langfun 0.1.2.dev202510230805__py3-none-any.whl → 0.1.2.dev202511160804__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langfun might be problematic. Click here for more details.
- langfun/core/__init__.py +1 -0
- langfun/core/agentic/action.py +107 -12
- langfun/core/agentic/action_eval.py +9 -2
- langfun/core/agentic/action_test.py +25 -0
- langfun/core/async_support.py +32 -3
- langfun/core/coding/python/correction.py +19 -9
- langfun/core/coding/python/execution.py +14 -12
- langfun/core/coding/python/generation.py +21 -16
- langfun/core/coding/python/sandboxing.py +23 -3
- langfun/core/component.py +42 -3
- langfun/core/concurrent.py +70 -6
- langfun/core/concurrent_test.py +1 -0
- langfun/core/console.py +1 -1
- langfun/core/data/conversion/anthropic.py +12 -3
- langfun/core/data/conversion/anthropic_test.py +8 -6
- langfun/core/data/conversion/gemini.py +9 -2
- langfun/core/data/conversion/gemini_test.py +12 -9
- langfun/core/data/conversion/openai.py +145 -31
- langfun/core/data/conversion/openai_test.py +161 -17
- langfun/core/eval/base.py +47 -43
- langfun/core/eval/base_test.py +4 -4
- langfun/core/eval/matching.py +5 -2
- langfun/core/eval/patching.py +3 -3
- langfun/core/eval/scoring.py +4 -3
- langfun/core/eval/v2/__init__.py +1 -0
- langfun/core/eval/v2/checkpointing.py +39 -5
- langfun/core/eval/v2/checkpointing_test.py +1 -1
- langfun/core/eval/v2/eval_test_helper.py +96 -0
- langfun/core/eval/v2/evaluation.py +87 -15
- langfun/core/eval/v2/evaluation_test.py +9 -3
- langfun/core/eval/v2/example.py +45 -39
- langfun/core/eval/v2/example_test.py +3 -3
- langfun/core/eval/v2/experiment.py +51 -8
- langfun/core/eval/v2/metric_values.py +31 -3
- langfun/core/eval/v2/metric_values_test.py +32 -0
- langfun/core/eval/v2/metrics.py +157 -44
- langfun/core/eval/v2/metrics_test.py +39 -18
- langfun/core/eval/v2/progress.py +30 -1
- langfun/core/eval/v2/progress_test.py +27 -0
- langfun/core/eval/v2/progress_tracking_test.py +3 -0
- langfun/core/eval/v2/reporting.py +90 -71
- langfun/core/eval/v2/reporting_test.py +20 -6
- langfun/core/eval/v2/runners/__init__.py +26 -0
- langfun/core/eval/v2/{runners.py → runners/base.py} +22 -124
- langfun/core/eval/v2/runners/debug.py +40 -0
- langfun/core/eval/v2/runners/debug_test.py +79 -0
- langfun/core/eval/v2/runners/parallel.py +100 -0
- langfun/core/eval/v2/runners/parallel_test.py +98 -0
- langfun/core/eval/v2/runners/sequential.py +47 -0
- langfun/core/eval/v2/runners/sequential_test.py +175 -0
- langfun/core/langfunc.py +45 -130
- langfun/core/langfunc_test.py +6 -4
- langfun/core/language_model.py +103 -16
- langfun/core/language_model_test.py +9 -3
- langfun/core/llms/__init__.py +7 -1
- langfun/core/llms/anthropic.py +157 -2
- langfun/core/llms/azure_openai.py +29 -17
- langfun/core/llms/cache/base.py +25 -3
- langfun/core/llms/cache/in_memory.py +48 -7
- langfun/core/llms/cache/in_memory_test.py +14 -4
- langfun/core/llms/compositional.py +25 -1
- langfun/core/llms/deepseek.py +30 -2
- langfun/core/llms/fake.py +32 -1
- langfun/core/llms/gemini.py +14 -9
- langfun/core/llms/google_genai.py +29 -1
- langfun/core/llms/groq.py +28 -3
- langfun/core/llms/llama_cpp.py +23 -4
- langfun/core/llms/openai.py +36 -3
- langfun/core/llms/openai_compatible.py +148 -27
- langfun/core/llms/openai_compatible_test.py +207 -20
- langfun/core/llms/openai_test.py +0 -2
- langfun/core/llms/rest.py +12 -1
- langfun/core/llms/vertexai.py +51 -8
- langfun/core/logging.py +1 -1
- langfun/core/mcp/client.py +77 -22
- langfun/core/mcp/client_test.py +8 -35
- langfun/core/mcp/session.py +94 -29
- langfun/core/mcp/session_test.py +54 -0
- langfun/core/mcp/tool.py +151 -22
- langfun/core/mcp/tool_test.py +197 -0
- langfun/core/memory.py +1 -0
- langfun/core/message.py +160 -55
- langfun/core/message_test.py +65 -81
- langfun/core/modalities/__init__.py +8 -0
- langfun/core/modalities/audio.py +21 -1
- langfun/core/modalities/image.py +19 -1
- langfun/core/modalities/mime.py +62 -3
- langfun/core/modalities/pdf.py +19 -1
- langfun/core/modalities/video.py +21 -1
- langfun/core/modality.py +167 -29
- langfun/core/modality_test.py +42 -12
- langfun/core/natural_language.py +1 -1
- langfun/core/sampling.py +4 -4
- langfun/core/sampling_test.py +20 -4
- langfun/core/structured/__init__.py +2 -24
- langfun/core/structured/completion.py +34 -44
- langfun/core/structured/completion_test.py +23 -43
- langfun/core/structured/description.py +54 -50
- langfun/core/structured/function_generation.py +29 -12
- langfun/core/structured/mapping.py +81 -37
- langfun/core/structured/parsing.py +95 -79
- langfun/core/structured/parsing_test.py +0 -3
- langfun/core/structured/querying.py +215 -142
- langfun/core/structured/querying_test.py +65 -29
- langfun/core/structured/schema/__init__.py +48 -0
- langfun/core/structured/schema/base.py +664 -0
- langfun/core/structured/schema/base_test.py +531 -0
- langfun/core/structured/schema/json.py +174 -0
- langfun/core/structured/schema/json_test.py +121 -0
- langfun/core/structured/schema/python.py +316 -0
- langfun/core/structured/schema/python_test.py +410 -0
- langfun/core/structured/schema_generation.py +33 -14
- langfun/core/structured/scoring.py +47 -36
- langfun/core/structured/tokenization.py +26 -11
- langfun/core/subscription.py +2 -2
- langfun/core/template.py +174 -49
- langfun/core/template_test.py +123 -17
- langfun/env/__init__.py +8 -2
- langfun/env/base_environment.py +320 -128
- langfun/env/base_environment_test.py +473 -0
- langfun/env/base_feature.py +92 -15
- langfun/env/base_feature_test.py +228 -0
- langfun/env/base_sandbox.py +84 -361
- langfun/env/base_sandbox_test.py +1235 -0
- langfun/env/event_handlers/__init__.py +1 -1
- langfun/env/event_handlers/chain.py +233 -0
- langfun/env/event_handlers/chain_test.py +253 -0
- langfun/env/event_handlers/event_logger.py +95 -98
- langfun/env/event_handlers/event_logger_test.py +21 -21
- langfun/env/event_handlers/metric_writer.py +225 -140
- langfun/env/event_handlers/metric_writer_test.py +23 -6
- langfun/env/interface.py +854 -40
- langfun/env/interface_test.py +112 -2
- langfun/env/load_balancers_test.py +23 -2
- langfun/env/test_utils.py +126 -84
- {langfun-0.1.2.dev202510230805.dist-info → langfun-0.1.2.dev202511160804.dist-info}/METADATA +1 -1
- langfun-0.1.2.dev202511160804.dist-info/RECORD +211 -0
- langfun/core/eval/v2/runners_test.py +0 -343
- langfun/core/structured/schema.py +0 -987
- langfun/core/structured/schema_test.py +0 -982
- langfun/env/base_test.py +0 -1481
- langfun/env/event_handlers/base.py +0 -350
- langfun-0.1.2.dev202510230805.dist-info/RECORD +0 -195
- {langfun-0.1.2.dev202510230805.dist-info → langfun-0.1.2.dev202511160804.dist-info}/WHEEL +0 -0
- {langfun-0.1.2.dev202510230805.dist-info → langfun-0.1.2.dev202511160804.dist-info}/licenses/LICENSE +0 -0
- {langfun-0.1.2.dev202510230805.dist-info → langfun-0.1.2.dev202511160804.dist-info}/top_level.txt +0 -0
langfun/core/language_model.py
CHANGED
|
@@ -478,7 +478,7 @@ class UsageNotAvailable(LMSamplingUsage):
|
|
|
478
478
|
|
|
479
479
|
|
|
480
480
|
class LMSamplingResult(pg.Object):
|
|
481
|
-
"""
|
|
481
|
+
"""The result from a language model sampling."""
|
|
482
482
|
|
|
483
483
|
samples: Annotated[
|
|
484
484
|
list[LMSample],
|
|
@@ -584,6 +584,15 @@ class LMSamplingOptions(component.Component):
|
|
|
584
584
|
),
|
|
585
585
|
] = None
|
|
586
586
|
|
|
587
|
+
extras: Annotated[
|
|
588
|
+
dict[str, Any],
|
|
589
|
+
(
|
|
590
|
+
'Extra arguments (e.g. configuration for tool calls) to pass to '
|
|
591
|
+
'the model. This is model-specific, please check model '
|
|
592
|
+
'implementation to see how to use this.'
|
|
593
|
+
),
|
|
594
|
+
] = {}
|
|
595
|
+
|
|
587
596
|
def cache_key(self) -> tuple[Any, ...]:
|
|
588
597
|
"""Returns a tuple of current values as cache key."""
|
|
589
598
|
return (
|
|
@@ -672,13 +681,91 @@ class LMDebugMode(enum.IntFlag):
|
|
|
672
681
|
|
|
673
682
|
|
|
674
683
|
class LanguageModel(component.Component):
|
|
675
|
-
"""Interface
|
|
676
|
-
|
|
677
|
-
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
|
|
684
|
+
"""Interface for language model.
|
|
685
|
+
|
|
686
|
+
`lf.LanguageModel` is the cornerstone of Langfun, providing a consistent
|
|
687
|
+
interface for interacting with various language models, such as those from
|
|
688
|
+
Google, OpenAI, Anthropic, and more. It abstracts away provider-specific
|
|
689
|
+
details, allowing users to switch between models seamlessly.
|
|
690
|
+
|
|
691
|
+
All language models in Langfun can be accessed via `lf.llms`. For example,
|
|
692
|
+
`lf.llms.Gpt4()` creates an instance for OpenAI's GPT-4, and
|
|
693
|
+
`lf.llms.GeminiPro()` creates an instance for Google's Gemini Pro.
|
|
694
|
+
|
|
695
|
+
**Key Features:**
|
|
696
|
+
|
|
697
|
+
* **Unified API**: Provides `sample`, `score`, and `tokenize` methods
|
|
698
|
+
across all supported models.
|
|
699
|
+
* **Sampling**: The `__call__` method and `sample` method allow generating
|
|
700
|
+
text completions or chat responses.
|
|
701
|
+
* **Scoring**: The `score` method computes the likelihood of completions
|
|
702
|
+
given a prompt.
|
|
703
|
+
* **Tokenization**: The `tokenize` method breaks text into tokens
|
|
704
|
+
according to the model's tokenizer.
|
|
705
|
+
* **Caching**: Built-in support for caching LLM requests to save cost and
|
|
706
|
+
time via the `cache` attribute.
|
|
707
|
+
* **Concurrency**: Manages concurrency to respect API rate limits via
|
|
708
|
+
`max_concurrency`.
|
|
709
|
+
* **Retries**: Automatic retries with exponential backoff for transient
|
|
710
|
+
errors via `max_attempts` and `retry_interval`.
|
|
711
|
+
|
|
712
|
+
**1. Creating a Language Model:**
|
|
713
|
+
You can create a language model by instantiating its class or by using
|
|
714
|
+
`lf.LanguageModel.get`:
|
|
715
|
+
|
|
716
|
+
```python
|
|
717
|
+
# Direct instantiation
|
|
718
|
+
gpt4 = lf.llms.Gpt4()
|
|
719
|
+
gemini = lf.llms.GeminiPro()
|
|
720
|
+
|
|
721
|
+
# Creation via lf.LanguageModel.get()
|
|
722
|
+
gpt4 = lf.LanguageModel.get('gpt-4')
|
|
723
|
+
```
|
|
724
|
+
|
|
725
|
+
**2. Customizing Sampling Options:**
|
|
726
|
+
Sampling options like `temperature`, `max_tokens`, etc., can be customized
|
|
727
|
+
at model creation, or overridden at call time or via `lf.context`.
|
|
728
|
+
|
|
729
|
+
```python
|
|
730
|
+
# Set temperature to 0 at model creation
|
|
731
|
+
lm = lf.llms.Gpt4(temperature=0.0)
|
|
732
|
+
|
|
733
|
+
# Override temperature to 0.5 for a single call
|
|
734
|
+
response = lm('1 + 1 =', temperature=0.5)
|
|
735
|
+
|
|
736
|
+
# Override temperature to 1.0 using lf.context
|
|
737
|
+
with lf.context(temperature=1.0):
|
|
738
|
+
response = lm('1 + 1 =')
|
|
739
|
+
```
|
|
740
|
+
|
|
741
|
+
**3. Sampling:**
|
|
742
|
+
Use `lm()`, `lm.sample()`, or `lf.query()` to generate text:
|
|
743
|
+
|
|
744
|
+
```python
|
|
745
|
+
lm = lf.llms.Gpt4()
|
|
746
|
+
response = lm('1 + 1 =')
|
|
747
|
+
print(response.text)
|
|
748
|
+
# Output: 2
|
|
749
|
+
```
|
|
750
|
+
|
|
751
|
+
**4. Scoring:**
|
|
752
|
+
Use `lm.score()` to score completions:
|
|
753
|
+
|
|
754
|
+
```python
|
|
755
|
+
lm = lf.llms.Gpt4()
|
|
756
|
+
results = lm.score('Weather in SF is', completions=['sunny', 'cloudy'])
|
|
757
|
+
print(results[0].score)
|
|
758
|
+
# Output: -1.0
|
|
759
|
+
```
|
|
760
|
+
|
|
761
|
+
**5. Tokenization:**
|
|
762
|
+
Use `lm.tokenize()` to get tokens:
|
|
763
|
+
```python
|
|
764
|
+
lm = lf.llms.Gpt4()
|
|
765
|
+
tokens = lm.tokenize('hello world')
|
|
766
|
+
print(tokens)
|
|
767
|
+
# Output: [('hello', 15339), (' world', 1917)]
|
|
768
|
+
```
|
|
682
769
|
"""
|
|
683
770
|
|
|
684
771
|
sampling_options: LMSamplingOptions = LMSamplingOptions()
|
|
@@ -1244,11 +1331,11 @@ class LanguageModel(component.Component):
|
|
|
1244
1331
|
title=f'\n[{call_counter}] PROMPT SENT TO LM{title_suffix}:',
|
|
1245
1332
|
color='green',
|
|
1246
1333
|
)
|
|
1247
|
-
|
|
1248
|
-
if referred_modalities:
|
|
1334
|
+
if prompt.referred_modalities:
|
|
1249
1335
|
console.write(
|
|
1250
1336
|
pg.object_utils.kvlist_str(
|
|
1251
|
-
[(k, repr(v), None)
|
|
1337
|
+
[(k, repr(v), None)
|
|
1338
|
+
for k, v in prompt.referred_modalities.items()]
|
|
1252
1339
|
),
|
|
1253
1340
|
title=f'\n[{call_counter}] MODALITY OBJECTS SENT TO LM:',
|
|
1254
1341
|
color='green',
|
|
@@ -1334,9 +1421,9 @@ class LanguageModel(component.Component):
|
|
|
1334
1421
|
color='green',
|
|
1335
1422
|
)
|
|
1336
1423
|
if isinstance(prompt, list):
|
|
1337
|
-
referred_modalities_lst = [p.referred_modalities
|
|
1424
|
+
referred_modalities_lst = [p.referred_modalities for p in prompt]
|
|
1338
1425
|
else:
|
|
1339
|
-
referred_modalities_lst = [prompt.referred_modalities
|
|
1426
|
+
referred_modalities_lst = [prompt.referred_modalities,]
|
|
1340
1427
|
if referred_modalities_lst:
|
|
1341
1428
|
for referred_modalities in referred_modalities_lst:
|
|
1342
1429
|
console.write(
|
|
@@ -1411,7 +1498,7 @@ class LanguageModel(component.Component):
|
|
|
1411
1498
|
title=f'\n[{call_counter}] PROMPT TO TOKENIZE:',
|
|
1412
1499
|
color='green',
|
|
1413
1500
|
)
|
|
1414
|
-
referred_modalities_lst = [prompt.referred_modalities
|
|
1501
|
+
referred_modalities_lst = [prompt.referred_modalities,]
|
|
1415
1502
|
if referred_modalities_lst:
|
|
1416
1503
|
for referred_modalities in referred_modalities_lst:
|
|
1417
1504
|
console.write(
|
|
@@ -1439,7 +1526,7 @@ class LanguageModel(component.Component):
|
|
|
1439
1526
|
max_requests_per_minute: int | None,
|
|
1440
1527
|
average_tokens_per_request: int = 250
|
|
1441
1528
|
) -> int | None:
|
|
1442
|
-
"""Estimates max concurrency
|
|
1529
|
+
"""Estimates max concurrency based on the rate limits."""
|
|
1443
1530
|
# NOTE(daiyip): max concurrency is estimated based on the rate limit.
|
|
1444
1531
|
# We assume each request has approximately 250 tokens, and each request
|
|
1445
1532
|
# takes 1 second to complete. This might not be accurate for all models.
|
|
@@ -1512,7 +1599,7 @@ class _ConcurrencyControl:
|
|
|
1512
1599
|
|
|
1513
1600
|
|
|
1514
1601
|
class UsageSummary(pg.Object, pg.views.HtmlTreeView.Extension):
|
|
1515
|
-
"""Usage
|
|
1602
|
+
"""Usage summary."""
|
|
1516
1603
|
|
|
1517
1604
|
class AggregatedUsage(pg.Object):
|
|
1518
1605
|
"""Aggregated usage."""
|
|
@@ -656,11 +656,17 @@ class LanguageModelTest(unittest.TestCase):
|
|
|
656
656
|
|
|
657
657
|
string_io = io.StringIO()
|
|
658
658
|
lm = MockModel(sampling_options=lm_lib.LMSamplingOptions(top_k=1))
|
|
659
|
+
image = Image()
|
|
659
660
|
with contextlib.redirect_stdout(string_io):
|
|
660
661
|
self.assertEqual(
|
|
661
|
-
lm(
|
|
662
|
-
|
|
663
|
-
|
|
662
|
+
lm(
|
|
663
|
+
message_lib.UserMessage(
|
|
664
|
+
f'hi <<[[{image.id}]]>>',
|
|
665
|
+
referred_modalities=[image],
|
|
666
|
+
),
|
|
667
|
+
debug=True
|
|
668
|
+
),
|
|
669
|
+
f'hi <<[[{image.id}]]>>'
|
|
664
670
|
)
|
|
665
671
|
|
|
666
672
|
debug_info = string_io.getvalue()
|
langfun/core/llms/__init__.py
CHANGED
|
@@ -30,7 +30,8 @@ from langfun.core.llms.compositional import RandomChoice
|
|
|
30
30
|
|
|
31
31
|
# Base models by request/response protocol.
|
|
32
32
|
from langfun.core.llms.rest import REST
|
|
33
|
-
from langfun.core.llms.openai_compatible import
|
|
33
|
+
from langfun.core.llms.openai_compatible import OpenAIChatCompletionAPI
|
|
34
|
+
from langfun.core.llms.openai_compatible import OpenAIResponsesAPI
|
|
34
35
|
from langfun.core.llms.gemini import Gemini
|
|
35
36
|
from langfun.core.llms.anthropic import Anthropic
|
|
36
37
|
|
|
@@ -151,6 +152,9 @@ from langfun.core.llms.openai import Gpt35
|
|
|
151
152
|
|
|
152
153
|
# Anthropic models.
|
|
153
154
|
|
|
155
|
+
from langfun.core.llms.anthropic import Claude45
|
|
156
|
+
from langfun.core.llms.anthropic import Claude45Haiku_20251001
|
|
157
|
+
from langfun.core.llms.anthropic import Claude45Sonnet_20250929
|
|
154
158
|
from langfun.core.llms.anthropic import Claude4
|
|
155
159
|
from langfun.core.llms.anthropic import Claude4Sonnet_20250514
|
|
156
160
|
from langfun.core.llms.anthropic import Claude4Opus_20250514
|
|
@@ -168,6 +172,8 @@ from langfun.core.llms.anthropic import Claude3Haiku
|
|
|
168
172
|
from langfun.core.llms.anthropic import Claude3Haiku_20240307
|
|
169
173
|
|
|
170
174
|
from langfun.core.llms.vertexai import VertexAIAnthropic
|
|
175
|
+
from langfun.core.llms.vertexai import VertexAIClaude45Haiku_20251001
|
|
176
|
+
from langfun.core.llms.vertexai import VertexAIClaude45Sonnet_20250929
|
|
171
177
|
from langfun.core.llms.vertexai import VertexAIClaude4Opus_20250514
|
|
172
178
|
from langfun.core.llms.vertexai import VertexAIClaude4Sonnet_20250514
|
|
173
179
|
from langfun.core.llms.vertexai import VertexAIClaude37Sonnet_20250219
|
langfun/core/llms/anthropic.py
CHANGED
|
@@ -59,6 +59,60 @@ class AnthropicModelInfo(lf.ModelInfo):
|
|
|
59
59
|
|
|
60
60
|
|
|
61
61
|
SUPPORTED_MODELS = [
|
|
62
|
+
AnthropicModelInfo(
|
|
63
|
+
model_id='claude-haiku-4-5-20251001',
|
|
64
|
+
provider='Anthropic',
|
|
65
|
+
in_service=True,
|
|
66
|
+
description='Claude 4.5 Haiku model (10/15/2025).',
|
|
67
|
+
release_date=datetime.datetime(2025, 10, 15),
|
|
68
|
+
input_modalities=(
|
|
69
|
+
AnthropicModelInfo.INPUT_IMAGE_TYPES
|
|
70
|
+
+ AnthropicModelInfo.INPUT_DOC_TYPES
|
|
71
|
+
),
|
|
72
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
73
|
+
max_input_tokens=200_000,
|
|
74
|
+
max_output_tokens=64_000,
|
|
75
|
+
),
|
|
76
|
+
pricing=lf.ModelInfo.Pricing(
|
|
77
|
+
cost_per_1m_cached_input_tokens=0.1,
|
|
78
|
+
cost_per_1m_input_tokens=1,
|
|
79
|
+
cost_per_1m_output_tokens=5,
|
|
80
|
+
),
|
|
81
|
+
rate_limits=AnthropicModelInfo.RateLimits(
|
|
82
|
+
# Tier 4 rate limits
|
|
83
|
+
max_requests_per_minute=4000,
|
|
84
|
+
max_input_tokens_per_minute=4_000_000,
|
|
85
|
+
max_output_tokens_per_minute=800_000,
|
|
86
|
+
),
|
|
87
|
+
),
|
|
88
|
+
AnthropicModelInfo(
|
|
89
|
+
model_id='claude-sonnet-4-5-20250929',
|
|
90
|
+
provider='Anthropic',
|
|
91
|
+
in_service=True,
|
|
92
|
+
description='Claude 4.5 Sonnet model (9/29/2025).',
|
|
93
|
+
release_date=datetime.datetime(2025, 9, 29),
|
|
94
|
+
input_modalities=(
|
|
95
|
+
AnthropicModelInfo.INPUT_IMAGE_TYPES
|
|
96
|
+
+ AnthropicModelInfo.INPUT_DOC_TYPES
|
|
97
|
+
),
|
|
98
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
99
|
+
max_input_tokens=200_000,
|
|
100
|
+
max_output_tokens=64_000,
|
|
101
|
+
),
|
|
102
|
+
pricing=lf.ModelInfo.Pricing(
|
|
103
|
+
cost_per_1m_cached_input_tokens=0.3,
|
|
104
|
+
cost_per_1m_input_tokens=3,
|
|
105
|
+
cost_per_1m_output_tokens=15,
|
|
106
|
+
),
|
|
107
|
+
rate_limits=AnthropicModelInfo.RateLimits(
|
|
108
|
+
# Tier 4 rate limits
|
|
109
|
+
# This rate limit is a total limit that applies to combined traffic
|
|
110
|
+
# across both Sonnet 4 and Sonnet 4.5.
|
|
111
|
+
max_requests_per_minute=4000,
|
|
112
|
+
max_input_tokens_per_minute=2_000_000,
|
|
113
|
+
max_output_tokens_per_minute=400_000,
|
|
114
|
+
),
|
|
115
|
+
),
|
|
62
116
|
AnthropicModelInfo(
|
|
63
117
|
model_id='claude-4-opus-20250514',
|
|
64
118
|
provider='Anthropic',
|
|
@@ -190,6 +244,62 @@ SUPPORTED_MODELS = [
|
|
|
190
244
|
max_output_tokens_per_minute=80_000,
|
|
191
245
|
),
|
|
192
246
|
),
|
|
247
|
+
AnthropicModelInfo(
|
|
248
|
+
model_id='claude-haiku-4-5@20251001',
|
|
249
|
+
alias_for='claude-haiku-4-5-20251001',
|
|
250
|
+
provider='VertexAI',
|
|
251
|
+
in_service=True,
|
|
252
|
+
description='Claude 4.5 Haiku model served on VertexAI (10/15/2025).',
|
|
253
|
+
release_date=datetime.datetime(2025, 10, 15),
|
|
254
|
+
input_modalities=(
|
|
255
|
+
AnthropicModelInfo.INPUT_IMAGE_TYPES
|
|
256
|
+
+ AnthropicModelInfo.INPUT_DOC_TYPES
|
|
257
|
+
),
|
|
258
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
259
|
+
max_input_tokens=200_000,
|
|
260
|
+
max_output_tokens=64_000,
|
|
261
|
+
),
|
|
262
|
+
pricing=lf.ModelInfo.Pricing(
|
|
263
|
+
# For global endpoint
|
|
264
|
+
cost_per_1m_cached_input_tokens=0.1,
|
|
265
|
+
cost_per_1m_input_tokens=1,
|
|
266
|
+
cost_per_1m_output_tokens=5,
|
|
267
|
+
),
|
|
268
|
+
rate_limits=AnthropicModelInfo.RateLimits(
|
|
269
|
+
# For global endpoint
|
|
270
|
+
max_requests_per_minute=2500,
|
|
271
|
+
max_input_tokens_per_minute=200_000,
|
|
272
|
+
max_output_tokens_per_minute=0,
|
|
273
|
+
),
|
|
274
|
+
),
|
|
275
|
+
AnthropicModelInfo(
|
|
276
|
+
model_id='claude-sonnet-4-5@20250929',
|
|
277
|
+
alias_for='claude-sonnet-4-5-20250929',
|
|
278
|
+
provider='VertexAI',
|
|
279
|
+
in_service=True,
|
|
280
|
+
description='Claude 4.5 Sonnet model (9/29/2025).',
|
|
281
|
+
release_date=datetime.datetime(2025, 9, 29),
|
|
282
|
+
input_modalities=(
|
|
283
|
+
AnthropicModelInfo.INPUT_IMAGE_TYPES
|
|
284
|
+
+ AnthropicModelInfo.INPUT_DOC_TYPES
|
|
285
|
+
),
|
|
286
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
287
|
+
max_input_tokens=200_000,
|
|
288
|
+
max_output_tokens=64_000,
|
|
289
|
+
),
|
|
290
|
+
pricing=lf.ModelInfo.Pricing(
|
|
291
|
+
# For global endpoint
|
|
292
|
+
cost_per_1m_cached_input_tokens=0.3,
|
|
293
|
+
cost_per_1m_input_tokens=3,
|
|
294
|
+
cost_per_1m_output_tokens=15,
|
|
295
|
+
),
|
|
296
|
+
rate_limits=AnthropicModelInfo.RateLimits(
|
|
297
|
+
# For global endpoint
|
|
298
|
+
max_requests_per_minute=1500,
|
|
299
|
+
max_input_tokens_per_minute=200_000,
|
|
300
|
+
max_output_tokens_per_minute=0,
|
|
301
|
+
),
|
|
302
|
+
),
|
|
193
303
|
AnthropicModelInfo(
|
|
194
304
|
model_id='claude-opus-4@20250514',
|
|
195
305
|
alias_for='claude-opus-4-20250514',
|
|
@@ -540,9 +650,34 @@ _SUPPORTED_MODELS_BY_MODEL_ID = {m.model_id: m for m in SUPPORTED_MODELS}
|
|
|
540
650
|
|
|
541
651
|
@lf.use_init_args(['model'])
|
|
542
652
|
class Anthropic(rest.REST):
|
|
543
|
-
"""Anthropic
|
|
653
|
+
"""Anthropic Claude models.
|
|
654
|
+
|
|
655
|
+
**Quick Start:**
|
|
656
|
+
|
|
657
|
+
```python
|
|
658
|
+
import langfun as lf
|
|
659
|
+
|
|
660
|
+
# Call Claude 3.5 Sonnet using API key from environment variable
|
|
661
|
+
# 'ANTHROPIC_API_KEY'.
|
|
662
|
+
lm = lf.llms.Claude35Sonnet()
|
|
663
|
+
r = lm('Who are you?')
|
|
664
|
+
print(r)
|
|
665
|
+
```
|
|
666
|
+
|
|
667
|
+
**Setting up API key:**
|
|
668
|
+
|
|
669
|
+
The Anthropic API key can be specified in following ways:
|
|
670
|
+
|
|
671
|
+
1. At model instantiation:
|
|
672
|
+
|
|
673
|
+
```python
|
|
674
|
+
lm = lf.llms.Claude35Sonnet(api_key='MY_API_KEY')
|
|
675
|
+
|
|
676
|
+
2. via environment variable `ANTHROPIC_API_KEY`.
|
|
544
677
|
|
|
545
|
-
|
|
678
|
+
**References:**
|
|
679
|
+
|
|
680
|
+
* https://docs.anthropic.com/claude/reference/messages_post
|
|
546
681
|
"""
|
|
547
682
|
|
|
548
683
|
model: pg.typing.Annotated[
|
|
@@ -658,6 +793,8 @@ class Anthropic(rest.REST):
|
|
|
658
793
|
args.pop('temperature', None)
|
|
659
794
|
args.pop('top_k', None)
|
|
660
795
|
args.pop('top_p', None)
|
|
796
|
+
if options.extras:
|
|
797
|
+
args.update(options.extras)
|
|
661
798
|
return args
|
|
662
799
|
|
|
663
800
|
def result(self, json: dict[str, Any]) -> lf.LMSamplingResult:
|
|
@@ -679,6 +816,24 @@ class Anthropic(rest.REST):
|
|
|
679
816
|
return super()._error(status_code, content)
|
|
680
817
|
|
|
681
818
|
|
|
819
|
+
class Claude45(Anthropic):
|
|
820
|
+
"""Base class for Claude 4.5 models."""
|
|
821
|
+
|
|
822
|
+
|
|
823
|
+
# pylint: disable=invalid-name
|
|
824
|
+
class Claude45Haiku_20251001(Claude45):
|
|
825
|
+
"""Claude 4.5 Haiku model 20251001."""
|
|
826
|
+
|
|
827
|
+
model = 'claude-haiku-4-5-20251001'
|
|
828
|
+
|
|
829
|
+
|
|
830
|
+
# pylint: disable=invalid-name
|
|
831
|
+
class Claude45Sonnet_20250929(Claude45):
|
|
832
|
+
"""Claude 4.5 Sonnet model 20250929."""
|
|
833
|
+
|
|
834
|
+
model = 'claude-sonnet-4-5-20250929'
|
|
835
|
+
|
|
836
|
+
|
|
682
837
|
class Claude4(Anthropic):
|
|
683
838
|
"""Base class for Claude 4 models."""
|
|
684
839
|
|
|
@@ -23,23 +23,35 @@ import pyglove as pg
|
|
|
23
23
|
@lf.use_init_args(['model', 'deployment_name'])
|
|
24
24
|
@pg.members([('api_endpoint', pg.typing.Str().freeze(''))])
|
|
25
25
|
class AzureOpenAI(openai.OpenAI):
|
|
26
|
-
"""Azure OpenAI
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
26
|
+
"""Azure OpenAI models.
|
|
27
|
+
|
|
28
|
+
**Quick Start:**
|
|
29
|
+
|
|
30
|
+
```python
|
|
31
|
+
import langfun as lf
|
|
32
|
+
|
|
33
|
+
# Call GPT-4o on Azure using API key from environment variable
|
|
34
|
+
# 'AZURE_OPENAI_API_KEY'.
|
|
35
|
+
lm = lf.llms.AzureOpenAI(
|
|
36
|
+
model='gpt-4o',
|
|
37
|
+
deployment_name='my-gpt4o-deployment',
|
|
38
|
+
api_version='2024-08-01-preview',
|
|
39
|
+
azure_endpoint='https://my-resource.openai.azure.com/',
|
|
40
|
+
)
|
|
41
|
+
r = lm('Who are you?')
|
|
42
|
+
print(r)
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
**Setting up API key:**
|
|
46
|
+
|
|
47
|
+
The Azure OpenAI API key can be specified in following ways:
|
|
48
|
+
|
|
49
|
+
1. At model instantiation:
|
|
50
|
+
|
|
51
|
+
```python
|
|
52
|
+
lm = lf.llms.AzureOpenAI(..., api_key='MY_API_KEY')
|
|
53
|
+
```
|
|
54
|
+
2. via environment variable `AZURE_OPENAI_API_KEY`.
|
|
43
55
|
"""
|
|
44
56
|
|
|
45
57
|
deployment_name: Annotated[
|
langfun/core/llms/cache/base.py
CHANGED
|
@@ -22,13 +22,33 @@ import langfun.core as lf
|
|
|
22
22
|
|
|
23
23
|
@dataclasses.dataclass(frozen=True)
|
|
24
24
|
class LMCacheEntry:
|
|
25
|
-
"""
|
|
25
|
+
"""Represents a single entry in the language model cache.
|
|
26
|
+
|
|
27
|
+
An `LMCacheEntry` stores the result of a language model sampling operation
|
|
28
|
+
and an optional expiration timestamp.
|
|
29
|
+
"""
|
|
26
30
|
result: lf.LMSamplingResult
|
|
27
31
|
expire: datetime.datetime | None = None
|
|
28
32
|
|
|
29
33
|
|
|
30
34
|
class LMCacheBase(lf.LMCache):
|
|
31
|
-
"""
|
|
35
|
+
"""Base class for language model cache implementations.
|
|
36
|
+
|
|
37
|
+
`LMCacheBase` provides the core logic for a key-value based cache,
|
|
38
|
+
handling key generation, expiration (TTL), and statistics tracking.
|
|
39
|
+
Subclasses must implement the abstract methods `_get`, `_put`, and `_delete`
|
|
40
|
+
to provide the specific storage mechanism (e.g., in-memory, file-based).
|
|
41
|
+
|
|
42
|
+
**Key Features:**
|
|
43
|
+
|
|
44
|
+
* **Customizable Keying**: Allows specifying a custom function to generate
|
|
45
|
+
cache keys based on the language model, prompt, and seed. If not provided,
|
|
46
|
+
a default key based on prompt text, sampling options, and seed is used.
|
|
47
|
+
* **Time-to-Live (TTL)**: Supports setting an expiration time for cache
|
|
48
|
+
entries, after which they are considered invalid and removed upon access.
|
|
49
|
+
* **Cache Statistics**: Tracks metrics like hits, misses, updates,
|
|
50
|
+
deletions, and expired hits through the `stats` property.
|
|
51
|
+
"""
|
|
32
52
|
|
|
33
53
|
key: Annotated[
|
|
34
54
|
Callable[[lf.LanguageModel, lf.Message, int], Any] | None,
|
|
@@ -121,4 +141,6 @@ class LMCacheBase(lf.LMCache):
|
|
|
121
141
|
|
|
122
142
|
def default_key(lm: lf.LanguageModel, prompt: lf.Message, seed: int) -> Any:
|
|
123
143
|
"""Default key for LM cache."""
|
|
124
|
-
|
|
144
|
+
# prompt text already contains the modality id for referenced modality
|
|
145
|
+
# objects, so no need to include them in the key.
|
|
146
|
+
return (prompt.text, lm.sampling_options.cache_key(), seed)
|
|
@@ -24,7 +24,32 @@ import pyglove as pg
|
|
|
24
24
|
|
|
25
25
|
@pg.use_init_args(['filename', 'ttl', 'key'])
|
|
26
26
|
class InMemory(base.LMCacheBase):
|
|
27
|
-
"""
|
|
27
|
+
"""An in-memory cache for language model lookups.
|
|
28
|
+
|
|
29
|
+
`InMemory` stores LM prompts and their corresponding responses in memory,
|
|
30
|
+
providing a simple and fast caching mechanism for a single session.
|
|
31
|
+
Optionally, it can persist the cache to a JSON file on disk, allowing
|
|
32
|
+
results to be reused across sessions.
|
|
33
|
+
|
|
34
|
+
When a filename is provided, the cache will be loaded from the file upon
|
|
35
|
+
initialization and saved to the file when `save()` is called. This is
|
|
36
|
+
useful for caching results in interactive environments like Colab or
|
|
37
|
+
when running batch jobs.
|
|
38
|
+
|
|
39
|
+
Example:
|
|
40
|
+
|
|
41
|
+
```python
|
|
42
|
+
import langfun as lf
|
|
43
|
+
# Using in-memory cache without persistence
|
|
44
|
+
lm = lf.llms.GeminiPro(cache=lf.llms.cache.InMemory())
|
|
45
|
+
r = lm.query('hello')
|
|
46
|
+
|
|
47
|
+
# Using in-memory cache with persistence
|
|
48
|
+
lm = lf.llms.GeminiPro(cache=lf.llms.cache.InMemory('cache.json'))
|
|
49
|
+
r = lm.query('hello')
|
|
50
|
+
lm.cache.save()
|
|
51
|
+
```
|
|
52
|
+
"""
|
|
28
53
|
|
|
29
54
|
filename: Annotated[
|
|
30
55
|
str | None,
|
|
@@ -144,17 +169,33 @@ class InMemory(base.LMCacheBase):
|
|
|
144
169
|
|
|
145
170
|
@contextlib.contextmanager
|
|
146
171
|
def lm_cache(filename: str | None = None) -> Iterator[InMemory]:
|
|
147
|
-
"""Context manager to enable cache for LMs
|
|
172
|
+
"""Context manager to enable in-memory cache for LMs in the current context.
|
|
173
|
+
|
|
174
|
+
This context manager sets an `InMemory` cache as the default cache for
|
|
175
|
+
any Langfun language model instantiated within its scope, unless a model
|
|
176
|
+
is explicitly configured with a different cache.
|
|
177
|
+
|
|
178
|
+
If a `filename` is provided, the cache will be loaded from the specified
|
|
179
|
+
file at the beginning of the context and automatically saved back to the
|
|
180
|
+
file upon exiting the context. This is a convenient way to manage
|
|
181
|
+
persistent caching for a block of code.
|
|
182
|
+
|
|
183
|
+
Example:
|
|
148
184
|
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
185
|
+
```python
|
|
186
|
+
import langfun as lf
|
|
187
|
+
with lf.lm_cache('my_cache.json'):
|
|
188
|
+
# LMs created here will use 'my_cache.json' for caching.
|
|
189
|
+
lm = lf.llms.GeminiPro()
|
|
190
|
+
print(lm.query('hello'))
|
|
191
|
+
```
|
|
152
192
|
|
|
153
193
|
Args:
|
|
154
|
-
filename: If
|
|
194
|
+
filename: If provided, specifies the JSON file for loading and saving
|
|
195
|
+
the cache.
|
|
155
196
|
|
|
156
197
|
Yields:
|
|
157
|
-
|
|
198
|
+
The `InMemory` cache instance created for this context.
|
|
158
199
|
"""
|
|
159
200
|
cache = InMemory(filename)
|
|
160
201
|
try:
|
|
@@ -175,18 +175,28 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
|
175
175
|
|
|
176
176
|
cache = in_memory.InMemory()
|
|
177
177
|
lm = fake.StaticSequence(['1', '2', '3', '4', '5', '6'], cache=cache)
|
|
178
|
-
|
|
179
|
-
|
|
178
|
+
image_foo = CustomModality('foo')
|
|
179
|
+
image_bar = CustomModality('bar')
|
|
180
|
+
lm(
|
|
181
|
+
lf.UserMessage(
|
|
182
|
+
f'hi <<[[{image_foo.id}]]>>', referred_modalities=[image_foo]
|
|
183
|
+
)
|
|
184
|
+
)
|
|
185
|
+
lm(
|
|
186
|
+
lf.UserMessage(
|
|
187
|
+
f'hi <<[[{image_bar.id}]]>>', referred_modalities=[image_bar]
|
|
188
|
+
)
|
|
189
|
+
)
|
|
180
190
|
self.assertEqual(
|
|
181
191
|
list(cache.keys()),
|
|
182
192
|
[
|
|
183
193
|
(
|
|
184
|
-
'hi <<[[
|
|
194
|
+
f'hi <<[[{image_foo.id}]]>>',
|
|
185
195
|
(None, None, 1, 40, None, None),
|
|
186
196
|
0,
|
|
187
197
|
),
|
|
188
198
|
(
|
|
189
|
-
'hi <<[[
|
|
199
|
+
f'hi <<[[{image_bar.id}]]>>',
|
|
190
200
|
(None, None, 1, 40, None, None),
|
|
191
201
|
0,
|
|
192
202
|
),
|
|
@@ -21,7 +21,31 @@ import pyglove as pg
|
|
|
21
21
|
|
|
22
22
|
@pg.use_init_args(['candidates', 'seed'])
|
|
23
23
|
class RandomChoice(lf.LanguageModel):
|
|
24
|
-
"""
|
|
24
|
+
"""A composite language model that randomly selects from a list of candidates.
|
|
25
|
+
|
|
26
|
+
`RandomChoice` acts as a proxy that forwards each request (`sample`, `score`,
|
|
27
|
+
`tokenize`, or `__call__`) to one of the `candidates` selected randomly.
|
|
28
|
+
This can be useful for load balancing across multiple LLM endpoints,
|
|
29
|
+
for A/B testing different models, or for ensembling model outputs
|
|
30
|
+
by calling it multiple times.
|
|
31
|
+
|
|
32
|
+
The selection is determined by the provided `seed`, ensuring reproducibility
|
|
33
|
+
if needed.
|
|
34
|
+
|
|
35
|
+
Example:
|
|
36
|
+
|
|
37
|
+
```python
|
|
38
|
+
import langfun as lf
|
|
39
|
+
|
|
40
|
+
lm = lf.llms.RandomChoice([
|
|
41
|
+
lf.llms.GeminiPro(),
|
|
42
|
+
lf.llms.GPT4(),
|
|
43
|
+
])
|
|
44
|
+
|
|
45
|
+
# This call will be handled by either GeminiPro or GPT4, chosen randomly.
|
|
46
|
+
r = lm.sample('hello')
|
|
47
|
+
```
|
|
48
|
+
"""
|
|
25
49
|
|
|
26
50
|
candidates: Annotated[
|
|
27
51
|
list[lf.LanguageModel],
|