langfun 0.1.2.dev202509020804__py3-none-any.whl → 0.1.2.dev202511110805__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langfun might be problematic. Click here for more details.
- langfun/__init__.py +1 -1
- langfun/core/__init__.py +6 -1
- langfun/core/agentic/__init__.py +4 -0
- langfun/core/agentic/action.py +412 -103
- langfun/core/agentic/action_eval.py +9 -2
- langfun/core/agentic/action_test.py +68 -6
- langfun/core/async_support.py +104 -5
- langfun/core/async_support_test.py +23 -0
- langfun/core/coding/python/correction.py +19 -9
- langfun/core/coding/python/execution.py +14 -12
- langfun/core/coding/python/generation.py +21 -16
- langfun/core/coding/python/sandboxing.py +23 -3
- langfun/core/component.py +42 -3
- langfun/core/concurrent.py +70 -6
- langfun/core/concurrent_test.py +9 -2
- langfun/core/console.py +1 -1
- langfun/core/data/conversion/anthropic.py +12 -3
- langfun/core/data/conversion/anthropic_test.py +8 -6
- langfun/core/data/conversion/gemini.py +9 -2
- langfun/core/data/conversion/gemini_test.py +12 -9
- langfun/core/data/conversion/openai.py +145 -31
- langfun/core/data/conversion/openai_test.py +161 -17
- langfun/core/eval/base.py +47 -43
- langfun/core/eval/base_test.py +4 -4
- langfun/core/eval/matching.py +5 -2
- langfun/core/eval/patching.py +3 -3
- langfun/core/eval/scoring.py +4 -3
- langfun/core/eval/v2/__init__.py +1 -0
- langfun/core/eval/v2/checkpointing.py +30 -4
- langfun/core/eval/v2/eval_test_helper.py +1 -1
- langfun/core/eval/v2/evaluation.py +60 -14
- langfun/core/eval/v2/example.py +22 -11
- langfun/core/eval/v2/experiment.py +51 -8
- langfun/core/eval/v2/metric_values.py +31 -3
- langfun/core/eval/v2/metric_values_test.py +32 -0
- langfun/core/eval/v2/metrics.py +39 -4
- langfun/core/eval/v2/metrics_test.py +14 -0
- langfun/core/eval/v2/progress.py +30 -1
- langfun/core/eval/v2/progress_test.py +27 -0
- langfun/core/eval/v2/progress_tracking_test.py +6 -0
- langfun/core/eval/v2/reporting.py +90 -71
- langfun/core/eval/v2/reporting_test.py +20 -6
- langfun/core/eval/v2/runners.py +27 -7
- langfun/core/eval/v2/runners_test.py +3 -0
- langfun/core/langfunc.py +45 -130
- langfun/core/langfunc_test.py +6 -4
- langfun/core/language_model.py +151 -31
- langfun/core/language_model_test.py +9 -3
- langfun/core/llms/__init__.py +12 -1
- langfun/core/llms/anthropic.py +157 -2
- langfun/core/llms/azure_openai.py +29 -17
- langfun/core/llms/cache/base.py +25 -3
- langfun/core/llms/cache/in_memory.py +48 -7
- langfun/core/llms/cache/in_memory_test.py +14 -4
- langfun/core/llms/compositional.py +25 -1
- langfun/core/llms/deepseek.py +30 -2
- langfun/core/llms/fake.py +39 -1
- langfun/core/llms/fake_test.py +9 -0
- langfun/core/llms/gemini.py +43 -7
- langfun/core/llms/google_genai.py +34 -1
- langfun/core/llms/groq.py +28 -3
- langfun/core/llms/llama_cpp.py +23 -4
- langfun/core/llms/openai.py +93 -3
- langfun/core/llms/openai_compatible.py +148 -27
- langfun/core/llms/openai_compatible_test.py +207 -20
- langfun/core/llms/openai_test.py +0 -2
- langfun/core/llms/rest.py +16 -1
- langfun/core/llms/vertexai.py +59 -8
- langfun/core/logging.py +1 -1
- langfun/core/mcp/__init__.py +10 -0
- langfun/core/mcp/client.py +177 -0
- langfun/core/mcp/client_test.py +71 -0
- langfun/core/mcp/session.py +241 -0
- langfun/core/mcp/session_test.py +54 -0
- langfun/core/mcp/testing/simple_mcp_client.py +33 -0
- langfun/core/mcp/testing/simple_mcp_server.py +33 -0
- langfun/core/mcp/tool.py +256 -0
- langfun/core/mcp/tool_test.py +197 -0
- langfun/core/memory.py +1 -0
- langfun/core/message.py +160 -55
- langfun/core/message_test.py +65 -81
- langfun/core/modalities/__init__.py +8 -0
- langfun/core/modalities/audio.py +21 -1
- langfun/core/modalities/image.py +19 -1
- langfun/core/modalities/mime.py +62 -3
- langfun/core/modalities/pdf.py +19 -1
- langfun/core/modalities/video.py +21 -1
- langfun/core/modality.py +167 -29
- langfun/core/modality_test.py +42 -12
- langfun/core/natural_language.py +1 -1
- langfun/core/sampling.py +4 -4
- langfun/core/sampling_test.py +20 -4
- langfun/core/structured/completion.py +34 -44
- langfun/core/structured/completion_test.py +23 -43
- langfun/core/structured/description.py +54 -50
- langfun/core/structured/function_generation.py +29 -12
- langfun/core/structured/mapping.py +74 -28
- langfun/core/structured/parsing.py +90 -74
- langfun/core/structured/parsing_test.py +0 -3
- langfun/core/structured/querying.py +242 -156
- langfun/core/structured/querying_test.py +95 -64
- langfun/core/structured/schema.py +70 -10
- langfun/core/structured/schema_generation.py +33 -14
- langfun/core/structured/scoring.py +45 -34
- langfun/core/structured/tokenization.py +24 -9
- langfun/core/subscription.py +2 -2
- langfun/core/template.py +175 -50
- langfun/core/template_test.py +123 -17
- langfun/env/__init__.py +43 -0
- langfun/env/base_environment.py +827 -0
- langfun/env/base_environment_test.py +473 -0
- langfun/env/base_feature.py +304 -0
- langfun/env/base_feature_test.py +228 -0
- langfun/env/base_sandbox.py +842 -0
- langfun/env/base_sandbox_test.py +1235 -0
- langfun/env/event_handlers/__init__.py +14 -0
- langfun/env/event_handlers/chain.py +233 -0
- langfun/env/event_handlers/chain_test.py +253 -0
- langfun/env/event_handlers/event_logger.py +472 -0
- langfun/env/event_handlers/event_logger_test.py +304 -0
- langfun/env/event_handlers/metric_writer.py +726 -0
- langfun/env/event_handlers/metric_writer_test.py +214 -0
- langfun/env/interface.py +1640 -0
- langfun/env/interface_test.py +151 -0
- langfun/env/load_balancers.py +59 -0
- langfun/env/load_balancers_test.py +139 -0
- langfun/env/test_utils.py +497 -0
- {langfun-0.1.2.dev202509020804.dist-info → langfun-0.1.2.dev202511110805.dist-info}/METADATA +7 -3
- langfun-0.1.2.dev202511110805.dist-info/RECORD +200 -0
- langfun-0.1.2.dev202509020804.dist-info/RECORD +0 -172
- {langfun-0.1.2.dev202509020804.dist-info → langfun-0.1.2.dev202511110805.dist-info}/WHEEL +0 -0
- {langfun-0.1.2.dev202509020804.dist-info → langfun-0.1.2.dev202511110805.dist-info}/licenses/LICENSE +0 -0
- {langfun-0.1.2.dev202509020804.dist-info → langfun-0.1.2.dev202511110805.dist-info}/top_level.txt +0 -0
|
@@ -24,7 +24,32 @@ import pyglove as pg
|
|
|
24
24
|
|
|
25
25
|
@pg.use_init_args(['filename', 'ttl', 'key'])
|
|
26
26
|
class InMemory(base.LMCacheBase):
|
|
27
|
-
"""
|
|
27
|
+
"""An in-memory cache for language model lookups.
|
|
28
|
+
|
|
29
|
+
`InMemory` stores LM prompts and their corresponding responses in memory,
|
|
30
|
+
providing a simple and fast caching mechanism for a single session.
|
|
31
|
+
Optionally, it can persist the cache to a JSON file on disk, allowing
|
|
32
|
+
results to be reused across sessions.
|
|
33
|
+
|
|
34
|
+
When a filename is provided, the cache will be loaded from the file upon
|
|
35
|
+
initialization and saved to the file when `save()` is called. This is
|
|
36
|
+
useful for caching results in interactive environments like Colab or
|
|
37
|
+
when running batch jobs.
|
|
38
|
+
|
|
39
|
+
Example:
|
|
40
|
+
|
|
41
|
+
```python
|
|
42
|
+
import langfun as lf
|
|
43
|
+
# Using in-memory cache without persistence
|
|
44
|
+
lm = lf.llms.GeminiPro(cache=lf.llms.cache.InMemory())
|
|
45
|
+
r = lm.query('hello')
|
|
46
|
+
|
|
47
|
+
# Using in-memory cache with persistence
|
|
48
|
+
lm = lf.llms.GeminiPro(cache=lf.llms.cache.InMemory('cache.json'))
|
|
49
|
+
r = lm.query('hello')
|
|
50
|
+
lm.cache.save()
|
|
51
|
+
```
|
|
52
|
+
"""
|
|
28
53
|
|
|
29
54
|
filename: Annotated[
|
|
30
55
|
str | None,
|
|
@@ -144,17 +169,33 @@ class InMemory(base.LMCacheBase):
|
|
|
144
169
|
|
|
145
170
|
@contextlib.contextmanager
|
|
146
171
|
def lm_cache(filename: str | None = None) -> Iterator[InMemory]:
|
|
147
|
-
"""Context manager to enable cache for LMs
|
|
172
|
+
"""Context manager to enable in-memory cache for LMs in the current context.
|
|
173
|
+
|
|
174
|
+
This context manager sets an `InMemory` cache as the default cache for
|
|
175
|
+
any Langfun language model instantiated within its scope, unless a model
|
|
176
|
+
is explicitly configured with a different cache.
|
|
177
|
+
|
|
178
|
+
If a `filename` is provided, the cache will be loaded from the specified
|
|
179
|
+
file at the beginning of the context and automatically saved back to the
|
|
180
|
+
file upon exiting the context. This is a convenient way to manage
|
|
181
|
+
persistent caching for a block of code.
|
|
182
|
+
|
|
183
|
+
Example:
|
|
148
184
|
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
185
|
+
```python
|
|
186
|
+
import langfun as lf
|
|
187
|
+
with lf.lm_cache('my_cache.json'):
|
|
188
|
+
# LMs created here will use 'my_cache.json' for caching.
|
|
189
|
+
lm = lf.llms.GeminiPro()
|
|
190
|
+
print(lm.query('hello'))
|
|
191
|
+
```
|
|
152
192
|
|
|
153
193
|
Args:
|
|
154
|
-
filename: If
|
|
194
|
+
filename: If provided, specifies the JSON file for loading and saving
|
|
195
|
+
the cache.
|
|
155
196
|
|
|
156
197
|
Yields:
|
|
157
|
-
|
|
198
|
+
The `InMemory` cache instance created for this context.
|
|
158
199
|
"""
|
|
159
200
|
cache = InMemory(filename)
|
|
160
201
|
try:
|
|
@@ -175,18 +175,28 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
|
175
175
|
|
|
176
176
|
cache = in_memory.InMemory()
|
|
177
177
|
lm = fake.StaticSequence(['1', '2', '3', '4', '5', '6'], cache=cache)
|
|
178
|
-
|
|
179
|
-
|
|
178
|
+
image_foo = CustomModality('foo')
|
|
179
|
+
image_bar = CustomModality('bar')
|
|
180
|
+
lm(
|
|
181
|
+
lf.UserMessage(
|
|
182
|
+
f'hi <<[[{image_foo.id}]]>>', referred_modalities=[image_foo]
|
|
183
|
+
)
|
|
184
|
+
)
|
|
185
|
+
lm(
|
|
186
|
+
lf.UserMessage(
|
|
187
|
+
f'hi <<[[{image_bar.id}]]>>', referred_modalities=[image_bar]
|
|
188
|
+
)
|
|
189
|
+
)
|
|
180
190
|
self.assertEqual(
|
|
181
191
|
list(cache.keys()),
|
|
182
192
|
[
|
|
183
193
|
(
|
|
184
|
-
'hi <<[[
|
|
194
|
+
f'hi <<[[{image_foo.id}]]>>',
|
|
185
195
|
(None, None, 1, 40, None, None),
|
|
186
196
|
0,
|
|
187
197
|
),
|
|
188
198
|
(
|
|
189
|
-
'hi <<[[
|
|
199
|
+
f'hi <<[[{image_bar.id}]]>>',
|
|
190
200
|
(None, None, 1, 40, None, None),
|
|
191
201
|
0,
|
|
192
202
|
),
|
|
@@ -21,7 +21,31 @@ import pyglove as pg
|
|
|
21
21
|
|
|
22
22
|
@pg.use_init_args(['candidates', 'seed'])
|
|
23
23
|
class RandomChoice(lf.LanguageModel):
|
|
24
|
-
"""
|
|
24
|
+
"""A composite language model that randomly selects from a list of candidates.
|
|
25
|
+
|
|
26
|
+
`RandomChoice` acts as a proxy that forwards each request (`sample`, `score`,
|
|
27
|
+
`tokenize`, or `__call__`) to one of the `candidates` selected randomly.
|
|
28
|
+
This can be useful for load balancing across multiple LLM endpoints,
|
|
29
|
+
for A/B testing different models, or for ensembling model outputs
|
|
30
|
+
by calling it multiple times.
|
|
31
|
+
|
|
32
|
+
The selection is determined by the provided `seed`, ensuring reproducibility
|
|
33
|
+
if needed.
|
|
34
|
+
|
|
35
|
+
Example:
|
|
36
|
+
|
|
37
|
+
```python
|
|
38
|
+
import langfun as lf
|
|
39
|
+
|
|
40
|
+
lm = lf.llms.RandomChoice([
|
|
41
|
+
lf.llms.GeminiPro(),
|
|
42
|
+
lf.llms.GPT4(),
|
|
43
|
+
])
|
|
44
|
+
|
|
45
|
+
# This call will be handled by either GeminiPro or GPT4, chosen randomly.
|
|
46
|
+
r = lm.sample('hello')
|
|
47
|
+
```
|
|
48
|
+
"""
|
|
25
49
|
|
|
26
50
|
candidates: Annotated[
|
|
27
51
|
list[lf.LanguageModel],
|
langfun/core/llms/deepseek.py
CHANGED
|
@@ -93,8 +93,36 @@ _SUPPORTED_MODELS_BY_ID = {m.model_id: m for m in SUPPORTED_MODELS}
|
|
|
93
93
|
# DeepSeek API uses an API format compatible with OpenAI.
|
|
94
94
|
# Reference: https://api-docs.deepseek.com/
|
|
95
95
|
@lf.use_init_args(['model'])
|
|
96
|
-
class DeepSeek(openai_compatible.
|
|
97
|
-
"""DeepSeek
|
|
96
|
+
class DeepSeek(openai_compatible.OpenAIChatCompletionAPI):
|
|
97
|
+
"""DeepSeek models.
|
|
98
|
+
|
|
99
|
+
**Quick Start:**
|
|
100
|
+
|
|
101
|
+
```python
|
|
102
|
+
import langfun as lf
|
|
103
|
+
|
|
104
|
+
# Call DeepSeek-V3 using API key from environment variable
|
|
105
|
+
# 'DEEPSEEK_API_KEY'.
|
|
106
|
+
lm = lf.llms.DeepSeekV3()
|
|
107
|
+
r = lm('Who are you?')
|
|
108
|
+
print(r)
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
**Setting up API key:**
|
|
112
|
+
|
|
113
|
+
The DeepSeek API key can be specified in following ways:
|
|
114
|
+
|
|
115
|
+
1. At model instantiation:
|
|
116
|
+
|
|
117
|
+
```python
|
|
118
|
+
lm = lf.llms.DeepSeekV3(api_key='MY_API_KEY')
|
|
119
|
+
```
|
|
120
|
+
2. via environment variable `DEEPSEEK_API_KEY`.
|
|
121
|
+
|
|
122
|
+
**References:**
|
|
123
|
+
|
|
124
|
+
* https://api-docs.deepseek.com/
|
|
125
|
+
"""
|
|
98
126
|
|
|
99
127
|
model: pg.typing.Annotated[
|
|
100
128
|
pg.typing.Enum(
|
langfun/core/llms/fake.py
CHANGED
|
@@ -20,7 +20,38 @@ import langfun.core as lf
|
|
|
20
20
|
|
|
21
21
|
|
|
22
22
|
class Fake(lf.LanguageModel):
|
|
23
|
-
"""
|
|
23
|
+
"""Base class for fake language models, used for testing.
|
|
24
|
+
|
|
25
|
+
Fake models simulate the behavior of real language models but return
|
|
26
|
+
pre-defined responses, making them useful for testing prompts,
|
|
27
|
+
data processing logic, and agent behavior without incurring API costs
|
|
28
|
+
or relying on external services.
|
|
29
|
+
|
|
30
|
+
Langfun provides several fake models:
|
|
31
|
+
* `lf.llms.Echo`: Echoes the prompt back as the response.
|
|
32
|
+
* `lf.llms.StaticResponse`: Returns a fixed, pre-defined response for
|
|
33
|
+
any prompt.
|
|
34
|
+
* `lf.llms.StaticMapping`: Returns responses based on a prompt-to-response
|
|
35
|
+
dictionary.
|
|
36
|
+
* `lf.llms.StaticSequence`: Returns responses from a pre-defined sequence
|
|
37
|
+
in order.
|
|
38
|
+
|
|
39
|
+
**Example:**
|
|
40
|
+
|
|
41
|
+
```python
|
|
42
|
+
import langfun as lf
|
|
43
|
+
|
|
44
|
+
# Use Echo model for testing
|
|
45
|
+
lm = lf.llms.Echo()
|
|
46
|
+
response = lm('hello')
|
|
47
|
+
assert response.text == 'hello'
|
|
48
|
+
|
|
49
|
+
# Use StaticResponse model
|
|
50
|
+
lm = lf.llms.StaticResponse('world')
|
|
51
|
+
response = lm('hello')
|
|
52
|
+
assert response.text == 'world'
|
|
53
|
+
```
|
|
54
|
+
"""
|
|
24
55
|
|
|
25
56
|
def _score(self, prompt: lf.Message| list[lf.Message],
|
|
26
57
|
completions: list[lf.Message]):
|
|
@@ -62,6 +93,13 @@ class Echo(Fake):
|
|
|
62
93
|
return lf.AIMessage(prompt.text)
|
|
63
94
|
|
|
64
95
|
|
|
96
|
+
class Pseudo(Fake):
|
|
97
|
+
"""A pseudo language model that should never be called."""
|
|
98
|
+
|
|
99
|
+
def _response_from(self, prompt: lf.Message) -> lf.Message:
|
|
100
|
+
raise ValueError('Pseudo language model should never be called.')
|
|
101
|
+
|
|
102
|
+
|
|
65
103
|
@lf.use_init_args(['response'])
|
|
66
104
|
class StaticResponse(Fake):
|
|
67
105
|
"""Language model that always gives the same canned response."""
|
langfun/core/llms/fake_test.py
CHANGED
|
@@ -20,6 +20,15 @@ import langfun.core as lf
|
|
|
20
20
|
from langfun.core.llms import fake as fakelm
|
|
21
21
|
|
|
22
22
|
|
|
23
|
+
class PseudoTest(unittest.TestCase):
|
|
24
|
+
|
|
25
|
+
def test_sample(self):
|
|
26
|
+
lm = fakelm.Pseudo()
|
|
27
|
+
self.assertEqual(lm.model_id, 'Pseudo')
|
|
28
|
+
with self.assertRaises(ValueError):
|
|
29
|
+
_ = lm.sample(['hi'])
|
|
30
|
+
|
|
31
|
+
|
|
23
32
|
class EchoTest(unittest.TestCase):
|
|
24
33
|
|
|
25
34
|
def test_sample(self):
|
langfun/core/llms/gemini.py
CHANGED
|
@@ -195,7 +195,7 @@ SUPPORTED_MODELS = [
|
|
|
195
195
|
rate_limits=lf.ModelInfo.RateLimits(
|
|
196
196
|
max_requests_per_minute=2000,
|
|
197
197
|
max_tokens_per_minute=4_000_000,
|
|
198
|
-
)
|
|
198
|
+
),
|
|
199
199
|
),
|
|
200
200
|
# Gemini 2.5 Pro 0605
|
|
201
201
|
GeminiModelInfo(
|
|
@@ -218,7 +218,7 @@ SUPPORTED_MODELS = [
|
|
|
218
218
|
rate_limits=lf.ModelInfo.RateLimits(
|
|
219
219
|
max_requests_per_minute=2000,
|
|
220
220
|
max_tokens_per_minute=4_000_000,
|
|
221
|
-
)
|
|
221
|
+
),
|
|
222
222
|
),
|
|
223
223
|
# Gemini 2.5 Flash Preview 0520
|
|
224
224
|
GeminiModelInfo(
|
|
@@ -264,7 +264,7 @@ SUPPORTED_MODELS = [
|
|
|
264
264
|
rate_limits=lf.ModelInfo.RateLimits(
|
|
265
265
|
max_requests_per_minute=2000,
|
|
266
266
|
max_tokens_per_minute=4_000_000,
|
|
267
|
-
)
|
|
267
|
+
),
|
|
268
268
|
),
|
|
269
269
|
# Gemini 2.5 Flash Preview
|
|
270
270
|
GeminiModelInfo(
|
|
@@ -614,6 +614,21 @@ SUPPORTED_MODELS = [
|
|
|
614
614
|
#
|
|
615
615
|
# Experimental models.
|
|
616
616
|
#
|
|
617
|
+
GeminiModelInfo(
|
|
618
|
+
model_id='gemini-2.5-flash-image-preview',
|
|
619
|
+
in_service=True,
|
|
620
|
+
experimental=True,
|
|
621
|
+
provider=pg.oneof(['Google GenAI', 'VertexAI']),
|
|
622
|
+
model_type='instruction-tuned',
|
|
623
|
+
description='Gemini 2.5 Flash Image Preview model.',
|
|
624
|
+
release_date=datetime.datetime(2025, 8, 17),
|
|
625
|
+
input_modalities=GeminiModelInfo.INPUT_IMAGE_TYPES
|
|
626
|
+
+ GeminiModelInfo.INPUT_DOC_TYPES,
|
|
627
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
628
|
+
max_input_tokens=32_768,
|
|
629
|
+
max_output_tokens=32_768,
|
|
630
|
+
),
|
|
631
|
+
),
|
|
617
632
|
GeminiModelInfo(
|
|
618
633
|
model_id='gemini-2.0-pro-exp-02-05',
|
|
619
634
|
in_service=True,
|
|
@@ -681,7 +696,15 @@ _SUPPORTED_MODELS_BY_ID = {m.model_id: m for m in SUPPORTED_MODELS}
|
|
|
681
696
|
|
|
682
697
|
@pg.use_init_args(['model'])
|
|
683
698
|
class Gemini(rest.REST):
|
|
684
|
-
"""
|
|
699
|
+
"""Base class for Gemini models served on Google GenAI and Vertex AI.
|
|
700
|
+
|
|
701
|
+
This class implements the Gemini API protocol, shared by
|
|
702
|
+
`lf.llms.GoogleGenAI` and `lf.llms.VertexAI`, providing common request
|
|
703
|
+
formatting and response parsing for Gemini models.
|
|
704
|
+
|
|
705
|
+
It is not intended to be used directly. Please use `lf.llms.GoogleGenAI` or
|
|
706
|
+
`lf.llms.VertexAI` instead.
|
|
707
|
+
"""
|
|
685
708
|
|
|
686
709
|
model: pg.typing.Annotated[
|
|
687
710
|
pg.typing.Enum(
|
|
@@ -690,6 +713,12 @@ class Gemini(rest.REST):
|
|
|
690
713
|
'The name of the model to use.',
|
|
691
714
|
]
|
|
692
715
|
|
|
716
|
+
response_modalities: pg.typing.Annotated[
|
|
717
|
+
list[str] | None,
|
|
718
|
+
'Response modalities. It is needed for models whose response modalities '
|
|
719
|
+
+ 'are more than plain text.',
|
|
720
|
+
] = None
|
|
721
|
+
|
|
693
722
|
@functools.cached_property
|
|
694
723
|
def model_info(self) -> GeminiModelInfo:
|
|
695
724
|
return _SUPPORTED_MODELS_BY_ID[self.model]
|
|
@@ -731,6 +760,8 @@ class Gemini(rest.REST):
|
|
|
731
760
|
prompt.as_format('gemini', chunk_preprocessor=modality_conversion)
|
|
732
761
|
)
|
|
733
762
|
request['contents'] = contents
|
|
763
|
+
if sampling_options.extras:
|
|
764
|
+
request.update(sampling_options.extras)
|
|
734
765
|
return request
|
|
735
766
|
|
|
736
767
|
def _generation_config(
|
|
@@ -768,6 +799,11 @@ class Gemini(rest.REST):
|
|
|
768
799
|
'thinkingBudget': options.max_thinking_tokens,
|
|
769
800
|
}
|
|
770
801
|
|
|
802
|
+
if self.response_modalities:
|
|
803
|
+
config['responseModalities'] = self.response_modalities
|
|
804
|
+
if 'IMAGE' in self.response_modalities:
|
|
805
|
+
config.pop('responseLogprobs', None)
|
|
806
|
+
config.pop('logprobs', None)
|
|
771
807
|
return config
|
|
772
808
|
|
|
773
809
|
def result(self, json: dict[str, Any]) -> lf.LMSamplingResult:
|
|
@@ -802,9 +838,9 @@ class Gemini(rest.REST):
|
|
|
802
838
|
)
|
|
803
839
|
|
|
804
840
|
def _error(self, status_code: int, content: str) -> lf.LMError:
|
|
805
|
-
if (
|
|
806
|
-
|
|
807
|
-
|
|
841
|
+
if status_code == 400 and (
|
|
842
|
+
b'exceeds the maximum number of tokens' in content
|
|
843
|
+
or b'Reduce the input token count and try again.' in content
|
|
808
844
|
):
|
|
809
845
|
return lf.ContextLimitError(f'{status_code}: {content}')
|
|
810
846
|
return super()._error(status_code, content)
|
|
@@ -25,7 +25,35 @@ import pyglove as pg
|
|
|
25
25
|
@lf.use_init_args(['model'])
|
|
26
26
|
@pg.members([('api_endpoint', pg.typing.Str().freeze(''))])
|
|
27
27
|
class GenAI(gemini.Gemini):
|
|
28
|
-
"""
|
|
28
|
+
"""Google GenAI models.
|
|
29
|
+
|
|
30
|
+
**Quick Start:**
|
|
31
|
+
|
|
32
|
+
```python
|
|
33
|
+
import langfun as lf
|
|
34
|
+
|
|
35
|
+
# Call Gemini 1.5 Flash using API key from environment variable
|
|
36
|
+
# 'GOOGLE_API_KEY'.
|
|
37
|
+
lm = lf.llms.Gemini15Flash()
|
|
38
|
+
r = lm('Who are you?')
|
|
39
|
+
print(r)
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
**Setting up API key:**
|
|
43
|
+
|
|
44
|
+
The Google API key can be specified in following ways:
|
|
45
|
+
|
|
46
|
+
1. At model instantiation:
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
lm = lf.llms.Gemini15Flash(api_key='MY_API_KEY')
|
|
50
|
+
```
|
|
51
|
+
2. via environment variable `GOOGLE_API_KEY`.
|
|
52
|
+
|
|
53
|
+
**References:**
|
|
54
|
+
|
|
55
|
+
* https://ai.google.dev/docs
|
|
56
|
+
"""
|
|
29
57
|
|
|
30
58
|
model: pg.typing.Annotated[
|
|
31
59
|
pg.typing.Enum(
|
|
@@ -92,6 +120,11 @@ class GenAI(gemini.Gemini):
|
|
|
92
120
|
#
|
|
93
121
|
|
|
94
122
|
|
|
123
|
+
class Gemini25FlashImagePreview(GenAI):
|
|
124
|
+
"""Gemini 2.5 Flash Image Preview model."""
|
|
125
|
+
model = 'gemini-2.5-flash-image-preview'
|
|
126
|
+
|
|
127
|
+
|
|
95
128
|
class Gemini25Pro(GenAI):
|
|
96
129
|
"""Gemini 2.5 Pro GA model."""
|
|
97
130
|
|
langfun/core/llms/groq.py
CHANGED
|
@@ -259,10 +259,35 @@ _SUPPORTED_MODELS_BY_ID = {m.model_id: m for m in SUPPORTED_MODELS}
|
|
|
259
259
|
|
|
260
260
|
|
|
261
261
|
@lf.use_init_args(['model'])
|
|
262
|
-
class Groq(openai_compatible.
|
|
263
|
-
"""Groq
|
|
262
|
+
class Groq(openai_compatible.OpenAIChatCompletionAPI):
|
|
263
|
+
"""Groq models.
|
|
264
264
|
|
|
265
|
-
|
|
265
|
+
**Quick Start:**
|
|
266
|
+
|
|
267
|
+
```python
|
|
268
|
+
import langfun as lf
|
|
269
|
+
|
|
270
|
+
# Call Llama 3.3 70B on Groq using API key from environment variable
|
|
271
|
+
# 'GROQ_API_KEY'.
|
|
272
|
+
lm = lf.llms.GroqLlama33_70B_Versatile()
|
|
273
|
+
r = lm('Who are you?')
|
|
274
|
+
print(r)
|
|
275
|
+
```
|
|
276
|
+
|
|
277
|
+
**Setting up API key:**
|
|
278
|
+
|
|
279
|
+
The Groq API key can be specified in following ways:
|
|
280
|
+
|
|
281
|
+
1. At model instantiation:
|
|
282
|
+
|
|
283
|
+
```python
|
|
284
|
+
lm = lf.llms.GroqLlama33_70B_Versatile(api_key='MY_API_KEY')
|
|
285
|
+
```
|
|
286
|
+
2. via environment variable `GROQ_API_KEY`.
|
|
287
|
+
|
|
288
|
+
**References:**
|
|
289
|
+
|
|
290
|
+
* https://console.groq.com/docs
|
|
266
291
|
"""
|
|
267
292
|
|
|
268
293
|
model: pg.typing.Annotated[
|
langfun/core/llms/llama_cpp.py
CHANGED
|
@@ -20,11 +20,30 @@ import pyglove as pg
|
|
|
20
20
|
|
|
21
21
|
@pg.use_init_args(['url', 'model'])
|
|
22
22
|
@pg.members([('api_endpoint', pg.typing.Str().freeze(''))])
|
|
23
|
-
class LlamaCppRemote(openai_compatible.
|
|
24
|
-
"""
|
|
23
|
+
class LlamaCppRemote(openai_compatible.OpenAIChatCompletionAPI):
|
|
24
|
+
"""LLaMA C++ models served via a remote server.
|
|
25
25
|
|
|
26
|
-
|
|
27
|
-
|
|
26
|
+
This class provides an interface to interact with language models
|
|
27
|
+
hosted on a LLaMA C++ server, which is compatible with the OpenAI
|
|
28
|
+
Chat Completions API format.
|
|
29
|
+
|
|
30
|
+
**Quick Start:**
|
|
31
|
+
|
|
32
|
+
Assuming a LLaMA C++ server is running at `http://localhost:8080`,
|
|
33
|
+
you can interact with it as follows:
|
|
34
|
+
|
|
35
|
+
```python
|
|
36
|
+
import langfun as lf
|
|
37
|
+
|
|
38
|
+
# If model name is not specified, it will use server's default.
|
|
39
|
+
lm = lf.llms.LlamaCppRemote(url='http://localhost:8080')
|
|
40
|
+
r = lm('Who are you?')
|
|
41
|
+
print(r)
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
**References:**
|
|
45
|
+
|
|
46
|
+
* https://github.com/ggerganov/llama.cpp/tree/master/examples/server
|
|
28
47
|
"""
|
|
29
48
|
url: Annotated[
|
|
30
49
|
str,
|
langfun/core/llms/openai.py
CHANGED
|
@@ -49,6 +49,53 @@ class OpenAIModelInfo(lf.ModelInfo):
|
|
|
49
49
|
#
|
|
50
50
|
|
|
51
51
|
SUPPORTED_MODELS = [
|
|
52
|
+
# GPT-5 models
|
|
53
|
+
OpenAIModelInfo(
|
|
54
|
+
model_id='gpt-5',
|
|
55
|
+
alias_for='gpt-5-2025-08-07',
|
|
56
|
+
in_service=True,
|
|
57
|
+
model_type='instruction-tuned',
|
|
58
|
+
description='GPT 5 model (latest stable).',
|
|
59
|
+
url='https://platform.openai.com/docs/models/gpt-5',
|
|
60
|
+
input_modalities=OpenAIModelInfo.INPUT_IMAGE_TYPES,
|
|
61
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
62
|
+
max_input_tokens=400_000,
|
|
63
|
+
max_output_tokens=128_000,
|
|
64
|
+
),
|
|
65
|
+
pricing=lf.ModelInfo.Pricing(
|
|
66
|
+
cost_per_1m_cached_input_tokens=0.125,
|
|
67
|
+
cost_per_1m_input_tokens=1.25,
|
|
68
|
+
cost_per_1m_output_tokens=10.0,
|
|
69
|
+
),
|
|
70
|
+
# Tier 5 rate limits.
|
|
71
|
+
rate_limits=lf.ModelInfo.RateLimits(
|
|
72
|
+
max_requests_per_minute=15_000,
|
|
73
|
+
max_tokens_per_minute=40_000_000,
|
|
74
|
+
),
|
|
75
|
+
),
|
|
76
|
+
OpenAIModelInfo(
|
|
77
|
+
model_id='gpt-5-mini',
|
|
78
|
+
alias_for='gpt-5-mini-2025-08-07',
|
|
79
|
+
in_service=True,
|
|
80
|
+
model_type='instruction-tuned',
|
|
81
|
+
description='GPT 5 mini model (latest stable).',
|
|
82
|
+
url='https://platform.openai.com/docs/models/gpt-5-mini',
|
|
83
|
+
input_modalities=OpenAIModelInfo.INPUT_IMAGE_TYPES,
|
|
84
|
+
context_length=lf.ModelInfo.ContextLength(
|
|
85
|
+
max_input_tokens=400_000,
|
|
86
|
+
max_output_tokens=128_000,
|
|
87
|
+
),
|
|
88
|
+
pricing=lf.ModelInfo.Pricing(
|
|
89
|
+
cost_per_1m_cached_input_tokens=0.025,
|
|
90
|
+
cost_per_1m_input_tokens=0.25,
|
|
91
|
+
cost_per_1m_output_tokens=2.0,
|
|
92
|
+
),
|
|
93
|
+
# Tier 5 rate limits.
|
|
94
|
+
rate_limits=lf.ModelInfo.RateLimits(
|
|
95
|
+
max_requests_per_minute=180_000_000,
|
|
96
|
+
max_tokens_per_minute=30_000_000,
|
|
97
|
+
),
|
|
98
|
+
),
|
|
52
99
|
# GPT-4.1 models
|
|
53
100
|
OpenAIModelInfo(
|
|
54
101
|
model_id='gpt-4.1',
|
|
@@ -984,8 +1031,36 @@ _SUPPORTED_MODELS_BY_MODEL_ID = {m.model_id: m for m in SUPPORTED_MODELS}
|
|
|
984
1031
|
|
|
985
1032
|
|
|
986
1033
|
@lf.use_init_args(['model'])
|
|
987
|
-
class OpenAI(openai_compatible.
|
|
988
|
-
"""OpenAI
|
|
1034
|
+
class OpenAI(openai_compatible.OpenAIResponsesAPI):
|
|
1035
|
+
"""OpenAI models.
|
|
1036
|
+
|
|
1037
|
+
**Quick Start:**
|
|
1038
|
+
|
|
1039
|
+
```python
|
|
1040
|
+
import langfun as lf
|
|
1041
|
+
|
|
1042
|
+
# Call GPT-4o using API key from environment variable 'OPENAI_API_KEY'.
|
|
1043
|
+
lm = lf.llms.Gpt4o()
|
|
1044
|
+
r = lm('Who are you?')
|
|
1045
|
+
print(r)
|
|
1046
|
+
```
|
|
1047
|
+
|
|
1048
|
+
**Setting up API key:**
|
|
1049
|
+
|
|
1050
|
+
The OpenAI API key can be specified in following ways:
|
|
1051
|
+
|
|
1052
|
+
1. At model instantiation:
|
|
1053
|
+
|
|
1054
|
+
```python
|
|
1055
|
+
lm = lf.llms.Gpt4o(api_key='MY_API_KEY')
|
|
1056
|
+
```
|
|
1057
|
+
2. via environment variable `OPENAI_API_KEY`.
|
|
1058
|
+
|
|
1059
|
+
**References:**
|
|
1060
|
+
|
|
1061
|
+
* https://platform.openai.com/docs/models
|
|
1062
|
+
* https://platform.openai.com/docs/api-reference
|
|
1063
|
+
"""
|
|
989
1064
|
|
|
990
1065
|
model: pg.typing.Annotated[
|
|
991
1066
|
pg.typing.Enum(
|
|
@@ -994,7 +1069,12 @@ class OpenAI(openai_compatible.OpenAICompatible):
|
|
|
994
1069
|
'The name of the model to use.',
|
|
995
1070
|
]
|
|
996
1071
|
|
|
997
|
-
|
|
1072
|
+
# Disable message storage by default.
|
|
1073
|
+
sampling_options = lf.LMSamplingOptions(
|
|
1074
|
+
extras={'store': False}
|
|
1075
|
+
)
|
|
1076
|
+
|
|
1077
|
+
api_endpoint: str = 'https://api.openai.com/v1/responses'
|
|
998
1078
|
|
|
999
1079
|
api_key: Annotated[
|
|
1000
1080
|
str | None,
|
|
@@ -1069,6 +1149,16 @@ class OpenAI(openai_compatible.OpenAICompatible):
|
|
|
1069
1149
|
return super()._request_args(options)
|
|
1070
1150
|
|
|
1071
1151
|
|
|
1152
|
+
class Gpt5(OpenAI):
|
|
1153
|
+
"""GPT-5."""
|
|
1154
|
+
model = 'gpt-5'
|
|
1155
|
+
|
|
1156
|
+
|
|
1157
|
+
class Gpt5Mini(OpenAI):
|
|
1158
|
+
"""GPT-5 mini."""
|
|
1159
|
+
model = 'gpt-5-mini'
|
|
1160
|
+
|
|
1161
|
+
|
|
1072
1162
|
class Gpt41(OpenAI):
|
|
1073
1163
|
"""GPT-4.1."""
|
|
1074
1164
|
model = 'gpt-4.1'
|