langfun 0.1.2.dev202412020805__py3-none-any.whl → 0.1.2.dev202412030000__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langfun/core/llms/openai.py +142 -207
- langfun/core/llms/openai_test.py +160 -224
- langfun/core/llms/vertexai_test.py +2 -0
- {langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/METADATA +1 -6
- {langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/RECORD +8 -8
- {langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/LICENSE +0 -0
- {langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/WHEEL +0 -0
- {langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/top_level.txt +0 -0
langfun/core/llms/openai.py
CHANGED
@@ -13,34 +13,14 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
"""Language models from OpenAI."""
|
15
15
|
|
16
|
-
import collections
|
17
|
-
import functools
|
18
16
|
import os
|
19
17
|
from typing import Annotated, Any
|
20
18
|
|
21
19
|
import langfun.core as lf
|
22
20
|
from langfun.core import modalities as lf_modalities
|
21
|
+
from langfun.core.llms import rest
|
23
22
|
import pyglove as pg
|
24
23
|
|
25
|
-
try:
|
26
|
-
import openai # pylint: disable=g-import-not-at-top
|
27
|
-
|
28
|
-
if hasattr(openai, 'error'):
|
29
|
-
# For lower versions.
|
30
|
-
ServiceUnavailableError = openai.error.ServiceUnavailableError
|
31
|
-
RateLimitError = openai.error.RateLimitError
|
32
|
-
APITimeoutError = (
|
33
|
-
openai.error.APIError,
|
34
|
-
'.*The server had an error processing your request'
|
35
|
-
)
|
36
|
-
else:
|
37
|
-
# For higher versions.
|
38
|
-
ServiceUnavailableError = getattr(openai, 'InternalServerError')
|
39
|
-
RateLimitError = getattr(openai, 'RateLimitError')
|
40
|
-
APITimeoutError = getattr(openai, 'APITimeoutError')
|
41
|
-
except ImportError:
|
42
|
-
openai = None
|
43
|
-
|
44
24
|
|
45
25
|
# From https://platform.openai.com/settings/organization/limits
|
46
26
|
_DEFAULT_TPM = 250000
|
@@ -289,7 +269,7 @@ SUPPORTED_MODELS_AND_SETTINGS = {
|
|
289
269
|
rpm=_DEFAULT_RPM,
|
290
270
|
tpm=_DEFAULT_TPM
|
291
271
|
),
|
292
|
-
# GPT-3 instruction-tuned models
|
272
|
+
# GPT-3 instruction-tuned models (Deprecated)
|
293
273
|
'text-curie-001': pg.Dict(
|
294
274
|
in_service=False,
|
295
275
|
rpm=_DEFAULT_RPM,
|
@@ -325,9 +305,9 @@ SUPPORTED_MODELS_AND_SETTINGS = {
|
|
325
305
|
rpm=_DEFAULT_RPM,
|
326
306
|
tpm=_DEFAULT_TPM
|
327
307
|
),
|
328
|
-
# GPT-3 base models
|
308
|
+
# GPT-3 base models that are still in service.
|
329
309
|
'babbage-002': pg.Dict(
|
330
|
-
in_service=
|
310
|
+
in_service=True,
|
331
311
|
rpm=_DEFAULT_RPM,
|
332
312
|
tpm=_DEFAULT_TPM
|
333
313
|
),
|
@@ -340,7 +320,7 @@ SUPPORTED_MODELS_AND_SETTINGS = {
|
|
340
320
|
|
341
321
|
|
342
322
|
@lf.use_init_args(['model'])
|
343
|
-
class OpenAI(
|
323
|
+
class OpenAI(rest.REST):
|
344
324
|
"""OpenAI model."""
|
345
325
|
|
346
326
|
model: pg.typing.Annotated[
|
@@ -348,7 +328,9 @@ class OpenAI(lf.LanguageModel):
|
|
348
328
|
pg.MISSING_VALUE, list(SUPPORTED_MODELS_AND_SETTINGS.keys())
|
349
329
|
),
|
350
330
|
'The name of the model to use.',
|
351
|
-
]
|
331
|
+
]
|
332
|
+
|
333
|
+
api_endpoint: str = 'https://api.openai.com/v1/chat/completions'
|
352
334
|
|
353
335
|
multimodal: Annotated[
|
354
336
|
bool,
|
@@ -372,27 +354,45 @@ class OpenAI(lf.LanguageModel):
|
|
372
354
|
),
|
373
355
|
] = None
|
374
356
|
|
357
|
+
project: Annotated[
|
358
|
+
str | None,
|
359
|
+
(
|
360
|
+
'Project. If None, the key will be read from environment '
|
361
|
+
"variable 'OPENAI_PROJECT'. Based on the value, usages from "
|
362
|
+
"these API requests will count against the project's quota. "
|
363
|
+
),
|
364
|
+
] = None
|
365
|
+
|
375
366
|
def _on_bound(self):
|
376
367
|
super()._on_bound()
|
377
|
-
self.
|
378
|
-
|
379
|
-
|
380
|
-
'Please install "langfun[llm-openai]" to use OpenAI models.'
|
381
|
-
)
|
368
|
+
self._api_key = None
|
369
|
+
self._organization = None
|
370
|
+
self._project = None
|
382
371
|
|
383
|
-
|
384
|
-
def _api_initialized(self):
|
372
|
+
def _initialize(self):
|
385
373
|
api_key = self.api_key or os.environ.get('OPENAI_API_KEY', None)
|
386
374
|
if not api_key:
|
387
375
|
raise ValueError(
|
388
376
|
'Please specify `api_key` during `__init__` or set environment '
|
389
377
|
'variable `OPENAI_API_KEY` with your OpenAI API key.'
|
390
378
|
)
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
379
|
+
self._api_key = api_key
|
380
|
+
self._organization = self.organization or os.environ.get(
|
381
|
+
'OPENAI_ORGANIZATION', None
|
382
|
+
)
|
383
|
+
self._project = self.project or os.environ.get('OPENAI_PROJECT', None)
|
384
|
+
|
385
|
+
@property
|
386
|
+
def headers(self) -> dict[str, Any]:
|
387
|
+
headers = {
|
388
|
+
'Content-Type': 'application/json',
|
389
|
+
'Authorization': f'Bearer {self._api_key}',
|
390
|
+
}
|
391
|
+
if self._organization:
|
392
|
+
headers['OpenAI-Organization'] = self._organization
|
393
|
+
if self._project:
|
394
|
+
headers['OpenAI-Project'] = self._project
|
395
|
+
return headers
|
396
396
|
|
397
397
|
@property
|
398
398
|
def model_id(self) -> str:
|
@@ -428,23 +428,16 @@ class OpenAI(lf.LanguageModel):
|
|
428
428
|
|
429
429
|
@classmethod
|
430
430
|
def dir(cls):
|
431
|
-
|
432
|
-
return openai.Model.list()
|
431
|
+
return [k for k, v in SUPPORTED_MODELS_AND_SETTINGS.items() if v.in_service]
|
433
432
|
|
434
|
-
|
435
|
-
def is_chat_model(self):
|
436
|
-
"""Returns True if the model is a chat model."""
|
437
|
-
return self.model.startswith(('o1', 'gpt-4', 'gpt-3.5-turbo'))
|
438
|
-
|
439
|
-
def _get_request_args(
|
433
|
+
def _request_args(
|
440
434
|
self, options: lf.LMSamplingOptions) -> dict[str, Any]:
|
441
435
|
# Reference:
|
442
436
|
# https://platform.openai.com/docs/api-reference/completions/create
|
443
437
|
# NOTE(daiyip): options.top_k is not applicable.
|
444
438
|
args = dict(
|
439
|
+
model=self.model,
|
445
440
|
n=options.n,
|
446
|
-
stream=False,
|
447
|
-
timeout=self.timeout,
|
448
441
|
top_logprobs=options.top_logprobs,
|
449
442
|
)
|
450
443
|
if options.logprobs:
|
@@ -453,13 +446,10 @@ class OpenAI(lf.LanguageModel):
|
|
453
446
|
raise RuntimeError('`logprobs` is not supported on {self.model!r}.')
|
454
447
|
args['logprobs'] = options.logprobs
|
455
448
|
|
456
|
-
# Completion and ChatCompletion uses different parameter name for model.
|
457
|
-
args['model' if self.is_chat_model else 'engine'] = self.model
|
458
|
-
|
459
449
|
if options.temperature is not None:
|
460
450
|
args['temperature'] = options.temperature
|
461
451
|
if options.max_tokens is not None:
|
462
|
-
args['
|
452
|
+
args['max_completion_tokens'] = options.max_tokens
|
463
453
|
if options.top_p is not None:
|
464
454
|
args['top_p'] = options.top_p
|
465
455
|
if options.stop:
|
@@ -468,168 +458,113 @@ class OpenAI(lf.LanguageModel):
|
|
468
458
|
args['seed'] = options.random_seed
|
469
459
|
return args
|
470
460
|
|
471
|
-
def
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
**self._get_request_args(self.sampling_options),
|
487
|
-
)
|
488
|
-
# Parse response.
|
489
|
-
samples_by_index = collections.defaultdict(list)
|
490
|
-
for choice in response.choices:
|
491
|
-
samples_by_index[choice.index].append(
|
492
|
-
lf.LMSample(choice.text.strip(), score=choice.logprobs or 0.0)
|
493
|
-
)
|
494
|
-
|
495
|
-
n = len(samples_by_index)
|
496
|
-
estimated_cost = self.estimate_cost(
|
497
|
-
num_input_tokens=response.usage.prompt_tokens,
|
498
|
-
num_output_tokens=response.usage.completion_tokens,
|
499
|
-
)
|
500
|
-
usage = lf.LMSamplingUsage(
|
501
|
-
prompt_tokens=response.usage.prompt_tokens // n,
|
502
|
-
completion_tokens=response.usage.completion_tokens // n,
|
503
|
-
total_tokens=response.usage.total_tokens // n,
|
504
|
-
estimated_cost=(
|
505
|
-
None if estimated_cost is None else (estimated_cost // n)
|
506
|
-
)
|
507
|
-
)
|
508
|
-
return [
|
509
|
-
lf.LMSamplingResult(samples_by_index[index], usage=usage)
|
510
|
-
for index in sorted(samples_by_index.keys())
|
511
|
-
]
|
512
|
-
|
513
|
-
return self._parallel_execute_with_currency_control(
|
514
|
-
_open_ai_completion,
|
515
|
-
[prompts],
|
516
|
-
retry_on_errors=(
|
517
|
-
ServiceUnavailableError,
|
518
|
-
RateLimitError,
|
519
|
-
APITimeoutError,
|
520
|
-
),
|
521
|
-
)[0]
|
522
|
-
|
523
|
-
def _chat_complete_batch(
|
524
|
-
self, prompts: list[lf.Message]
|
525
|
-
) -> list[lf.LMSamplingResult]:
|
526
|
-
def _content_from_message(message: lf.Message):
|
527
|
-
if self.multimodal:
|
528
|
-
content = []
|
529
|
-
for chunk in message.chunk():
|
530
|
-
if isinstance(chunk, str):
|
531
|
-
item = dict(type='text', text=chunk)
|
532
|
-
elif isinstance(chunk, lf_modalities.Image):
|
533
|
-
if chunk.uri and chunk.uri.lower().startswith(
|
534
|
-
('http:', 'https:', 'ftp:')
|
535
|
-
):
|
536
|
-
uri = chunk.uri
|
537
|
-
else:
|
538
|
-
uri = chunk.content_uri
|
539
|
-
item = dict(type='image_url', image_url=dict(url=uri))
|
540
|
-
else:
|
541
|
-
raise ValueError(f'Unsupported modality object: {chunk!r}.')
|
542
|
-
content.append(item)
|
461
|
+
def _content_from_message(self, message: lf.Message):
|
462
|
+
"""Returns a OpenAI content object from a Langfun message."""
|
463
|
+
def _uri_from(chunk: lf.Modality) -> str:
|
464
|
+
if chunk.uri and chunk.uri.lower().startswith(
|
465
|
+
('http:', 'https:', 'ftp:')
|
466
|
+
):
|
467
|
+
return chunk.uri
|
468
|
+
return chunk.content_uri
|
469
|
+
|
470
|
+
content = []
|
471
|
+
for chunk in message.chunk():
|
472
|
+
if isinstance(chunk, str):
|
473
|
+
item = dict(type='text', text=chunk)
|
474
|
+
elif isinstance(chunk, lf_modalities.Image) and self.multimodal:
|
475
|
+
item = dict(type='image_url', image_url=dict(url=_uri_from(chunk)))
|
543
476
|
else:
|
544
|
-
|
545
|
-
|
546
|
-
|
547
|
-
def _open_ai_chat_completion(prompt: lf.Message):
|
548
|
-
request_args = self._get_request_args(self.sampling_options)
|
549
|
-
# Users could use `metadata_json_schema` to pass additional
|
550
|
-
# request arguments.
|
551
|
-
json_schema = prompt.metadata.get('json_schema')
|
552
|
-
if json_schema is not None:
|
553
|
-
if not isinstance(json_schema, dict):
|
554
|
-
raise ValueError(
|
555
|
-
f'`json_schema` must be a dict, got {json_schema!r}.'
|
556
|
-
)
|
557
|
-
if 'title' not in json_schema:
|
558
|
-
raise ValueError(
|
559
|
-
f'The root of `json_schema` must have a `title` field, '
|
560
|
-
f'got {json_schema!r}.'
|
561
|
-
)
|
562
|
-
request_args.update(
|
563
|
-
response_format=dict(
|
564
|
-
type='json_schema',
|
565
|
-
json_schema=dict(
|
566
|
-
schema=json_schema,
|
567
|
-
name=json_schema['title'],
|
568
|
-
strict=True,
|
569
|
-
)
|
570
|
-
)
|
571
|
-
)
|
572
|
-
prompt.metadata.formatted_text = (
|
573
|
-
prompt.text
|
574
|
-
+ '\n\n [RESPONSE FORMAT (not part of prompt)]\n'
|
575
|
-
+ pg.to_json_str(request_args['response_format'], json_indent=2)
|
576
|
-
)
|
477
|
+
raise ValueError(f'Unsupported modality: {chunk!r}.')
|
478
|
+
content.append(item)
|
479
|
+
return content
|
577
480
|
|
578
|
-
|
579
|
-
|
580
|
-
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
481
|
+
def request(
|
482
|
+
self,
|
483
|
+
prompt: lf.Message,
|
484
|
+
sampling_options: lf.LMSamplingOptions
|
485
|
+
) -> dict[str, Any]:
|
486
|
+
"""Returns the JSON input for a message."""
|
487
|
+
request_args = self._request_args(sampling_options)
|
488
|
+
|
489
|
+
# Users could use `metadata_json_schema` to pass additional
|
490
|
+
# request arguments.
|
491
|
+
json_schema = prompt.metadata.get('json_schema')
|
492
|
+
if json_schema is not None:
|
493
|
+
if not isinstance(json_schema, dict):
|
494
|
+
raise ValueError(
|
495
|
+
f'`json_schema` must be a dict, got {json_schema!r}.'
|
586
496
|
)
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
samples = []
|
593
|
-
for choice in response.choices:
|
594
|
-
logprobs = None
|
595
|
-
choice_logprobs = getattr(choice, 'logprobs', None)
|
596
|
-
if choice_logprobs:
|
597
|
-
logprobs = [
|
598
|
-
(
|
599
|
-
t.token,
|
600
|
-
t.logprob,
|
601
|
-
[(tt.token, tt.logprob) for tt in t.top_logprobs],
|
602
|
-
)
|
603
|
-
for t in choice_logprobs.content
|
604
|
-
]
|
605
|
-
samples.append(
|
606
|
-
lf.LMSample(
|
607
|
-
choice.message.content,
|
608
|
-
score=0.0,
|
609
|
-
logprobs=logprobs,
|
610
|
-
)
|
497
|
+
if 'title' not in json_schema:
|
498
|
+
raise ValueError(
|
499
|
+
f'The root of `json_schema` must have a `title` field, '
|
500
|
+
f'got {json_schema!r}.'
|
611
501
|
)
|
612
|
-
|
613
|
-
|
614
|
-
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
estimated_cost=self.estimate_cost(
|
620
|
-
num_input_tokens=response.usage.prompt_tokens,
|
621
|
-
num_output_tokens=response.usage.completion_tokens,
|
502
|
+
request_args.update(
|
503
|
+
response_format=dict(
|
504
|
+
type='json_schema',
|
505
|
+
json_schema=dict(
|
506
|
+
schema=json_schema,
|
507
|
+
name=json_schema['title'],
|
508
|
+
strict=True,
|
622
509
|
)
|
623
|
-
)
|
510
|
+
)
|
511
|
+
)
|
512
|
+
prompt.metadata.formatted_text = (
|
513
|
+
prompt.text
|
514
|
+
+ '\n\n [RESPONSE FORMAT (not part of prompt)]\n'
|
515
|
+
+ pg.to_json_str(request_args['response_format'], json_indent=2)
|
516
|
+
)
|
517
|
+
|
518
|
+
# Prepare messages.
|
519
|
+
messages = []
|
520
|
+
# Users could use `metadata_system_message` to pass system message.
|
521
|
+
system_message = prompt.metadata.get('system_message')
|
522
|
+
if system_message:
|
523
|
+
system_message = lf.SystemMessage.from_value(system_message)
|
524
|
+
messages.append(
|
525
|
+
dict(role='system',
|
526
|
+
content=self._content_from_message(system_message))
|
624
527
|
)
|
528
|
+
messages.append(
|
529
|
+
dict(role='user', content=self._content_from_message(prompt))
|
530
|
+
)
|
531
|
+
request = dict()
|
532
|
+
request.update(request_args)
|
533
|
+
request['messages'] = messages
|
534
|
+
return request
|
625
535
|
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
536
|
+
def _parse_choice(self, choice: dict[str, Any]) -> lf.LMSample:
|
537
|
+
# Reference:
|
538
|
+
# https://platform.openai.com/docs/api-reference/chat/object
|
539
|
+
logprobs = None
|
540
|
+
choice_logprobs = choice.get('logprobs')
|
541
|
+
if choice_logprobs:
|
542
|
+
logprobs = [
|
543
|
+
(
|
544
|
+
t['token'],
|
545
|
+
t['logprob'],
|
546
|
+
[(tt['token'], tt['logprob']) for tt in t['top_logprobs']],
|
547
|
+
)
|
548
|
+
for t in choice_logprobs['content']
|
549
|
+
]
|
550
|
+
return lf.LMSample(
|
551
|
+
choice['message']['content'],
|
552
|
+
score=0.0,
|
553
|
+
logprobs=logprobs,
|
554
|
+
)
|
555
|
+
|
556
|
+
def result(self, json: dict[str, Any]) -> lf.LMSamplingResult:
|
557
|
+
usage = json['usage']
|
558
|
+
return lf.LMSamplingResult(
|
559
|
+
samples=[self._parse_choice(choice) for choice in json['choices']],
|
560
|
+
usage=lf.LMSamplingUsage(
|
561
|
+
prompt_tokens=usage['prompt_tokens'],
|
562
|
+
completion_tokens=usage['completion_tokens'],
|
563
|
+
total_tokens=usage['total_tokens'],
|
564
|
+
estimated_cost=self.estimate_cost(
|
565
|
+
num_input_tokens=usage['prompt_tokens'],
|
566
|
+
num_output_tokens=usage['completion_tokens'],
|
567
|
+
)
|
633
568
|
),
|
634
569
|
)
|
635
570
|
|
langfun/core/llms/openai_test.py
CHANGED
@@ -13,6 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
"""Tests for OpenAI models."""
|
15
15
|
|
16
|
+
from typing import Any
|
16
17
|
import unittest
|
17
18
|
from unittest import mock
|
18
19
|
|
@@ -20,86 +21,106 @@ import langfun.core as lf
|
|
20
21
|
from langfun.core import modalities as lf_modalities
|
21
22
|
from langfun.core.llms import openai
|
22
23
|
import pyglove as pg
|
24
|
+
import requests
|
23
25
|
|
24
26
|
|
25
|
-
def
|
26
|
-
del kwargs
|
27
|
-
|
28
|
-
for i, _ in enumerate(prompt):
|
29
|
-
for k in range(n):
|
30
|
-
choices.append(pg.Dict(
|
31
|
-
index=i,
|
32
|
-
text=f'Sample {k} for prompt {i}.',
|
33
|
-
logprobs=k / 10,
|
34
|
-
))
|
35
|
-
return pg.Dict(
|
36
|
-
choices=choices,
|
37
|
-
usage=lf.LMSamplingUsage(
|
38
|
-
prompt_tokens=100,
|
39
|
-
completion_tokens=100,
|
40
|
-
total_tokens=200,
|
41
|
-
),
|
42
|
-
)
|
43
|
-
|
44
|
-
|
45
|
-
def mock_chat_completion_query(messages, *, n=1, **kwargs):
|
27
|
+
def mock_chat_completion_request(url: str, json: dict[str, Any], **kwargs):
|
28
|
+
del url, kwargs
|
29
|
+
messages = json['messages']
|
46
30
|
if len(messages) > 1:
|
47
31
|
system_message = f' system={messages[0]["content"]}'
|
48
32
|
else:
|
49
33
|
system_message = ''
|
50
34
|
|
51
|
-
if 'response_format' in
|
52
|
-
response_format = f' format={
|
35
|
+
if 'response_format' in json:
|
36
|
+
response_format = f' format={json["response_format"]["type"]}'
|
53
37
|
else:
|
54
38
|
response_format = ''
|
55
39
|
|
56
40
|
choices = []
|
57
|
-
for k in range(n):
|
58
|
-
|
59
|
-
|
41
|
+
for k in range(json['n']):
|
42
|
+
if json.get('logprobs'):
|
43
|
+
logprobs = dict(
|
44
|
+
content=[
|
45
|
+
dict(
|
46
|
+
token='chosen_token',
|
47
|
+
logprob=0.5,
|
48
|
+
top_logprobs=[
|
49
|
+
dict(
|
50
|
+
token=f'alternative_token_{i + 1}',
|
51
|
+
logprob=0.1
|
52
|
+
) for i in range(3)
|
53
|
+
]
|
54
|
+
)
|
55
|
+
]
|
56
|
+
)
|
57
|
+
else:
|
58
|
+
logprobs = None
|
59
|
+
|
60
|
+
choices.append(dict(
|
61
|
+
message=dict(
|
60
62
|
content=(
|
61
63
|
f'Sample {k} for message.{system_message}{response_format}'
|
62
64
|
)
|
63
65
|
),
|
64
|
-
logprobs=
|
66
|
+
logprobs=logprobs,
|
65
67
|
))
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
68
|
+
response = requests.Response()
|
69
|
+
response.status_code = 200
|
70
|
+
response._content = pg.to_json_str(
|
71
|
+
dict(
|
72
|
+
choices=choices,
|
73
|
+
usage=lf.LMSamplingUsage(
|
74
|
+
prompt_tokens=100,
|
75
|
+
completion_tokens=100,
|
76
|
+
total_tokens=200,
|
77
|
+
),
|
78
|
+
)
|
79
|
+
).encode()
|
80
|
+
return response
|
74
81
|
|
75
82
|
|
76
|
-
def
|
77
|
-
|
83
|
+
def mock_chat_completion_request_vision(
|
84
|
+
url: str, json: dict[str, Any], **kwargs
|
85
|
+
):
|
86
|
+
del url, kwargs
|
78
87
|
choices = []
|
79
88
|
urls = [
|
80
89
|
c['image_url']['url']
|
81
|
-
for c in messages[0]['content'] if c['type'] == 'image_url'
|
90
|
+
for c in json['messages'][0]['content'] if c['type'] == 'image_url'
|
82
91
|
]
|
83
|
-
for k in range(n):
|
92
|
+
for k in range(json['n']):
|
84
93
|
choices.append(pg.Dict(
|
85
94
|
message=pg.Dict(
|
86
95
|
content=f'Sample {k} for message: {"".join(urls)}'
|
87
96
|
),
|
88
97
|
logprobs=None,
|
89
98
|
))
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
99
|
+
response = requests.Response()
|
100
|
+
response.status_code = 200
|
101
|
+
response._content = pg.to_json_str(
|
102
|
+
dict(
|
103
|
+
choices=choices,
|
104
|
+
usage=lf.LMSamplingUsage(
|
105
|
+
prompt_tokens=100,
|
106
|
+
completion_tokens=100,
|
107
|
+
total_tokens=200,
|
108
|
+
),
|
109
|
+
)
|
110
|
+
).encode()
|
111
|
+
return response
|
98
112
|
|
99
113
|
|
100
114
|
class OpenAITest(unittest.TestCase):
|
101
115
|
"""Tests for OpenAI language model."""
|
102
116
|
|
117
|
+
def test_dir(self):
|
118
|
+
self.assertIn('gpt-4-turbo', openai.OpenAI.dir())
|
119
|
+
|
120
|
+
def test_key(self):
|
121
|
+
with self.assertRaisesRegex(ValueError, 'Please specify `api_key`'):
|
122
|
+
openai.Gpt4()('hi')
|
123
|
+
|
103
124
|
def test_model_id(self):
|
104
125
|
self.assertEqual(
|
105
126
|
openai.Gpt35(api_key='test_key').model_id, 'OpenAI(text-davinci-003)')
|
@@ -112,29 +133,9 @@ class OpenAITest(unittest.TestCase):
|
|
112
133
|
def test_max_concurrency(self):
|
113
134
|
self.assertGreater(openai.Gpt35(api_key='test_key').max_concurrency, 0)
|
114
135
|
|
115
|
-
def
|
116
|
-
self.assertEqual(
|
117
|
-
openai.Gpt35(api_key='test_key', timeout=90.0)._get_request_args(
|
118
|
-
lf.LMSamplingOptions(
|
119
|
-
temperature=2.0,
|
120
|
-
logprobs=True,
|
121
|
-
n=2,
|
122
|
-
max_tokens=4096,
|
123
|
-
top_p=1.0)),
|
124
|
-
dict(
|
125
|
-
engine='text-davinci-003',
|
126
|
-
logprobs=True,
|
127
|
-
top_logprobs=None,
|
128
|
-
n=2,
|
129
|
-
temperature=2.0,
|
130
|
-
max_tokens=4096,
|
131
|
-
stream=False,
|
132
|
-
timeout=90.0,
|
133
|
-
top_p=1.0,
|
134
|
-
)
|
135
|
-
)
|
136
|
+
def test_request_args(self):
|
136
137
|
self.assertEqual(
|
137
|
-
openai.Gpt4(api_key='test_key').
|
138
|
+
openai.Gpt4(api_key='test_key')._request_args(
|
138
139
|
lf.LMSamplingOptions(
|
139
140
|
temperature=1.0, stop=['\n'], n=1, random_seed=123
|
140
141
|
)
|
@@ -144,40 +145,93 @@ class OpenAITest(unittest.TestCase):
|
|
144
145
|
top_logprobs=None,
|
145
146
|
n=1,
|
146
147
|
temperature=1.0,
|
147
|
-
stream=False,
|
148
|
-
timeout=120.0,
|
149
148
|
stop=['\n'],
|
150
149
|
seed=123,
|
151
150
|
),
|
152
151
|
)
|
153
152
|
with self.assertRaisesRegex(RuntimeError, '`logprobs` is not supported.*'):
|
154
|
-
openai.GptO1Preview(api_key='test_key').
|
153
|
+
openai.GptO1Preview(api_key='test_key')._request_args(
|
155
154
|
lf.LMSamplingOptions(
|
156
155
|
temperature=1.0, logprobs=True
|
157
156
|
)
|
158
157
|
)
|
159
158
|
|
160
|
-
def
|
161
|
-
with mock.patch('
|
162
|
-
|
163
|
-
lm = openai.OpenAI(
|
159
|
+
def test_call_chat_completion(self):
|
160
|
+
with mock.patch('requests.Session.post') as mock_request:
|
161
|
+
mock_request.side_effect = mock_chat_completion_request
|
162
|
+
lm = openai.OpenAI(
|
163
|
+
model='gpt-4',
|
164
|
+
api_key='test_key',
|
165
|
+
organization='my_org',
|
166
|
+
project='my_project'
|
167
|
+
)
|
164
168
|
self.assertEqual(
|
165
169
|
lm('hello', sampling_options=lf.LMSamplingOptions(n=2)),
|
166
|
-
'Sample 0 for
|
170
|
+
'Sample 0 for message.',
|
167
171
|
)
|
168
172
|
|
169
|
-
def
|
170
|
-
with mock.patch('
|
171
|
-
|
172
|
-
lm = openai.OpenAI(
|
173
|
+
def test_call_chat_completion_with_logprobs(self):
|
174
|
+
with mock.patch('requests.Session.post') as mock_request:
|
175
|
+
mock_request.side_effect = mock_chat_completion_request
|
176
|
+
lm = openai.OpenAI(
|
177
|
+
model='gpt-4',
|
178
|
+
api_key='test_key',
|
179
|
+
organization='my_org',
|
180
|
+
project='my_project'
|
181
|
+
)
|
182
|
+
results = lm.sample(['hello'], logprobs=True)
|
183
|
+
self.assertEqual(len(results), 1)
|
173
184
|
self.assertEqual(
|
174
|
-
|
175
|
-
|
185
|
+
results[0],
|
186
|
+
lf.LMSamplingResult(
|
187
|
+
[
|
188
|
+
lf.LMSample(
|
189
|
+
response=lf.AIMessage(
|
190
|
+
text='Sample 0 for message.',
|
191
|
+
metadata={
|
192
|
+
'score': 0.0,
|
193
|
+
'logprobs': [(
|
194
|
+
'chosen_token',
|
195
|
+
0.5,
|
196
|
+
[
|
197
|
+
('alternative_token_1', 0.1),
|
198
|
+
('alternative_token_2', 0.1),
|
199
|
+
('alternative_token_3', 0.1),
|
200
|
+
],
|
201
|
+
)],
|
202
|
+
'is_cached': False,
|
203
|
+
'usage': lf.LMSamplingUsage(
|
204
|
+
prompt_tokens=100,
|
205
|
+
completion_tokens=100,
|
206
|
+
total_tokens=200,
|
207
|
+
estimated_cost=0.009,
|
208
|
+
),
|
209
|
+
},
|
210
|
+
tags=['lm-response'],
|
211
|
+
),
|
212
|
+
logprobs=[(
|
213
|
+
'chosen_token',
|
214
|
+
0.5,
|
215
|
+
[
|
216
|
+
('alternative_token_1', 0.1),
|
217
|
+
('alternative_token_2', 0.1),
|
218
|
+
('alternative_token_3', 0.1),
|
219
|
+
],
|
220
|
+
)],
|
221
|
+
)
|
222
|
+
],
|
223
|
+
usage=lf.LMSamplingUsage(
|
224
|
+
prompt_tokens=100,
|
225
|
+
completion_tokens=100,
|
226
|
+
total_tokens=200,
|
227
|
+
estimated_cost=0.009,
|
228
|
+
),
|
229
|
+
),
|
176
230
|
)
|
177
231
|
|
178
232
|
def test_call_chat_completion_vision(self):
|
179
|
-
with mock.patch('
|
180
|
-
|
233
|
+
with mock.patch('requests.Session.post') as mock_request:
|
234
|
+
mock_request.side_effect = mock_chat_completion_request_vision
|
181
235
|
lm_1 = openai.Gpt4Turbo(api_key='test_key')
|
182
236
|
lm_2 = openai.Gpt4VisionPreview(api_key='test_key')
|
183
237
|
for lm in (lm_1, lm_2):
|
@@ -191,136 +245,18 @@ class OpenAITest(unittest.TestCase):
|
|
191
245
|
),
|
192
246
|
'Sample 0 for message: https://fake/image',
|
193
247
|
)
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
248
|
+
lm_3 = openai.Gpt35Turbo(api_key='test_key')
|
249
|
+
with self.assertRaisesRegex(ValueError, 'Unsupported modality'):
|
250
|
+
lm_3(
|
251
|
+
lf.UserMessage(
|
252
|
+
'hello <<[[image]]>>',
|
253
|
+
image=lf_modalities.Image.from_uri('https://fake/image')
|
254
|
+
),
|
201
255
|
)
|
202
256
|
|
203
|
-
self.assertEqual(len(results), 2)
|
204
|
-
self.assertEqual(
|
205
|
-
results[0],
|
206
|
-
lf.LMSamplingResult(
|
207
|
-
[
|
208
|
-
lf.LMSample(
|
209
|
-
lf.AIMessage(
|
210
|
-
'Sample 0 for prompt 0.',
|
211
|
-
score=0.0,
|
212
|
-
logprobs=None,
|
213
|
-
is_cached=False,
|
214
|
-
usage=lf.LMSamplingUsage(
|
215
|
-
prompt_tokens=16,
|
216
|
-
completion_tokens=16,
|
217
|
-
total_tokens=33
|
218
|
-
),
|
219
|
-
tags=[lf.Message.TAG_LM_RESPONSE],
|
220
|
-
),
|
221
|
-
score=0.0,
|
222
|
-
logprobs=None,
|
223
|
-
),
|
224
|
-
lf.LMSample(
|
225
|
-
lf.AIMessage(
|
226
|
-
'Sample 1 for prompt 0.',
|
227
|
-
score=0.1,
|
228
|
-
logprobs=None,
|
229
|
-
is_cached=False,
|
230
|
-
usage=lf.LMSamplingUsage(
|
231
|
-
prompt_tokens=16,
|
232
|
-
completion_tokens=16,
|
233
|
-
total_tokens=33
|
234
|
-
),
|
235
|
-
tags=[lf.Message.TAG_LM_RESPONSE],
|
236
|
-
),
|
237
|
-
score=0.1,
|
238
|
-
logprobs=None,
|
239
|
-
),
|
240
|
-
lf.LMSample(
|
241
|
-
lf.AIMessage(
|
242
|
-
'Sample 2 for prompt 0.',
|
243
|
-
score=0.2,
|
244
|
-
logprobs=None,
|
245
|
-
is_cached=False,
|
246
|
-
usage=lf.LMSamplingUsage(
|
247
|
-
prompt_tokens=16,
|
248
|
-
completion_tokens=16,
|
249
|
-
total_tokens=33
|
250
|
-
),
|
251
|
-
tags=[lf.Message.TAG_LM_RESPONSE],
|
252
|
-
),
|
253
|
-
score=0.2,
|
254
|
-
logprobs=None,
|
255
|
-
),
|
256
|
-
],
|
257
|
-
usage=lf.LMSamplingUsage(
|
258
|
-
prompt_tokens=50, completion_tokens=50, total_tokens=100
|
259
|
-
),
|
260
|
-
),
|
261
|
-
)
|
262
|
-
self.assertEqual(
|
263
|
-
results[1],
|
264
|
-
lf.LMSamplingResult(
|
265
|
-
[
|
266
|
-
lf.LMSample(
|
267
|
-
lf.AIMessage(
|
268
|
-
'Sample 0 for prompt 1.',
|
269
|
-
score=0.0,
|
270
|
-
logprobs=None,
|
271
|
-
is_cached=False,
|
272
|
-
usage=lf.LMSamplingUsage(
|
273
|
-
prompt_tokens=16,
|
274
|
-
completion_tokens=16,
|
275
|
-
total_tokens=33
|
276
|
-
),
|
277
|
-
tags=[lf.Message.TAG_LM_RESPONSE],
|
278
|
-
),
|
279
|
-
score=0.0,
|
280
|
-
logprobs=None,
|
281
|
-
),
|
282
|
-
lf.LMSample(
|
283
|
-
lf.AIMessage(
|
284
|
-
'Sample 1 for prompt 1.',
|
285
|
-
score=0.1,
|
286
|
-
logprobs=None,
|
287
|
-
is_cached=False,
|
288
|
-
usage=lf.LMSamplingUsage(
|
289
|
-
prompt_tokens=16,
|
290
|
-
completion_tokens=16,
|
291
|
-
total_tokens=33
|
292
|
-
),
|
293
|
-
tags=[lf.Message.TAG_LM_RESPONSE],
|
294
|
-
),
|
295
|
-
score=0.1,
|
296
|
-
logprobs=None,
|
297
|
-
),
|
298
|
-
lf.LMSample(
|
299
|
-
lf.AIMessage(
|
300
|
-
'Sample 2 for prompt 1.',
|
301
|
-
score=0.2,
|
302
|
-
logprobs=None,
|
303
|
-
is_cached=False,
|
304
|
-
usage=lf.LMSamplingUsage(
|
305
|
-
prompt_tokens=16,
|
306
|
-
completion_tokens=16,
|
307
|
-
total_tokens=33
|
308
|
-
),
|
309
|
-
tags=[lf.Message.TAG_LM_RESPONSE],
|
310
|
-
),
|
311
|
-
score=0.2,
|
312
|
-
logprobs=None,
|
313
|
-
),
|
314
|
-
],
|
315
|
-
usage=lf.LMSamplingUsage(
|
316
|
-
prompt_tokens=50, completion_tokens=50, total_tokens=100
|
317
|
-
),
|
318
|
-
),
|
319
|
-
)
|
320
|
-
|
321
257
|
def test_sample_chat_completion(self):
|
322
|
-
with mock.patch('
|
323
|
-
|
258
|
+
with mock.patch('requests.Session.post') as mock_request:
|
259
|
+
mock_request.side_effect = mock_chat_completion_request
|
324
260
|
openai.SUPPORTED_MODELS_AND_SETTINGS['gpt-4'].update({
|
325
261
|
'cost_per_1k_input_tokens': 1.0,
|
326
262
|
'cost_per_1k_output_tokens': 1.0,
|
@@ -458,8 +394,8 @@ class OpenAITest(unittest.TestCase):
|
|
458
394
|
)
|
459
395
|
|
460
396
|
def test_sample_with_contextual_options(self):
|
461
|
-
with mock.patch('
|
462
|
-
|
397
|
+
with mock.patch('requests.Session.post') as mock_request:
|
398
|
+
mock_request.side_effect = mock_chat_completion_request
|
463
399
|
lm = openai.OpenAI(api_key='test_key', model='text-davinci-003')
|
464
400
|
with lf.use_settings(sampling_options=lf.LMSamplingOptions(n=2)):
|
465
401
|
results = lm.sample(['hello'])
|
@@ -471,7 +407,7 @@ class OpenAITest(unittest.TestCase):
|
|
471
407
|
[
|
472
408
|
lf.LMSample(
|
473
409
|
lf.AIMessage(
|
474
|
-
'Sample 0 for
|
410
|
+
'Sample 0 for message.',
|
475
411
|
score=0.0,
|
476
412
|
logprobs=None,
|
477
413
|
is_cached=False,
|
@@ -487,8 +423,8 @@ class OpenAITest(unittest.TestCase):
|
|
487
423
|
),
|
488
424
|
lf.LMSample(
|
489
425
|
lf.AIMessage(
|
490
|
-
'Sample 1 for
|
491
|
-
score=0.
|
426
|
+
'Sample 1 for message.',
|
427
|
+
score=0.0,
|
492
428
|
logprobs=None,
|
493
429
|
is_cached=False,
|
494
430
|
usage=lf.LMSamplingUsage(
|
@@ -498,19 +434,19 @@ class OpenAITest(unittest.TestCase):
|
|
498
434
|
),
|
499
435
|
tags=[lf.Message.TAG_LM_RESPONSE],
|
500
436
|
),
|
501
|
-
score=0.
|
437
|
+
score=0.0,
|
502
438
|
logprobs=None,
|
503
439
|
),
|
504
440
|
],
|
505
441
|
usage=lf.LMSamplingUsage(
|
506
442
|
prompt_tokens=100, completion_tokens=100, total_tokens=200
|
507
443
|
),
|
508
|
-
)
|
444
|
+
)
|
509
445
|
)
|
510
446
|
|
511
447
|
def test_call_with_system_message(self):
|
512
|
-
with mock.patch('
|
513
|
-
|
448
|
+
with mock.patch('requests.Session.post') as mock_request:
|
449
|
+
mock_request.side_effect = mock_chat_completion_request
|
514
450
|
lm = openai.OpenAI(api_key='test_key', model='gpt-4')
|
515
451
|
self.assertEqual(
|
516
452
|
lm(
|
@@ -520,12 +456,12 @@ class OpenAITest(unittest.TestCase):
|
|
520
456
|
),
|
521
457
|
sampling_options=lf.LMSamplingOptions(n=2)
|
522
458
|
),
|
523
|
-
'Sample 0 for message. system=hi',
|
459
|
+
'''Sample 0 for message. system=[{'type': 'text', 'text': 'hi'}]''',
|
524
460
|
)
|
525
461
|
|
526
462
|
def test_call_with_json_schema(self):
|
527
|
-
with mock.patch('
|
528
|
-
|
463
|
+
with mock.patch('requests.Session.post') as mock_request:
|
464
|
+
mock_request.side_effect = mock_chat_completion_request
|
529
465
|
lm = openai.OpenAI(api_key='test_key', model='gpt-4')
|
530
466
|
self.assertEqual(
|
531
467
|
lm(
|
@@ -426,6 +426,7 @@ class VertexRestfulAITest(unittest.TestCase):
|
|
426
426
|
model,
|
427
427
|
)
|
428
428
|
|
429
|
+
@mock.patch.object(vertexai.VertexAIRest, 'credentials', new=True)
|
429
430
|
def test_project_and_location_check(self):
|
430
431
|
with self.assertRaisesRegex(ValueError, 'Please specify `project`'):
|
431
432
|
_ = vertexai.VertexAIGeminiPro1()._api_initialized
|
@@ -496,6 +497,7 @@ class VertexRestfulAITest(unittest.TestCase):
|
|
496
497
|
lf.LMSamplingOptions(),
|
497
498
|
)
|
498
499
|
|
500
|
+
@mock.patch.object(vertexai.VertexAIRest, 'credentials', new=True)
|
499
501
|
def test_call_model(self):
|
500
502
|
with mock.patch('requests.Session.post') as mock_generate:
|
501
503
|
mock_generate.side_effect = mock_requests_post
|
{langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: langfun
|
3
|
-
Version: 0.1.2.
|
3
|
+
Version: 0.1.2.dev202412030000
|
4
4
|
Summary: Langfun: Language as Functions.
|
5
5
|
Home-page: https://github.com/google/langfun
|
6
6
|
Author: Langfun Authors
|
@@ -32,7 +32,6 @@ Requires-Dist: termcolor==1.1.0; extra == "all"
|
|
32
32
|
Requires-Dist: tqdm>=4.64.1; extra == "all"
|
33
33
|
Requires-Dist: google-cloud-aiplatform>=1.5.0; extra == "all"
|
34
34
|
Requires-Dist: google-generativeai>=0.3.2; extra == "all"
|
35
|
-
Requires-Dist: openai>=0.27.2; extra == "all"
|
36
35
|
Requires-Dist: python-magic>=0.4.27; extra == "all"
|
37
36
|
Requires-Dist: python-docx>=0.8.11; extra == "all"
|
38
37
|
Requires-Dist: pillow>=10.0.0; extra == "all"
|
@@ -44,7 +43,6 @@ Requires-Dist: tqdm>=4.64.1; extra == "ui"
|
|
44
43
|
Provides-Extra: llm
|
45
44
|
Requires-Dist: google-cloud-aiplatform>=1.5.0; extra == "llm"
|
46
45
|
Requires-Dist: google-generativeai>=0.3.2; extra == "llm"
|
47
|
-
Requires-Dist: openai>=0.27.2; extra == "llm"
|
48
46
|
Provides-Extra: llm-google
|
49
47
|
Requires-Dist: google-cloud-aiplatform>=1.5.0; extra == "llm-google"
|
50
48
|
Requires-Dist: google-generativeai>=0.3.2; extra == "llm-google"
|
@@ -52,8 +50,6 @@ Provides-Extra: llm-google-vertex
|
|
52
50
|
Requires-Dist: google-cloud-aiplatform>=1.5.0; extra == "llm-google-vertex"
|
53
51
|
Provides-Extra: llm-google-genai
|
54
52
|
Requires-Dist: google-generativeai>=0.3.2; extra == "llm-google-genai"
|
55
|
-
Provides-Extra: llm-openai
|
56
|
-
Requires-Dist: openai>=0.27.2; extra == "llm-openai"
|
57
53
|
Provides-Extra: mime
|
58
54
|
Requires-Dist: python-magic>=0.4.27; extra == "mime"
|
59
55
|
Requires-Dist: python-docx>=0.8.11; extra == "mime"
|
@@ -214,7 +210,6 @@ If you want to customize your installation, you can select specific features usi
|
|
214
210
|
| llm-google | All supported Google-powered LLMs. |
|
215
211
|
| llm-google-vertexai | LLMs powered by Google Cloud VertexAI |
|
216
212
|
| llm-google-genai | LLMs powered by Google Generative AI API |
|
217
|
-
| llm-openai | LLMs powered by OpenAI |
|
218
213
|
| mime | All MIME supports. |
|
219
214
|
| mime-auto | Automatic MIME type detection. |
|
220
215
|
| mime-docx | DocX format support. |
|
@@ -92,12 +92,12 @@ langfun/core/llms/groq.py,sha256=dCnR3eAECEKuKKAAj-PDTs8NRHl6CQPdf57m1f6a79U,103
|
|
92
92
|
langfun/core/llms/groq_test.py,sha256=GYF_Qtq5S1H1TrKH38t6_lkdroqT7v-joYLDKnmS9e0,5274
|
93
93
|
langfun/core/llms/llama_cpp.py,sha256=9tXQntSCDtjTF3bnyJrAPCr4N6wycy5nXYvp9uduygE,2843
|
94
94
|
langfun/core/llms/llama_cpp_test.py,sha256=MWO_qaOeKjRniGjcaWPDScd7HPaIJemqUZoslrt4FPs,1806
|
95
|
-
langfun/core/llms/openai.py,sha256=
|
96
|
-
langfun/core/llms/openai_test.py,sha256=
|
95
|
+
langfun/core/llms/openai.py,sha256=l49v6RubfInvV0iG114AymTKNogTX4u4N-UFCeSgIxw,20963
|
96
|
+
langfun/core/llms/openai_test.py,sha256=kOWa1nf-nJvtYY10REUw5wojh3ZgfU8tRaCZ8wUgJbA,16623
|
97
97
|
langfun/core/llms/rest.py,sha256=sWbYUV8S3SuOg9giq7xwD-xDRfaF7NP_ig7bI52-Rj4,3442
|
98
98
|
langfun/core/llms/rest_test.py,sha256=NZ3Nf0XQVpT9kLP5cBVo_yBHLI7vWTYhWQxYEJVMGs4,3472
|
99
99
|
langfun/core/llms/vertexai.py,sha256=EZhJrdN-SsZVV0KT3NHzaJLVKsNMxCT6M3W6f5fpIWQ,27068
|
100
|
-
langfun/core/llms/vertexai_test.py,sha256=
|
100
|
+
langfun/core/llms/vertexai_test.py,sha256=qapDa7fvLkHm3BhG12a-HopxGCn625r-eVud2QqRITo,17120
|
101
101
|
langfun/core/llms/cache/__init__.py,sha256=QAo3InUMDM_YpteNnVCSejI4zOsnjSMWKJKzkb3VY64,993
|
102
102
|
langfun/core/llms/cache/base.py,sha256=rt3zwmyw0y9jsSGW-ZbV1vAfLxQ7_3AVk0l2EySlse4,3918
|
103
103
|
langfun/core/llms/cache/in_memory.py,sha256=l6b-iU9OTfTRo9Zmg4VrQIuArs4cCJDOpXiEpvNocjo,5004
|
@@ -148,8 +148,8 @@ langfun/core/templates/demonstration.py,sha256=vCrgYubdZM5Umqcgp8NUVGXgr4P_c-fik
|
|
148
148
|
langfun/core/templates/demonstration_test.py,sha256=SafcDQ0WgI7pw05EmPI2S4v1t3ABKzup8jReCljHeK4,2162
|
149
149
|
langfun/core/templates/selfplay.py,sha256=yhgrJbiYwq47TgzThmHrDQTF4nDrTI09CWGhuQPNv-s,2273
|
150
150
|
langfun/core/templates/selfplay_test.py,sha256=Ot__1P1M8oJfoTp-M9-PQ6HUXqZKyMwvZ5f7yQ3yfyM,2326
|
151
|
-
langfun-0.1.2.
|
152
|
-
langfun-0.1.2.
|
153
|
-
langfun-0.1.2.
|
154
|
-
langfun-0.1.2.
|
155
|
-
langfun-0.1.2.
|
151
|
+
langfun-0.1.2.dev202412030000.dist-info/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
|
152
|
+
langfun-0.1.2.dev202412030000.dist-info/METADATA,sha256=PoROaIMontFjWm5sPVdo3DpJATWFoFbO8IOr9t-3K2o,8651
|
153
|
+
langfun-0.1.2.dev202412030000.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
154
|
+
langfun-0.1.2.dev202412030000.dist-info/top_level.txt,sha256=RhlEkHxs1qtzmmtWSwYoLVJAc1YrbPtxQ52uh8Z9VvY,8
|
155
|
+
langfun-0.1.2.dev202412030000.dist-info/RECORD,,
|
File without changes
|
File without changes
|
{langfun-0.1.2.dev202412020805.dist-info → langfun-0.1.2.dev202412030000.dist-info}/top_level.txt
RENAMED
File without changes
|