langfun 0.1.2.dev202506200804__py3-none-any.whl → 0.1.2.dev202506220804__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -40,6 +40,8 @@ from langfun.core.llms.azure_openai import AzureOpenAI
40
40
 
41
41
  # Gemini models.
42
42
  from langfun.core.llms.google_genai import GenAI
43
+ from langfun.core.llms.google_genai import Gemini25Pro
44
+ from langfun.core.llms.google_genai import Gemini25Flash
43
45
  from langfun.core.llms.google_genai import Gemini25ProPreview_20250605
44
46
  from langfun.core.llms.google_genai import Gemini25FlashPreview_20250520
45
47
  from langfun.core.llms.google_genai import Gemini25ProPreview_20250506
@@ -56,7 +58,6 @@ from langfun.core.llms.google_genai import Gemini15Flash_002
56
58
  from langfun.core.llms.google_genai import Gemini15Flash_001
57
59
  from langfun.core.llms.google_genai import Gemini15Flash8B
58
60
  from langfun.core.llms.google_genai import Gemini15Flash8B_001
59
-
60
61
  from langfun.core.llms.google_genai import Gemini2ProExp_20250205
61
62
  from langfun.core.llms.google_genai import Gemini2FlashThinkingExp_20250121
62
63
  from langfun.core.llms.google_genai import GeminiExp_20241206
@@ -83,6 +84,8 @@ from langfun.core.llms.vertexai import VertexAIGemini25FlashPreview_20250417
83
84
  from langfun.core.llms.vertexai import VertexAIGemini25ProPreview_20250506
84
85
  from langfun.core.llms.vertexai import VertexAIGemini25FlashPreview_20250520
85
86
  from langfun.core.llms.vertexai import VertexAIGemini25ProPreview_20250605
87
+ from langfun.core.llms.vertexai import VertexAIGemini25Pro
88
+ from langfun.core.llms.vertexai import VertexAIGemini25Flash
86
89
 
87
90
  # For backward compatibility.
88
91
  GeminiPro1_5 = Gemini15Pro
@@ -151,6 +151,52 @@ SUPPORTED_MODELS = [
151
151
  #
152
152
  # Production models.
153
153
  #
154
+ # Gemini 2.5 Flash
155
+ GeminiModelInfo(
156
+ model_id='gemini-2.5-flash',
157
+ in_service=True,
158
+ provider=pg.oneof(['Google GenAI', 'VertexAI']),
159
+ model_type='instruction-tuned',
160
+ description='Gemini 2.5 Flash GA.',
161
+ release_date=datetime.datetime(2025, 6, 17),
162
+ input_modalities=GeminiModelInfo.ALL_SUPPORTED_INPUT_TYPES,
163
+ context_length=lf.ModelInfo.ContextLength(
164
+ max_input_tokens=1_048_576,
165
+ max_output_tokens=65_536,
166
+ ),
167
+ pricing=GeminiModelInfo.Pricing(
168
+ cost_per_1m_cached_input_tokens=0.3,
169
+ cost_per_1m_input_tokens=0.3,
170
+ cost_per_1m_output_tokens=2.5,
171
+ ),
172
+ rate_limits=lf.ModelInfo.RateLimits(
173
+ max_requests_per_minute=2000,
174
+ max_tokens_per_minute=4_000_000,
175
+ ),
176
+ ),
177
+ # Gemini 2.5 Pro
178
+ GeminiModelInfo(
179
+ model_id='gemini-2.5-pro',
180
+ in_service=True,
181
+ provider=pg.oneof(['Google GenAI', 'VertexAI']),
182
+ model_type='instruction-tuned',
183
+ description='Gemini 2.5 Pro GA.',
184
+ release_date=datetime.datetime(2025, 6, 17),
185
+ input_modalities=GeminiModelInfo.ALL_SUPPORTED_INPUT_TYPES,
186
+ context_length=lf.ModelInfo.ContextLength(
187
+ max_input_tokens=1_048_576,
188
+ max_output_tokens=65_536,
189
+ ),
190
+ pricing=GeminiModelInfo.Pricing(
191
+ cost_per_1m_cached_input_tokens=1.25,
192
+ cost_per_1m_input_tokens=1.25,
193
+ cost_per_1m_output_tokens=10.0,
194
+ ),
195
+ rate_limits=lf.ModelInfo.RateLimits(
196
+ max_requests_per_minute=2000,
197
+ max_tokens_per_minute=4_000_000,
198
+ )
199
+ ),
154
200
  # Gemini 2.5 Pro 0605
155
201
  GeminiModelInfo(
156
202
  model_id='gemini-2.5-pro-preview-06-05',
@@ -718,7 +764,7 @@ class Gemini(rest.REST):
718
764
  )
719
765
  if options.max_thinking_tokens is not None:
720
766
  config['thinkingConfig'] = {
721
- 'includeThoughts': True,
767
+ 'includeThoughts': options.max_thinking_tokens > 0,
722
768
  'thinkingBudget': options.max_thinking_tokens,
723
769
  }
724
770
 
@@ -86,6 +86,18 @@ class GenAI(gemini.Gemini):
86
86
  #
87
87
 
88
88
 
89
+ class Gemini25Pro(GenAI):
90
+ """Gemini 2.5 Pro GA model."""
91
+
92
+ model = 'gemini-2.5-pro'
93
+
94
+
95
+ class Gemini25Flash(GenAI):
96
+ """Gemini 2.5 Flash GA model."""
97
+
98
+ model = 'gemini-2.5-flash'
99
+
100
+
89
101
  class Gemini2ProExp_20250205(GenAI):
90
102
  """Gemini 2.0 Pro experimental model launched on 02/05/2025."""
91
103
  model = 'gemini-2.0-pro-exp-02-05'
@@ -177,6 +177,20 @@ class VertexAIGemini(VertexAI, gemini.Gemini):
177
177
  #
178
178
  # Production models.
179
179
  #
180
+ class VertexAIGemini25Pro(VertexAIGemini): # pylint: disable=invalid-name
181
+ """Gemini 2.5 Pro GA model launched on 06/17/2025."""
182
+
183
+ model = 'gemini-2.5-pro'
184
+ location = 'global'
185
+
186
+
187
+ class VertexAIGemini25Flash(VertexAIGemini): # pylint: disable=invalid-name
188
+ """Gemini 2.5 Flash GA model launched on 06/17/2025."""
189
+
190
+ model = 'gemini-2.5-flash'
191
+ location = 'global'
192
+
193
+
180
194
  class VertexAIGemini25ProPreview_20250605(VertexAIGemini): # pylint: disable=invalid-name
181
195
  """Gemini 2.5 Pro model launched on 06/05/2025."""
182
196
  model = 'gemini-2.5-pro-preview-06-05'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langfun
3
- Version: 0.1.2.dev202506200804
3
+ Version: 0.1.2.dev202506220804
4
4
  Summary: Langfun: Language as Functions.
5
5
  Home-page: https://github.com/google/langfun
6
6
  Author: Langfun Authors
@@ -81,7 +81,7 @@ langfun/core/eval/v2/reporting.py,sha256=yUIPCAMnp7InIzpv1DDWrcLO-75iiOUTpscj7sm
81
81
  langfun/core/eval/v2/reporting_test.py,sha256=hcPJJaMtPulqERvHYTpId83WXdqDKnnexmULtK7WKwk,5686
82
82
  langfun/core/eval/v2/runners.py,sha256=iqbH4jMtnNMhfuv1eHaxJmk1Vvsrz-sAJJFP8U44-tA,16758
83
83
  langfun/core/eval/v2/runners_test.py,sha256=DO3xV0sBNB6n65j41xx2i7gqUCJcPF37DFZLEjrmISg,11987
84
- langfun/core/llms/__init__.py,sha256=3Lw6yyUej2Y5GigIQRhIW1cij-vCxm09TbVkdcdDUHQ,9290
84
+ langfun/core/llms/__init__.py,sha256=CtxUdXohQ8AQk1DqBT6MBy2zdAoPSggNo00SYrj9-AY,9521
85
85
  langfun/core/llms/anthropic.py,sha256=YcQ2VG8iOfXtry_tTpAukmiwXa2hK_9LkpkmXk41Nm0,26226
86
86
  langfun/core/llms/anthropic_test.py,sha256=qA9vByp_cwwXNlXzcwHpPWFnO9lfFo8NKfDi5nBNqgI,9052
87
87
  langfun/core/llms/azure_openai.py,sha256=-KkSLaR54MlsIqz_XIwv0TnsBnvNTAxnjA2Q2O2u5KM,2733
@@ -92,9 +92,9 @@ langfun/core/llms/deepseek.py,sha256=jvTxdXPr-vH6HNakn_Ootx1heDg8Fen2FUkUW36bpCs
92
92
  langfun/core/llms/deepseek_test.py,sha256=DvROWPlDuow5E1lfoSkhyGt_ELA19JoQoDsTnRgDtTg,1847
93
93
  langfun/core/llms/fake.py,sha256=xmgCkk9y0I4x0IT32SZ9_OT27aLadXH8PRiYNo5VTd4,3265
94
94
  langfun/core/llms/fake_test.py,sha256=2h13qkwEz_JR0mtUDPxdAhQo7MueXaFSwsD2DIRDW9g,7653
95
- langfun/core/llms/gemini.py,sha256=qVcmPnJVAdNPAXnqL-slgBlLnNMRgR3v7ZIRW8yEy_I,27350
95
+ langfun/core/llms/gemini.py,sha256=umrEJGnZb_U4CCbFHicaoVsBuEdZGg7QGNkr-mSJidw,29061
96
96
  langfun/core/llms/gemini_test.py,sha256=y1s0W65SrdepbZxzgIeoTB2MI7sXnfBDf1NsGn57LbM,7617
97
- langfun/core/llms/google_genai.py,sha256=q5Mudw3i9vVbhn7BRbLyHhr5Tnmb9dX1slNxWuZpKl8,5470
97
+ langfun/core/llms/google_genai.py,sha256=NO9SX9X3AYp-sNvjt8e90Hjy_ZB4O9l-Y4HhR5X6Zus,5654
98
98
  langfun/core/llms/google_genai_test.py,sha256=NKNtpebArQ9ZR7Qsnhd2prFIpMjleojy6o6VMXkJ1zY,1502
99
99
  langfun/core/llms/groq.py,sha256=S9V10kFo3cgX89qPgt_umq-SpRnxEDLTt_hJmpERfbo,12066
100
100
  langfun/core/llms/groq_test.py,sha256=P4EgexCqsh4K2x11w0UL_vz-YYNaPdQU0WsDAdnTRQ8,2045
@@ -106,7 +106,7 @@ langfun/core/llms/openai_compatible_test.py,sha256=KwOMA7tsmOxFBjezltkBDSU77AvOQ
106
106
  langfun/core/llms/openai_test.py,sha256=gwuO6aoa296iM2welWV9ua4KF8gEVGsEPakgbtkWkFQ,2687
107
107
  langfun/core/llms/rest.py,sha256=mY9n0sMAtf0RsvTBgbYHDxGzGD9WLIkocALEHXAL5r4,4583
108
108
  langfun/core/llms/rest_test.py,sha256=_zM7nV8DEVyoXNiQOnuwJ917mWjki0614H88rNmDboE,5020
109
- langfun/core/llms/vertexai.py,sha256=NDcd_xr8JcnjRlSItCUyHh6em7wMOaMXbbwpCM0TZGY,19545
109
+ langfun/core/llms/vertexai.py,sha256=G-4Hofs5e1-XNrRP0SMGGML9yIHGy_TLTUEV3tLFP3g,19917
110
110
  langfun/core/llms/vertexai_test.py,sha256=_e-acnNBAf9C3WO6i1b2J_mhRzdDdYQTorD9hIVZKOg,5034
111
111
  langfun/core/llms/cache/__init__.py,sha256=QAo3InUMDM_YpteNnVCSejI4zOsnjSMWKJKzkb3VY64,993
112
112
  langfun/core/llms/cache/base.py,sha256=rt3zwmyw0y9jsSGW-ZbV1vAfLxQ7_3AVk0l2EySlse4,3918
@@ -156,8 +156,8 @@ langfun/core/templates/demonstration.py,sha256=vCrgYubdZM5Umqcgp8NUVGXgr4P_c-fik
156
156
  langfun/core/templates/demonstration_test.py,sha256=SafcDQ0WgI7pw05EmPI2S4v1t3ABKzup8jReCljHeK4,2162
157
157
  langfun/core/templates/selfplay.py,sha256=yhgrJbiYwq47TgzThmHrDQTF4nDrTI09CWGhuQPNv-s,2273
158
158
  langfun/core/templates/selfplay_test.py,sha256=Ot__1P1M8oJfoTp-M9-PQ6HUXqZKyMwvZ5f7yQ3yfyM,2326
159
- langfun-0.1.2.dev202506200804.dist-info/licenses/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
160
- langfun-0.1.2.dev202506200804.dist-info/METADATA,sha256=1gLbES8LlVFFTpY4U36cLv3HpVx833FHMechJfqDRwk,8178
161
- langfun-0.1.2.dev202506200804.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
162
- langfun-0.1.2.dev202506200804.dist-info/top_level.txt,sha256=RhlEkHxs1qtzmmtWSwYoLVJAc1YrbPtxQ52uh8Z9VvY,8
163
- langfun-0.1.2.dev202506200804.dist-info/RECORD,,
159
+ langfun-0.1.2.dev202506220804.dist-info/licenses/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
160
+ langfun-0.1.2.dev202506220804.dist-info/METADATA,sha256=2Vv7p6ctRWFfqN2GEP-KHX7PJHPKtGbOBr3eqJACxDc,8178
161
+ langfun-0.1.2.dev202506220804.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
162
+ langfun-0.1.2.dev202506220804.dist-info/top_level.txt,sha256=RhlEkHxs1qtzmmtWSwYoLVJAc1YrbPtxQ52uh8Z9VvY,8
163
+ langfun-0.1.2.dev202506220804.dist-info/RECORD,,