langfun 0.1.2.dev202503240804__py3-none-any.whl → 0.1.2.dev202503260804__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,256 @@
1
+ # Copyright 2025 The Langfun Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import base64
15
+ import unittest
16
+ import langfun.core as lf
17
+ from langfun.core import modalities as lf_modalities
18
+ from langfun.core.data.conversion import gemini # pylint: disable=unused-import
19
+
20
+
21
+ image_content = (
22
+ b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x18\x00\x00\x00\x18\x04'
23
+ b'\x03\x00\x00\x00\x12Y \xcb\x00\x00\x00\x18PLTE\x00\x00'
24
+ b'\x00fff_chaag_cg_ch^ci_ciC\xedb\x94\x00\x00\x00\x08tRNS'
25
+ b'\x00\n\x9f*\xd4\xff_\xf4\xe4\x8b\xf3a\x00\x00\x00>IDATx'
26
+ b'\x01c \x05\x08)"\xd8\xcc\xae!\x06pNz\x88k\x19\\Q\xa8"\x10'
27
+ b'\xc1\x14\x95\x01%\xc1\n\xa143Ta\xa8"D-\x84\x03QM\x98\xc3'
28
+ b'\x1a\x1a\x1a@5\x0e\x04\xa0q\x88\x05\x00\x07\xf8\x18\xf9'
29
+ b'\xdao\xd0|\x00\x00\x00\x00IEND\xaeB`\x82'
30
+ )
31
+
32
+
33
+ class GeminiConversionTest(unittest.TestCase):
34
+
35
+ def test_as_format_with_role(self):
36
+ self.assertEqual(
37
+ lf.UserMessage('hi').as_format('gemini'),
38
+ {
39
+ 'role': 'user',
40
+ 'parts': [{'text': 'hi'}],
41
+ },
42
+ )
43
+ self.assertEqual(
44
+ lf.AIMessage('hi').as_format('gemini'),
45
+ {
46
+ 'role': 'model',
47
+ 'parts': [{'text': 'hi'}],
48
+ },
49
+ )
50
+ self.assertEqual(
51
+ lf.SystemMessage('hi').as_format('gemini'),
52
+ {
53
+ 'role': 'system',
54
+ 'parts': [{'text': 'hi'}],
55
+ },
56
+ )
57
+
58
+ def test_as_format_with_image(self):
59
+ self.assertEqual(
60
+ lf.Template(
61
+ 'What are the common words from {{image}}, {{pdf}} and {{video}}?',
62
+ image=lf_modalities.Image.from_bytes(image_content),
63
+ pdf=lf_modalities.Custom.from_uri(
64
+ 'https://my.pdf', mime='application/pdf'
65
+ ),
66
+ video=lf_modalities.Custom.from_uri(
67
+ 'https://www.youtube.com/watch?v=abcd', mime='text/html'
68
+ ),
69
+ ).render().as_gemini_format(),
70
+ {
71
+ 'role': 'user',
72
+ 'parts': [
73
+ {
74
+ 'text': 'What are the common words from'
75
+ },
76
+ {
77
+ 'inlineData': {
78
+ 'data': base64.b64encode(image_content).decode('utf-8'),
79
+ 'mimeType': 'image/png',
80
+ }
81
+ },
82
+ {
83
+ 'text': ','
84
+ },
85
+ {
86
+ 'fileData': {
87
+ 'fileUri': 'https://my.pdf',
88
+ 'mimeType': 'application/pdf',
89
+ }
90
+ },
91
+ {
92
+ 'text': 'and'
93
+ },
94
+ {
95
+ 'fileData': {
96
+ 'fileUri': 'https://www.youtube.com/watch?v=abcd',
97
+ 'mimeType': 'video/*',
98
+ }
99
+ },
100
+ {
101
+ 'text': '?'
102
+ }
103
+ ],
104
+ },
105
+ )
106
+
107
+ def test_as_format_with_chunk_preprocessor(self):
108
+ self.assertEqual(
109
+ lf.Template(
110
+ 'What is this {{image}}?',
111
+ image=lf_modalities.Image.from_bytes(image_content)
112
+ ).render().as_format(
113
+ 'gemini',
114
+ chunk_preprocessor=lambda x: x if isinstance(x, str) else None
115
+ ),
116
+ {
117
+ 'role': 'user',
118
+ 'parts': [
119
+ {
120
+ 'text': 'What is this'
121
+ },
122
+ {
123
+ 'text': '?'
124
+ }
125
+ ],
126
+ },
127
+ )
128
+
129
+ def test_from_value_with_simple_text(self):
130
+ self.assertEqual(
131
+ lf.Message.from_value(
132
+ {
133
+ 'parts': [{'text': 'this is a text'}],
134
+ },
135
+ format='gemini',
136
+ ),
137
+ lf.AIMessage('this is a text'),
138
+ )
139
+
140
+ def test_from_value_with_role(self):
141
+ self.assertEqual(
142
+ lf.Message.from_value(
143
+ {
144
+ 'role': 'user',
145
+ 'parts': [{'text': 'this is a text'}],
146
+ },
147
+ format='gemini',
148
+ ),
149
+ lf.UserMessage('this is a text'),
150
+ )
151
+ self.assertEqual(
152
+ lf.Message.from_value(
153
+ {
154
+ 'role': 'model',
155
+ 'parts': [{'text': 'this is a text'}],
156
+ },
157
+ format='gemini',
158
+ ),
159
+ lf.AIMessage('this is a text'),
160
+ )
161
+ self.assertEqual(
162
+ lf.Message.from_value(
163
+ {
164
+ 'role': 'system',
165
+ 'parts': [{'text': 'this is a text'}],
166
+ },
167
+ format='gemini',
168
+ ),
169
+ lf.SystemMessage('this is a text'),
170
+ )
171
+ with self.assertRaisesRegex(ValueError, 'Unsupported role: .*'):
172
+ lf.Message.from_value(
173
+ {
174
+ 'role': 'function',
175
+ 'parts': [{'text': 'this is a text'}],
176
+ },
177
+ format='gemini',
178
+ )
179
+
180
+ def test_from_value_with_thoughts(self):
181
+ message = lf.Message.from_value(
182
+ {
183
+ 'role': 'user',
184
+ 'parts': [
185
+ {
186
+ 'text': 'this is a red round object',
187
+ 'thought': True
188
+ },
189
+ {
190
+ 'text': 'this is a apple',
191
+ },
192
+ ],
193
+ },
194
+ format='gemini',
195
+ )
196
+ self.assertEqual(message.text, 'this is a apple')
197
+ self.assertEqual(message.thought, 'this is a red round object')
198
+
199
+ def test_from_value_with_modalities(self):
200
+ m = lf.Message.from_gemini_format(
201
+ {
202
+ 'role': 'user',
203
+ 'parts': [
204
+ {
205
+ 'text': 'What are the common words from'
206
+ },
207
+ {
208
+ 'inlineData': {
209
+ 'data': base64.b64encode(image_content).decode('utf-8'),
210
+ 'mimeType': 'image/png',
211
+ }
212
+ },
213
+ {
214
+ 'text': ','
215
+ },
216
+ {
217
+ 'fileData': {
218
+ 'fileUri': 'https://my.pdf',
219
+ 'mimeType': 'application/pdf',
220
+ }
221
+ },
222
+ {
223
+ 'text': 'and'
224
+ },
225
+ {
226
+ 'fileData': {
227
+ 'fileUri': 'https://www.youtube.com/watch?v=abcd',
228
+ 'mimeType': 'video/*',
229
+ }
230
+ },
231
+ {
232
+ 'text': '?'
233
+ }
234
+ ],
235
+ },
236
+ )
237
+ self.assertEqual(
238
+ m.text,
239
+ (
240
+ 'What are the common words from <<[[obj0]]>> , <<[[obj1]]>> '
241
+ 'and <<[[obj2]]>> ?'
242
+ )
243
+ )
244
+ self.assertIsInstance(m.obj0, lf_modalities.Image)
245
+ self.assertEqual(m.obj0.mime_type, 'image/png')
246
+ self.assertEqual(m.obj0.to_bytes(), image_content)
247
+
248
+ self.assertIsInstance(m.obj1, lf_modalities.PDF)
249
+ self.assertEqual(m.obj1.uri, 'https://my.pdf')
250
+
251
+ self.assertIsInstance(m.obj2, lf_modalities.Video)
252
+ self.assertEqual(m.obj2.uri, 'https://www.youtube.com/watch?v=abcd')
253
+
254
+
255
+ if __name__ == '__main__':
256
+ unittest.main()
@@ -0,0 +1,131 @@
1
+ # Copyright 2025 The Langfun Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """OpenAI API message conversion."""
15
+
16
+ from typing import Annotated, Any, Callable
17
+
18
+ import langfun.core as lf
19
+ from langfun.core import modalities as lf_modalities
20
+
21
+
22
+ class OpenAIMessageConverter(lf.MessageConverter):
23
+ """Converter to OpenAI API."""
24
+
25
+ FORMAT_ID = 'openai'
26
+
27
+ chunk_preprocessor: Annotated[
28
+ Callable[[str | lf.Modality], Any] | None,
29
+ (
30
+ 'Chunk preprocessor for Langfun chunk to OpenAI chunk conversion. '
31
+ 'It will be applied before each Langfun chunk is converted. '
32
+ 'If returns None, the chunk will be skipped.'
33
+ )
34
+ ] = None
35
+
36
+ def to_value(self, message: lf.Message) -> dict[str, Any]:
37
+ """Converts a Langfun message to OpenAI API."""
38
+ parts = []
39
+ for chunk in message.chunk():
40
+ if self.chunk_preprocessor is not None:
41
+ chunk = self.chunk_preprocessor(chunk)
42
+ if chunk is None:
43
+ continue
44
+
45
+ if isinstance(chunk, str):
46
+ item = dict(type='text', text=chunk)
47
+ elif isinstance(chunk, lf_modalities.Image):
48
+ item = dict(
49
+ type='image_url', image_url=dict(url=chunk.embeddable_uri)
50
+ )
51
+ # TODO(daiyip): Support audio_input.
52
+ else:
53
+ raise ValueError(f'Unsupported content type: {chunk!r}.')
54
+ parts.append(item)
55
+ return dict(
56
+ role=self.get_role(message),
57
+ content=parts,
58
+ )
59
+
60
+ def get_role(self, message: lf.Message) -> str:
61
+ """Returns the role of the message."""
62
+ if isinstance(message, lf.SystemMessage):
63
+ return 'system'
64
+ elif isinstance(message, lf.UserMessage):
65
+ return 'user'
66
+ elif isinstance(message, lf.AIMessage):
67
+ return 'assistant'
68
+ else:
69
+ raise ValueError(f'Unsupported message type: {message!r}.')
70
+
71
+ def get_message_cls(self, role: str) -> type[lf.Message]:
72
+ """Returns the message class of the message."""
73
+ match role:
74
+ case 'system':
75
+ return lf.SystemMessage
76
+ case 'user':
77
+ return lf.UserMessage
78
+ case 'assistant':
79
+ return lf.AIMessage
80
+ case _:
81
+ raise ValueError(f'Unsupported role: {role!r}.')
82
+
83
+ def from_value(self, value: dict[str, Any]) -> lf.Message:
84
+ """Returns a Langfun message from OpenAI message."""
85
+ message_cls = self.get_message_cls(
86
+ self._safe_read(value, 'role', default='assistant')
87
+ )
88
+ content = self._safe_read(value, 'content')
89
+ if isinstance(content, str):
90
+ return message_cls(content)
91
+
92
+ assert isinstance(content, list)
93
+ chunks = []
94
+ for item in content:
95
+ t = self._safe_read(item, 'type')
96
+ if t == 'text':
97
+ chunk = self._safe_read(item, 'text')
98
+ elif t == 'image_url':
99
+ chunk = lf_modalities.Image.from_uri(
100
+ self._safe_read(self._safe_read(item, 'image_url'), 'url')
101
+ )
102
+ else:
103
+ raise ValueError(f'Unsupported content type: {item!r}.')
104
+ chunks.append(chunk)
105
+ return message_cls.from_chunks(chunks)
106
+
107
+
108
+ def _as_openai_format(
109
+ self,
110
+ chunk_preprocessor: Callable[[str | lf.Modality], Any] | None = None,
111
+ **kwargs
112
+ ) -> dict[str, Any]:
113
+ """Returns an OpenAI format message."""
114
+ return OpenAIMessageConverter(
115
+ chunk_preprocessor=chunk_preprocessor, **kwargs
116
+ ).to_value(self)
117
+
118
+
119
+ @classmethod
120
+ def _from_openai_format(
121
+ cls,
122
+ openai_message: dict[str, Any],
123
+ **kwargs
124
+ ) -> lf.Message:
125
+ """Creates a Langfun message from the OpenAI format message."""
126
+ del cls
127
+ return OpenAIMessageConverter(**kwargs).from_value(openai_message)
128
+
129
+ # Set shortcut methods in lf.Message.
130
+ lf.Message.as_openai_format = _as_openai_format
131
+ lf.Message.from_openai_format = _from_openai_format
@@ -0,0 +1,176 @@
1
+ # Copyright 2025 The Langfun Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import base64
15
+ import unittest
16
+ import langfun.core as lf
17
+ from langfun.core import modalities as lf_modalities
18
+ from langfun.core.data.conversion import openai # pylint: disable=unused-import
19
+
20
+
21
+ image_content = (
22
+ b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x18\x00\x00\x00\x18\x04'
23
+ b'\x03\x00\x00\x00\x12Y \xcb\x00\x00\x00\x18PLTE\x00\x00'
24
+ b'\x00fff_chaag_cg_ch^ci_ciC\xedb\x94\x00\x00\x00\x08tRNS'
25
+ b'\x00\n\x9f*\xd4\xff_\xf4\xe4\x8b\xf3a\x00\x00\x00>IDATx'
26
+ b'\x01c \x05\x08)"\xd8\xcc\xae!\x06pNz\x88k\x19\\Q\xa8"\x10'
27
+ b'\xc1\x14\x95\x01%\xc1\n\xa143Ta\xa8"D-\x84\x03QM\x98\xc3'
28
+ b'\x1a\x1a\x1a@5\x0e\x04\xa0q\x88\x05\x00\x07\xf8\x18\xf9'
29
+ b'\xdao\xd0|\x00\x00\x00\x00IEND\xaeB`\x82'
30
+ )
31
+
32
+
33
+ class OpenAIConversionTest(unittest.TestCase):
34
+
35
+ def test_as_format_with_role(self):
36
+ self.assertEqual(
37
+ lf.UserMessage('hi').as_format('openai'),
38
+ {
39
+ 'role': 'user',
40
+ 'content': [{'type': 'text', 'text': 'hi'}],
41
+ },
42
+ )
43
+ self.assertEqual(
44
+ lf.AIMessage('hi').as_format('openai'),
45
+ {
46
+ 'role': 'assistant',
47
+ 'content': [{'type': 'text', 'text': 'hi'}],
48
+ },
49
+ )
50
+ self.assertEqual(
51
+ lf.SystemMessage('hi').as_format('openai'),
52
+ {
53
+ 'role': 'system',
54
+ 'content': [{'type': 'text', 'text': 'hi'}],
55
+ },
56
+ )
57
+
58
+ def test_as_format_with_image(self):
59
+ self.assertEqual(
60
+ lf.Template(
61
+ 'What is this {{image}}?',
62
+ image=lf_modalities.Image.from_bytes(image_content)
63
+ ).render().as_format('openai'),
64
+ {
65
+ 'role': 'user',
66
+ 'content': [
67
+ {
68
+ 'type': 'text',
69
+ 'text': 'What is this'
70
+ },
71
+ {
72
+ 'type': 'image_url',
73
+ 'image_url': {
74
+ 'url': (
75
+ 'data:image/png;base64,'
76
+ + base64.b64encode(image_content).decode('utf-8')
77
+ )
78
+ }
79
+ },
80
+ {
81
+ 'type': 'text',
82
+ 'text': '?'
83
+ }
84
+ ],
85
+ },
86
+ )
87
+
88
+ def test_as_format_with_chunk_preprocessor(self):
89
+ self.assertEqual(
90
+ lf.Template(
91
+ 'What is this {{image}}?',
92
+ image=lf_modalities.Image.from_bytes(image_content)
93
+ ).render().as_openai_format(
94
+ chunk_preprocessor=lambda x: x if isinstance(x, str) else None
95
+ ),
96
+ {
97
+ 'role': 'user',
98
+ 'content': [
99
+ {
100
+ 'type': 'text',
101
+ 'text': 'What is this'
102
+ },
103
+ {
104
+ 'type': 'text',
105
+ 'text': '?'
106
+ }
107
+ ],
108
+ },
109
+ )
110
+
111
+ def test_from_value_with_simple_text(self):
112
+ self.assertEqual(
113
+ lf.Message.from_value(
114
+ {
115
+ 'content': 'this is a text',
116
+ },
117
+ format='openai',
118
+ ),
119
+ lf.AIMessage('this is a text'),
120
+ )
121
+
122
+ def test_from_value_with_role(self):
123
+ self.assertEqual(
124
+ lf.Message.from_value(
125
+ {
126
+ 'role': 'user',
127
+ 'content': [{'type': 'text', 'text': 'hi'}],
128
+ },
129
+ format='openai',
130
+ ),
131
+ lf.UserMessage('hi'),
132
+ )
133
+ self.assertEqual(
134
+ lf.Message.from_value(
135
+ {
136
+ 'role': 'assistant',
137
+ 'content': [{'type': 'text', 'text': 'hi'}],
138
+ },
139
+ format='openai',
140
+ ),
141
+ lf.AIMessage('hi'),
142
+ )
143
+ self.assertEqual(
144
+ lf.Message.from_value(
145
+ {
146
+ 'role': 'system',
147
+ 'content': [{'type': 'text', 'text': 'hi'}],
148
+ },
149
+ format='openai',
150
+ ),
151
+ lf.SystemMessage('hi'),
152
+ )
153
+ with self.assertRaisesRegex(ValueError, 'Unsupported role: .*'):
154
+ lf.Message.from_value(
155
+ {
156
+ 'role': 'function',
157
+ 'content': [{'type': 'text', 'text': 'hi'}],
158
+ },
159
+ format='openai',
160
+ )
161
+
162
+ def test_from_value_with_image(self):
163
+ m = lf.Message.from_openai_format(
164
+ lf.Template(
165
+ 'What is this {{image}}?',
166
+ image=lf_modalities.Image.from_bytes(image_content)
167
+ ).render().as_format('openai'),
168
+ )
169
+ self.assertEqual(m.text, 'What is this <<[[obj0]]>> ?')
170
+ self.assertIsInstance(m.obj0, lf_modalities.Image)
171
+ self.assertEqual(m.obj0.mime_type, 'image/png')
172
+ self.assertEqual(m.obj0.to_bytes(), image_content)
173
+
174
+
175
+ if __name__ == '__main__':
176
+ unittest.main()
@@ -13,7 +13,6 @@
13
13
  # limitations under the License.
14
14
  """Language models from Anthropic."""
15
15
 
16
- import base64
17
16
  import datetime
18
17
  import functools
19
18
  import os
@@ -21,6 +20,7 @@ from typing import Annotated, Any
21
20
 
22
21
  import langfun.core as lf
23
22
  from langfun.core import modalities as lf_modalities
23
+ from langfun.core.data.conversion import anthropic as anthropic_conversion # pylint: disable=unused-import
24
24
  from langfun.core.llms import rest
25
25
  import pyglove as pg
26
26
 
@@ -502,10 +502,17 @@ class Anthropic(rest.REST):
502
502
  """Returns the JSON input for a message."""
503
503
  request = dict()
504
504
  request.update(self._request_args(sampling_options))
505
+
506
+ def modality_check(chunk: Any) -> Any:
507
+ if isinstance(chunk, lf_modalities.Mime):
508
+ if not self.supports_input(chunk.mime_type):
509
+ raise ValueError(f'Unsupported modality: {chunk!r}.')
510
+ return chunk
511
+
505
512
  request.update(
506
513
  dict(
507
514
  messages=[
508
- dict(role='user', content=self._content_from_message(prompt))
515
+ prompt.as_format('anthropic', chunk_preprocessor=modality_check)
509
516
  ]
510
517
  )
511
518
  )
@@ -548,43 +555,8 @@ class Anthropic(rest.REST):
548
555
  args.pop('top_p', None)
549
556
  return args
550
557
 
551
- def _content_from_message(self, prompt: lf.Message) -> list[dict[str, Any]]:
552
- """Converts an message to Anthropic's content protocol (list of dicts)."""
553
- # Refer: https://docs.anthropic.com/claude/reference/messages-examples
554
- content = []
555
- for chunk in prompt.chunk():
556
- if isinstance(chunk, str):
557
- content.append(dict(type='text', text=chunk))
558
- elif isinstance(chunk, lf_modalities.Mime):
559
- if not self.supports_input(chunk.mime_type):
560
- raise ValueError(f'Unsupported modality: {chunk!r}.')
561
- if isinstance(chunk, lf_modalities.Image):
562
- item = dict(
563
- type='image',
564
- source=dict(
565
- type='base64',
566
- media_type=chunk.mime_type,
567
- data=base64.b64encode(chunk.to_bytes()).decode(),
568
- ),
569
- )
570
- elif isinstance(chunk, lf_modalities.PDF):
571
- item = dict(
572
- type='document',
573
- source=dict(
574
- type='base64',
575
- media_type=chunk.mime_type,
576
- data=base64.b64encode(chunk.to_bytes()).decode(),
577
- ),
578
- )
579
- else:
580
- raise NotImplementedError(
581
- f'Modality conversion not implemented: {chunk!r}'
582
- )
583
- content.append(item)
584
- return content
585
-
586
558
  def result(self, json: dict[str, Any]) -> lf.LMSamplingResult:
587
- message = self._message_from_content(json['content'])
559
+ message = lf.Message.from_value(json, format='anthropic')
588
560
  input_tokens = json['usage']['input_tokens']
589
561
  output_tokens = json['usage']['output_tokens']
590
562
  return lf.LMSamplingResult(
@@ -596,20 +568,6 @@ class Anthropic(rest.REST):
596
568
  ),
597
569
  )
598
570
 
599
- def _message_from_content(self, content: list[dict[str, Any]]) -> lf.Message:
600
- """Converts Anthropic's content protocol to message."""
601
- # Refer: https://docs.anthropic.com/claude/reference/messages-examples
602
- # Thinking: https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking#implementing-extended-thinking # pylint: disable=line-too-long
603
- response = lf.AIMessage.from_chunks(
604
- [x['text'] for x in content if x['type'] == 'text']
605
- )
606
- thinking = lf.AIMessage.from_chunks(
607
- [x['thinking'] for x in content if x['type'] == 'thinking']
608
- )
609
- # thinking is added into the metadata.thinking field.
610
- response.set('thinking', thinking)
611
- return response
612
-
613
571
 
614
572
  class Claude37(Anthropic):
615
573
  """Base class for Claude 3.7 models."""