langfun 0.0.2.dev20240507__py3-none-any.whl → 0.0.2.dev20240508__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of langfun might be problematic. Click here for more details.

langfun/__init__.py CHANGED
@@ -33,6 +33,11 @@ complete = structured.complete
33
33
  score = structured.score
34
34
  generate_class = structured.generate_class
35
35
 
36
+ # Helper functions for input/output transformations based on
37
+ # `lf.query` (e.g. jax-on-beam could use these for batch processing)
38
+ query_prompt = structured.query_prompt
39
+ query_output = structured.query_output
40
+
36
41
  source_form = structured.source_form
37
42
  function_gen = structured.function_gen
38
43
 
langfun/core/eval/base.py CHANGED
@@ -1179,7 +1179,7 @@ class Evaluation(Evaluable):
1179
1179
 
1180
1180
  def process(self, example: Any, **kwargs) -> lf.Message:
1181
1181
  """Process an example and returns its output."""
1182
- prompt = self.prompt.render(example=example).text
1182
+ prompt = lf.Template.from_value(self.prompt, example=example)
1183
1183
  if self.method == 'call':
1184
1184
  return lf_structured.call(
1185
1185
  prompt,
@@ -1207,7 +1207,9 @@ class Evaluation(Evaluable):
1207
1207
  else:
1208
1208
  assert self.method == 'complete', self.method
1209
1209
  assert isinstance(self.schema.spec, pg.typing.Object), self.schema
1210
- input_value = self.schema.spec.cls.partial(prompt)
1210
+ # TODO(daiyip): Currently multi-modal inputs within the prompt for
1211
+ # completion is not supported.
1212
+ input_value = self.schema.spec.cls.partial(prompt.render().text)
1211
1213
  return lf_structured.complete(
1212
1214
  input_value,
1213
1215
  lm=self.lm,
langfun/core/langfunc.py CHANGED
@@ -14,7 +14,7 @@
14
14
  """LangFunc: Language-based functions."""
15
15
 
16
16
  import dataclasses
17
- from typing import Annotated, Type, Union
17
+ from typing import Annotated, Type
18
18
 
19
19
  from langfun.core import component
20
20
  from langfun.core import language_model
@@ -328,22 +328,6 @@ class LangFunc(
328
328
  """Transforms the output message before returning from __call__."""
329
329
  return lm_output
330
330
 
331
- @classmethod
332
- def from_value(
333
- cls, value: Union[str, template_lib.Template], **kwargs
334
- ) -> 'LangFunc':
335
- """Create a LangFunc object from a string or template."""
336
- if isinstance(value, LangFunc):
337
- return value
338
- if isinstance(value, template_lib.Template):
339
- lfun = LangFunc(value.template_str, **kwargs)
340
- # So lfun could acccess all attributes from value.
341
- lfun.sym_setparent(value)
342
- return lfun
343
- if isinstance(value, str):
344
- return LangFunc(template_str=value, **kwargs)
345
- return LangFunc('{{input}}', input=value, **kwargs)
346
-
347
331
 
348
332
  # Register converter from str to LangFunc, therefore we can always
349
333
  # pass strs to attributes that accept LangFunc.
@@ -57,6 +57,10 @@ class BasicTest(unittest.TestCase):
57
57
  l2 = LangFunc.from_value(l1)
58
58
  self.assertIs(l2, l1)
59
59
 
60
+ l3 = LangFunc.from_value(l1, x=1)
61
+ self.assertIsNot(l3, l1)
62
+ self.assertTrue(pg.eq(l3, LangFunc('Hello', x=1)))
63
+
60
64
  c = template_lib.Template(
61
65
  '{{x}} + {{l}}',
62
66
  x=1,
langfun/core/llms/fake.py CHANGED
@@ -57,12 +57,12 @@ class StaticResponse(Fake):
57
57
  """Language model that always gives the same canned response."""
58
58
 
59
59
  response: Annotated[
60
- str,
60
+ str | lf.Message,
61
61
  'A canned response that will be returned regardless of the prompt.'
62
62
  ]
63
63
 
64
64
  def _response_from(self, prompt: lf.Message) -> lf.Message:
65
- return lf.AIMessage(self.response)
65
+ return lf.AIMessage.from_value(self.response)
66
66
 
67
67
 
68
68
  @lf.use_init_args(['mapping'])
@@ -70,12 +70,12 @@ class StaticMapping(Fake):
70
70
  """A static mapping from prompt to response."""
71
71
 
72
72
  mapping: Annotated[
73
- dict[str, str],
73
+ dict[str, str | lf.Message],
74
74
  'A mapping from prompt to response.'
75
75
  ]
76
76
 
77
77
  def _response_from(self, prompt: lf.Message) -> lf.Message:
78
- return lf.AIMessage(self.mapping[prompt])
78
+ return lf.AIMessage.from_value(self.mapping[prompt])
79
79
 
80
80
 
81
81
  @lf.use_init_args(['sequence'])
@@ -83,7 +83,7 @@ class StaticSequence(Fake):
83
83
  """A static sequence of responses to use."""
84
84
 
85
85
  sequence: Annotated[
86
- list[str],
86
+ list[str | lf.Message],
87
87
  'A sequence of strings as the response.'
88
88
  ]
89
89
 
@@ -92,6 +92,6 @@ class StaticSequence(Fake):
92
92
  self._pos = 0
93
93
 
94
94
  def _response_from(self, prompt: lf.Message) -> lf.Message:
95
- r = lf.AIMessage(self.sequence[self._pos])
95
+ r = lf.AIMessage.from_value(self.sequence[self._pos])
96
96
  self._pos += 1
97
97
  return r
@@ -64,6 +64,8 @@ from langfun.core.structured.prompting import QueryStructure
64
64
  from langfun.core.structured.prompting import QueryStructureJson
65
65
  from langfun.core.structured.prompting import QueryStructurePython
66
66
  from langfun.core.structured.prompting import query
67
+ from langfun.core.structured.prompting import query_prompt
68
+ from langfun.core.structured.prompting import query_output
67
69
 
68
70
  from langfun.core.structured.description import DescribeStructure
69
71
  from langfun.core.structured.description import describe
@@ -16,6 +16,7 @@
16
16
  from typing import Any, Callable, Type, Union
17
17
 
18
18
  import langfun.core as lf
19
+ from langfun.core.llms import fake
19
20
  from langfun.core.structured import mapping
20
21
  from langfun.core.structured import schema as schema_lib
21
22
  import pyglove as pg
@@ -214,13 +215,8 @@ def query(
214
215
  # prompt rendering.
215
216
  prompt_kwargs.pop('template_str', None)
216
217
 
217
- if isinstance(prompt, str):
218
- prompt = lf.Template(prompt, **prompt_kwargs)
219
- elif isinstance(prompt, lf.Template):
220
- prompt = prompt.rebind(**prompt_kwargs, raise_on_no_change=False)
221
-
222
- if isinstance(prompt, lf.Template):
223
- prompt = prompt.render(lm=lm)
218
+ if isinstance(prompt, (str, lf.Message, lf.Template)):
219
+ prompt = lf.Template.from_value(prompt, **prompt_kwargs).render(lm=lm)
224
220
  else:
225
221
  prompt = schema_lib.mark_missing(prompt)
226
222
 
@@ -240,3 +236,31 @@ def query(
240
236
  skip_lm=skip_lm,
241
237
  )
242
238
  return output if returns_message else output.result
239
+
240
+
241
+ def query_prompt(
242
+ prompt: Union[str, pg.Symbolic],
243
+ schema: Union[
244
+ schema_lib.Schema, Type[Any], list[Type[Any]], dict[str, Any], None
245
+ ] = None,
246
+ **kwargs,
247
+ ) -> lf.Message:
248
+ """Returns the final prompt sent to LLM for `lf.query`."""
249
+ kwargs.pop('returns_message', None)
250
+ kwargs.pop('skip_lm', None)
251
+ return query(prompt, schema, skip_lm=True, returns_message=True, **kwargs)
252
+
253
+
254
+ def query_output(
255
+ response: Union[str, lf.Message],
256
+ schema: Union[
257
+ schema_lib.Schema, Type[Any], list[Type[Any]], dict[str, Any], None
258
+ ],
259
+ **kwargs,
260
+ ) -> Any:
261
+ """Returns the final output of `lf.query` from a provided LLM response."""
262
+ kwargs.pop('prompt', None)
263
+ kwargs.pop('lm', None)
264
+ return query(
265
+ 'Unused prompt', schema, lm=fake.StaticResponse(response), **kwargs
266
+ )
@@ -285,6 +285,49 @@ class QueryTest(unittest.TestCase):
285
285
  with self.assertRaisesRegex(ValueError, 'Unknown protocol'):
286
286
  prompting.query('what is 1 + 1', int, protocol='text')
287
287
 
288
+ def test_query_prompt(self):
289
+ self.assertEqual(
290
+ prompting.query_prompt('what is this?', int),
291
+ inspect.cleandoc("""
292
+ Please respond to the last INPUT_OBJECT with OUTPUT_OBJECT according to OUTPUT_TYPE.
293
+
294
+ INPUT_OBJECT:
295
+ 1 + 1 =
296
+
297
+ OUTPUT_TYPE:
298
+ Answer
299
+
300
+ ```python
301
+ class Answer:
302
+ final_answer: int
303
+ ```
304
+
305
+ OUTPUT_OBJECT:
306
+ ```python
307
+ Answer(
308
+ final_answer=2
309
+ )
310
+ ```
311
+
312
+ INPUT_OBJECT:
313
+ what is this?
314
+
315
+ OUTPUT_TYPE:
316
+ int
317
+
318
+ OUTPUT_OBJECT:
319
+ """),
320
+ )
321
+
322
+ def test_query_output(self):
323
+ self.assertEqual(
324
+ prompting.query_output(
325
+ lf.AIMessage('1'),
326
+ int,
327
+ ),
328
+ 1,
329
+ )
330
+
288
331
 
289
332
  class QueryStructurePythonTest(unittest.TestCase):
290
333
 
langfun/core/template.py CHANGED
@@ -17,7 +17,7 @@ import contextlib
17
17
  import dataclasses
18
18
  import functools
19
19
  import inspect
20
- from typing import Annotated, Any, Callable, Iterator, Set, Tuple, Type
20
+ from typing import Annotated, Any, Callable, Iterator, Set, Tuple, Type, Union
21
21
 
22
22
  import jinja2
23
23
  from jinja2 import meta as jinja2_meta
@@ -495,6 +495,27 @@ class Template(
495
495
  t.sym_setparent(self)
496
496
  return t
497
497
 
498
+ @classmethod
499
+ def from_value(
500
+ cls,
501
+ value: Union[str, message_lib.Message, 'Template'],
502
+ **kwargs
503
+ ) -> 'Template':
504
+ """Create a template object from a string or template."""
505
+ if isinstance(value, cls):
506
+ return value.clone(override=kwargs) if kwargs else value # pylint: disable=no-value-for-parameter
507
+ if isinstance(value, str):
508
+ return cls(template_str=value, **kwargs)
509
+ if isinstance(value, message_lib.Message):
510
+ kwargs.update(value.metadata)
511
+ return cls(template_str=value.text, **kwargs)
512
+ if isinstance(value, Template):
513
+ lfun = cls(template_str=value.template_str, **kwargs)
514
+ # So lfun could acccess all attributes from value.
515
+ lfun.sym_setparent(value)
516
+ return lfun
517
+ return cls(template_str='{{input}}', input=value, **kwargs)
518
+
498
519
 
499
520
  # Register converter from str to LangFunc, therefore we can always
500
521
  # pass strs to attributes that accept LangFunc.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langfun
3
- Version: 0.0.2.dev20240507
3
+ Version: 0.0.2.dev20240508
4
4
  Summary: Langfun: Language as Functions.
5
5
  Home-page: https://github.com/google/langfun
6
6
  Author: Langfun Authors
@@ -1,4 +1,4 @@
1
- langfun/__init__.py,sha256=zh-EYTCLxkUAIc2zMo3Lye46_CrMrhwO_GwBHZspUvE,1919
1
+ langfun/__init__.py,sha256=YAbi2FfTfKT41KJAx1tSNoiole_YRJmcEk3oOoqFqOs,2128
2
2
  langfun/core/__init__.py,sha256=6QEuXOZ9BXxm6TjpaMXuLwUBTYO3pkFDqn9QVBXyyPQ,4248
3
3
  langfun/core/component.py,sha256=oxesbC0BoE_TbtxwW5x-BAZWxZyyJbuPiX5S38RqCv0,9909
4
4
  langfun/core/component_test.py,sha256=uR-_Sz_42Jxc5qzLIB-f5_pXmNwnC01Xlbv5NOQSeSU,8021
@@ -6,8 +6,8 @@ langfun/core/concurrent.py,sha256=TRc49pJ3HQro2kb5FtcWkHjhBm8UcgE8RJybU5cU3-0,24
6
6
  langfun/core/concurrent_test.py,sha256=mwFMZhDUdppnDr7vDSTwcbMHwrdsIoKJwRYNtl4ZWL4,15185
7
7
  langfun/core/console.py,sha256=bk5rNPNm9rMGW5YT2HixxU04p2umnoabn5SDz6Dqe88,2317
8
8
  langfun/core/console_test.py,sha256=5SYJdxpJGLgdSSQqqMPoA1X6jpsLD8rgcyk-EgI65oE,1077
9
- langfun/core/langfunc.py,sha256=bRujJfH4iTwKFtFxQf745uJkfltuFnPfOGLuP8ydcr4,11646
10
- langfun/core/langfunc_test.py,sha256=sQaKuZpGGmG80GRifhbxkj7nfzQLJKj4Vuw5y1s1K3U,8378
9
+ langfun/core/langfunc.py,sha256=RvIcRjIq0jWYRu1xim-FYe4HSrt97r3GMBO_PuagUmw,11060
10
+ langfun/core/langfunc_test.py,sha256=_mfARnakX3oji5HDigFSLMd6yQ2wma-2Mgbztwqn73g,8501
11
11
  langfun/core/language_model.py,sha256=6wtY8RGbOymfo1PYzcYCfOlWuKQcSVFs5R1sFB4-QMQ,20202
12
12
  langfun/core/language_model_test.py,sha256=T-itu7Li2smv2dkru0C0neCs2W4VJXlNTYahXU6jF54,19548
13
13
  langfun/core/memory.py,sha256=f-asN1F7Vehgdn_fK84v73GrEUOxRtaW934keutTKjk,2416
@@ -21,7 +21,7 @@ langfun/core/sampling.py,sha256=vygWvgC8MFw0_AKNSmz-ywMXJYWf8cl0tI8QycvAmyI,5795
21
21
  langfun/core/sampling_test.py,sha256=U7PANpMsl9E_pa4_Y4FzesSjcwg-u-LKHGCWSgv-8FY,3663
22
22
  langfun/core/subscription.py,sha256=euawEuSZP-BHydaT-AQpfYFL0m5pWPGcW0upFhrojqc,10930
23
23
  langfun/core/subscription_test.py,sha256=Y4ZdbZEwm83YNZBxHff0QR4QUa4rdaNXA3_jfIcArBo,8717
24
- langfun/core/template.py,sha256=FZByYq6mhVDjT4HJ3yY-_TUZ13BiURzTJSKLw6QyLY4,21462
24
+ langfun/core/template.py,sha256=UhNNGUDJ4StUhPBKzHmjym36khxHOGWGr9MDxBwgxQA,22284
25
25
  langfun/core/template_test.py,sha256=Mbv0dFjboGCVvbDkHD-HacZnlCi8Ku2Hpf2UjdwGSNo,15464
26
26
  langfun/core/text_formatting.py,sha256=ytjj7opnRJ6w-pkglL2CZUyfYDXLpNf65E42LBb31gc,5158
27
27
  langfun/core/text_formatting_test.py,sha256=nyKC6tn2L4hPJiqQHgxcbQsJJi4A4Nbj8FiO8iT6B80,1514
@@ -40,7 +40,7 @@ langfun/core/coding/python/parsing_test.py,sha256=9vAWF484kWIm6JZq8NFiMgKUDhXV-d
40
40
  langfun/core/coding/python/permissions.py,sha256=1QWGHvzL8MM0Ok_auQ9tURqZHtdOfJaDpBzZ29GUE-c,2544
41
41
  langfun/core/coding/python/permissions_test.py,sha256=w5EDb8QxpxgJyZkojyzVWQvDfg366zn99-g__6TbPQ0,2699
42
42
  langfun/core/eval/__init__.py,sha256=Evt-E4FEhZF2tXL6-byh_AyA7Cc_ZoGmvnN7vkAZedk,1898
43
- langfun/core/eval/base.py,sha256=ZUx-rBjdWyJ5augNIUgRF77-FE-YdFum2uqe0h7-baM,74132
43
+ langfun/core/eval/base.py,sha256=zcMPBKmcll5O08waEEnvmkEoXgcINhOat9rRJk8X8b4,74268
44
44
  langfun/core/eval/base_test.py,sha256=cHOTIWVW4Dp8gKKIKcZrAcJ-w84j2GIozTzJoiAX7p4,26743
45
45
  langfun/core/eval/matching.py,sha256=Y4vFoNTQEOwko6IA8l9OZ52-vt52e3VGmcTtvLA67wM,9782
46
46
  langfun/core/eval/matching_test.py,sha256=f7iVyXH5KGJBWt4Wp14Bt9J3X59A6Ayfog9MbuFvPew,5532
@@ -51,7 +51,7 @@ langfun/core/eval/scoring_test.py,sha256=O8olHbrUEg60gMxwOkWzKBJZpZoUlmVnBANX5Se
51
51
  langfun/core/llms/__init__.py,sha256=1bPg1QI8duOZCYINm-jWi094x0JtLmsk4KX60qIC_gs,3245
52
52
  langfun/core/llms/anthropic.py,sha256=7W9YdPN3SlAFhAIQlihMkrpo7tTY_4NvD0KIlCrqcsk,8505
53
53
  langfun/core/llms/anthropic_test.py,sha256=TMM30myyEhwF99Le4RvJEXOn8RYl0q1FRkt9Q9nl1jk,5540
54
- langfun/core/llms/fake.py,sha256=b-Xk5IPTbUt-elsyzd_i3n1tqzc_kgETXrEvgJruSMk,2824
54
+ langfun/core/llms/fake.py,sha256=_smsN_CsYbeWrtjpegEPwdAPV9mwaIuH_4oZGeXQwQI,2896
55
55
  langfun/core/llms/fake_test.py,sha256=ipKfdOcuqVcJ8lDXVpnBVb9HHG0hAVkFkMoHpWjC2cI,7212
56
56
  langfun/core/llms/google_genai.py,sha256=n8zyJwh9UCTgb6-8LyvmjVNFGZQ4-zfzZ0ulkhHAnR8,8624
57
57
  langfun/core/llms/google_genai_test.py,sha256=_UcGTfl16-aDUlEWFC2W2F8y9jPUs53RBYA6MOCpGXw,7525
@@ -75,7 +75,7 @@ langfun/core/modalities/mime.py,sha256=wVfaYflhGz1W4v3m972rAplW3OGOFtjFpHDYIaUD5
75
75
  langfun/core/modalities/mime_test.py,sha256=cVHxRvJ1QXC1SVhBmWkJdWGpL9Xl0UNfTQq6j0OGGL4,1881
76
76
  langfun/core/modalities/video.py,sha256=25M4XsNG5XEWRy57LYT_a6_aMURMPAgC41B3weEXFsY,1747
77
77
  langfun/core/modalities/video_test.py,sha256=jYuI2m8S8zDCAVBPEUbbpP205dXAht90A2_PHWo4-r8,2039
78
- langfun/core/structured/__init__.py,sha256=zO6mdApZgWy6d2i3s_FWrjHS_-7qWnase0VRq0KhKn0,3589
78
+ langfun/core/structured/__init__.py,sha256=Qg1ocwsb60od8fJky3F3JAOhwjwT9WA7IX3C2j2s3zA,3707
79
79
  langfun/core/structured/completion.py,sha256=skBxt6V_fv2TBUKnzFgnPMbVY8HSYn8sY04MLok2yvs,7299
80
80
  langfun/core/structured/completion_test.py,sha256=MYxEzeScC3gFVujvrMMboBF5nh-QiVLwGgqAV3oaFUQ,19273
81
81
  langfun/core/structured/description.py,sha256=SXW4MJvshFjbR-0gw6rE21o6WXq12UlRXawvDBXMZFA,5211
@@ -86,8 +86,8 @@ langfun/core/structured/mapping.py,sha256=V2EI53KwhXxqcoH2ouhuei8aYWny0ml_FwMTiS
86
86
  langfun/core/structured/mapping_test.py,sha256=PiXklMeIa8L6KtMi3ju7J9Y39gZy0hIGz-Oeq4A_7XE,3835
87
87
  langfun/core/structured/parsing.py,sha256=keoVqEfzAbdULh6GawWFsTQzU91MzJXYFZjXGXLaD8g,11492
88
88
  langfun/core/structured/parsing_test.py,sha256=34wDrXaQ-EYhJLfDL8mX9K53oQMSzh5pVYdKjnESmK8,20895
89
- langfun/core/structured/prompting.py,sha256=mzQwZBQi2RU3-W8RNdlr_tr_9G6UA2Z9QuowyzcC9ww,8099
90
- langfun/core/structured/prompting_test.py,sha256=vslaCAUikfwOvqsKzqs_oyEacrefFsr2SWSqu6OHi3w,20813
89
+ langfun/core/structured/prompting.py,sha256=cswl9c93edsYnXsZQmMzPpmqOuKnBzbgebTYBbSxwzo,8815
90
+ langfun/core/structured/prompting_test.py,sha256=rddf5qHN8Gm_JaNMmytwiVEBm-eZVJFLQO4GljUgR44,21700
91
91
  langfun/core/structured/schema.py,sha256=Zy9y6Vq9DrFwcuP5o5VL_PvMCmzavF-nuDqyviBnaxk,25818
92
92
  langfun/core/structured/schema_generation.py,sha256=U3nRQsqmMZg_qIVDh2fiY3K4JLfsAL1LcKzIFP1iXFg,5316
93
93
  langfun/core/structured/schema_generation_test.py,sha256=RM9s71kMNg2jTePwInkiW9fK1ACN37eyPeF8OII-0zw,2950
@@ -103,8 +103,8 @@ langfun/core/templates/demonstration.py,sha256=vCrgYubdZM5Umqcgp8NUVGXgr4P_c-fik
103
103
  langfun/core/templates/demonstration_test.py,sha256=SafcDQ0WgI7pw05EmPI2S4v1t3ABKzup8jReCljHeK4,2162
104
104
  langfun/core/templates/selfplay.py,sha256=yhgrJbiYwq47TgzThmHrDQTF4nDrTI09CWGhuQPNv-s,2273
105
105
  langfun/core/templates/selfplay_test.py,sha256=DYVrkk7uNKCqJGEHH31HssU2BPuMItU1vJLzfcXIlYg,2156
106
- langfun-0.0.2.dev20240507.dist-info/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
107
- langfun-0.0.2.dev20240507.dist-info/METADATA,sha256=kz0C5CzRBOml2nNCsUkvDY36x_49qo3HvwS-ifZY_sU,3405
108
- langfun-0.0.2.dev20240507.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
109
- langfun-0.0.2.dev20240507.dist-info/top_level.txt,sha256=RhlEkHxs1qtzmmtWSwYoLVJAc1YrbPtxQ52uh8Z9VvY,8
110
- langfun-0.0.2.dev20240507.dist-info/RECORD,,
106
+ langfun-0.0.2.dev20240508.dist-info/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
107
+ langfun-0.0.2.dev20240508.dist-info/METADATA,sha256=-kG5pyZ6wAFJRP0hINq-JUhoEnKJsXrn2YCZbZuAFhY,3405
108
+ langfun-0.0.2.dev20240508.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
109
+ langfun-0.0.2.dev20240508.dist-info/top_level.txt,sha256=RhlEkHxs1qtzmmtWSwYoLVJAc1YrbPtxQ52uh8Z9VvY,8
110
+ langfun-0.0.2.dev20240508.dist-info/RECORD,,