedb/redis_cachedb.py,sha256=uEjxephnxaL8OqPGDYZnM__fpcTsLb0WTNS_AFi
|
|
52
52
|
langroid/embedding_models/__init__.py,sha256=6wCH_UTl0EVzEMq6L4nqCkAkoc3xr46vR6CLjvAUnEI,410
|
53
53
|
langroid/embedding_models/base.py,sha256=XJ1UZuafbfImxxP6-M2zE2_lMxi-nJWWwjA9X8leOiI,1553
|
54
54
|
langroid/embedding_models/clustering.py,sha256=tZWElUqXl9Etqla0FAa7og96iDKgjqWjucZR_Egtp-A,6684
|
55
|
-
langroid/embedding_models/models.py,sha256=
|
55
|
+
langroid/embedding_models/models.py,sha256=zQTOHmhd9b_fitWWi-erndkf2k2LFaGz46G6AZVxryo,5970
|
56
56
|
langroid/language_models/__init__.py,sha256=5L9ndEEC8iLJHjDJmYFTnv6-2-3xsxWUMHcugR8IeDs,821
|
57
57
|
langroid/language_models/azure_openai.py,sha256=ncRCbKooqLVOY-PWQUIo9C3yTuKEFbAwyngXT_M4P7k,5989
|
58
58
|
langroid/language_models/base.py,sha256=oZskZ9oT-_4kEk1M2515jQ4VOpf31M8NFvPr5knDTEU,21008
|
@@ -61,7 +61,7 @@ langroid/language_models/openai_assistants.py,sha256=9K-DEAL2aSWHeXj2hwCo2RAlK9_
|
|
61
61
|
langroid/language_models/openai_gpt.py,sha256=W2Cxj13qScqnfJCHvZJIqDM9YMNOFAFhnsIuBcnmDac,49327
|
62
62
|
langroid/language_models/prompt_formatter/__init__.py,sha256=9JXFF22QNMmbQV1q4nrIeQVTtA3Tx8tEZABLtLBdFyc,352
|
63
63
|
langroid/language_models/prompt_formatter/base.py,sha256=eDS1sgRNZVnoajwV_ZIha6cba5Dt8xjgzdRbPITwx3Q,1221
|
64
|
-
langroid/language_models/prompt_formatter/hf_formatter.py,sha256=
|
64
|
+
langroid/language_models/prompt_formatter/hf_formatter.py,sha256=PS8w6K7ON5ANw0rU8KDrCtSqf2klxbR7plLKP1M4iXY,5057
|
65
65
|
langroid/language_models/prompt_formatter/llama2_formatter.py,sha256=YdcO88qyBeuMENVIVvVqSYuEpvYSTndUe_jd6hVTko4,2899
|
66
66
|
langroid/language_models/utils.py,sha256=J1Y1HoYPkwS7L-kuLRAGzjcseqAj_S8u_MaaqlOA9uk,4265
|
67
67
|
langroid/mytypes.py,sha256=opL488mtHKob1uJeK_h1-kNjU5GZwkgCfXhBQCsONWU,2614
|
@@ -70,10 +70,10 @@ langroid/parsing/agent_chats.py,sha256=sbZRV9ujdM5QXvvuHVjIi2ysYSYlap-uqfMMUKulr
|
|
70
70
|
langroid/parsing/code-parsing.md,sha256=--cyyNiSZSDlIwcjAV4-shKrSiRe2ytF3AdSoS_hD2g,3294
|
71
71
|
langroid/parsing/code_parser.py,sha256=BbDAzp35wkYQ9U1dpf1ARL0lVyi0tfqEc6_eox2C090,3727
|
72
72
|
langroid/parsing/config.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
73
|
-
langroid/parsing/document_parser.py,sha256=
|
74
|
-
langroid/parsing/json.py,sha256=
|
73
|
+
langroid/parsing/document_parser.py,sha256=4SmvB24P7S_bYxBI6o6uN2cfNc5o61--mPOjn30ZiOA,16228
|
74
|
+
langroid/parsing/json.py,sha256=1N2O5l4_8NzkZRwhm4axIDnUAXl0-9QQCpQD2vXlPA0,4533
|
75
75
|
langroid/parsing/para_sentence_split.py,sha256=AJBzZojP3zpB-_IMiiHismhqcvkrVBQ3ZINoQyx_bE4,2000
|
76
|
-
langroid/parsing/parser.py,sha256=
|
76
|
+
langroid/parsing/parser.py,sha256=w7MAbj27X7SLkzuxx2nvwjLdxKTmSnmdth9_j3INnac,10487
|
77
77
|
langroid/parsing/repo_loader.py,sha256=52jTajXOkq_66NCRKLMNQoGKMJ59H-m2CZB9arMT7Wo,29346
|
78
78
|
langroid/parsing/search.py,sha256=xmQdAdTIwZ0REEUeQVFlGZlqf7k8Poah7-ALuyW7Ov0,8440
|
79
79
|
langroid/parsing/spider.py,sha256=w_mHR1B4KOmxsBLoVI8kMkMTEbwTzeK3ath9fOMJrTk,3043
|
@@ -109,13 +109,13 @@ langroid/utils/web/login.py,sha256=1iz9eUAHa87vpKIkzwkmFa00avwFWivDSAr7QUhK7U0,2
|
|
109
109
|
langroid/utils/web/selenium_login.py,sha256=mYI6EvVmne34N9RajlsxxRqJQJvV-WG4LGp6sEECHPw,1156
|
110
110
|
langroid/vector_store/__init__.py,sha256=qOa3_BLvf8tjdUBT4Zq7pSLTY9TD2Fgw62UHHJWNu8w,557
|
111
111
|
langroid/vector_store/base.py,sha256=JNk-2f6t_WCavizU332tOoZcXHP73RpobRk88Aus52w,13706
|
112
|
-
langroid/vector_store/chromadb.py,sha256=
|
112
|
+
langroid/vector_store/chromadb.py,sha256=fPD0OwPBSSUgZaQQcQjApeUCOaw17eW0MQ7XzVNmz9k,7559
|
113
113
|
langroid/vector_store/lancedb.py,sha256=Vl0nWKqFyczgPRmWXLzof9UgOB0OhVZIuczY_rSAF10,17985
|
114
114
|
langroid/vector_store/meilisearch.py,sha256=d2huA9P-NoYRuAQ9ZeXJmMKr7ry8u90RUSR28k2ecQg,11340
|
115
115
|
langroid/vector_store/momento.py,sha256=j6Eo6oIDN2fe7lsBOlCXJn3uvvERHHTFL5QJfeREeOM,10044
|
116
116
|
langroid/vector_store/qdrant_cloud.py,sha256=3im4Mip0QXLkR6wiqVsjV1QvhSElfxdFSuDKddBDQ-4,188
|
117
117
|
langroid/vector_store/qdrantdb.py,sha256=_egbsP9SWBwmI827EDYSSOqfIQSmwNsmJfFTxrLpWYE,13457
|
118
|
-
langroid-0.1.
|
119
|
-
langroid-0.1.
|
120
|
-
langroid-0.1.
|
121
|
-
langroid-0.1.
|
118
|
+
langroid-0.1.198.dist-info/LICENSE,sha256=EgVbvA6VSYgUlvC3RvPKehSg7MFaxWDsFuzLOsPPfJg,1065
|
119
|
+
langroid-0.1.198.dist-info/METADATA,sha256=WDlQMgWoIG02-PK5mk2GGeDXelCoqaGD9qLcjak7MCQ,45883
|
120
|
+
langroid-0.1.198.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
121
|
+
langroid-0.1.198.dist-info/RECORD,,
|
File without changes
|
File without changes
|