langfun 0.0.2.dev20240423__py3-none-any.whl → 0.0.2.dev20240428__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -111,11 +111,35 @@ class LanguageModelTest(unittest.TestCase):
111
111
  lm.sample(prompts=['foo', 'bar']),
112
112
  [
113
113
  lm_lib.LMSamplingResult(
114
- [lm_lib.LMSample('foo', score=-1.0)],
114
+ [
115
+ lm_lib.LMSample(
116
+ message_lib.AIMessage(
117
+ 'foo',
118
+ score=-1.0,
119
+ logprobs=None,
120
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
121
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
122
+ ),
123
+ score=-1.0,
124
+ logprobs=None,
125
+ )
126
+ ],
115
127
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
116
128
  ),
117
129
  lm_lib.LMSamplingResult(
118
- [lm_lib.LMSample('bar', score=-1.0)],
130
+ [
131
+ lm_lib.LMSample(
132
+ message_lib.AIMessage(
133
+ 'bar',
134
+ score=-1.0,
135
+ logprobs=None,
136
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
137
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
138
+ ),
139
+ score=-1.0,
140
+ logprobs=None,
141
+ )
142
+ ],
119
143
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
120
144
  ),
121
145
  ],
@@ -128,41 +152,119 @@ class LanguageModelTest(unittest.TestCase):
128
152
  ),
129
153
  [
130
154
  lm_lib.LMSamplingResult(
131
- [lm_lib.LMSample('foo' * 2, score=0.5)],
155
+ [
156
+ lm_lib.LMSample(
157
+ message_lib.AIMessage(
158
+ 'foo' * 2,
159
+ score=0.5,
160
+ logprobs=None,
161
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
162
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
163
+ ),
164
+ score=0.5,
165
+ logprobs=None,
166
+ ),
167
+ ],
132
168
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
133
169
  ),
134
170
  lm_lib.LMSamplingResult(
135
- [lm_lib.LMSample('bar' * 2, score=0.5)],
136
- usage=lm_lib.LMSamplingUsage(100, 100, 200),
171
+ [
172
+ lm_lib.LMSample(
173
+ message_lib.AIMessage(
174
+ 'bar' * 2,
175
+ score=0.5,
176
+ logprobs=None,
177
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
178
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
179
+ ),
180
+ score=0.5,
181
+ logprobs=None,
182
+ ),
183
+ ],
184
+ usage=lm_lib.LMSamplingUsage(
185
+ prompt_tokens=100, completion_tokens=100, total_tokens=200
186
+ ),
137
187
  ),
138
- ],
188
+ ]
139
189
  )
140
190
  # Test override individual flags within sampling_options.
141
191
  self.assertEqual(
142
192
  lm.sample(prompts=['foo', 'bar'], temperature=1.0),
143
193
  [
144
194
  lm_lib.LMSamplingResult(
145
- [lm_lib.LMSample('foo', score=1.0)],
195
+ [
196
+ lm_lib.LMSample(
197
+ message_lib.AIMessage(
198
+ 'foo',
199
+ score=1.0,
200
+ logprobs=None,
201
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
202
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
203
+ ),
204
+ score=1.0,
205
+ logprobs=None,
206
+ ),
207
+ ],
146
208
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
147
209
  ),
148
210
  lm_lib.LMSamplingResult(
149
- [lm_lib.LMSample('bar', score=1.0)],
150
- usage=lm_lib.LMSamplingUsage(100, 100, 200),
211
+ [
212
+ lm_lib.LMSample(
213
+ message_lib.AIMessage(
214
+ 'bar',
215
+ score=1.0,
216
+ logprobs=None,
217
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
218
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
219
+ ),
220
+ score=1.0,
221
+ logprobs=None,
222
+ ),
223
+ ],
224
+ usage=lm_lib.LMSamplingUsage(
225
+ prompt_tokens=100, completion_tokens=100, total_tokens=200
226
+ ),
151
227
  ),
152
- ],
228
+ ]
153
229
  )
154
230
  self.assertEqual(
155
231
  lm.sample(prompts=['foo', 'bar'], top_k=2, temperature=0.7),
156
232
  [
157
233
  lm_lib.LMSamplingResult(
158
- [lm_lib.LMSample('foo' * 2, score=0.7)],
234
+ [
235
+ lm_lib.LMSample(
236
+ message_lib.AIMessage(
237
+ 'foo' * 2,
238
+ score=0.7,
239
+ logprobs=None,
240
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
241
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
242
+ ),
243
+ score=0.7,
244
+ logprobs=None,
245
+ ),
246
+ ],
159
247
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
160
248
  ),
161
249
  lm_lib.LMSamplingResult(
162
- [lm_lib.LMSample('bar' * 2, score=0.7)],
163
- usage=lm_lib.LMSamplingUsage(100, 100, 200),
250
+ [
251
+ lm_lib.LMSample(
252
+ message_lib.AIMessage(
253
+ 'bar' * 2,
254
+ score=0.7,
255
+ logprobs=None,
256
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
257
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
258
+ ),
259
+ score=0.7,
260
+ logprobs=None,
261
+ ),
262
+ ],
263
+ usage=lm_lib.LMSamplingUsage(
264
+ prompt_tokens=100, completion_tokens=100, total_tokens=200
265
+ ),
164
266
  ),
165
- ],
267
+ ]
166
268
  )
167
269
 
168
270
  def test_call(self):
@@ -189,7 +291,16 @@ class LanguageModelTest(unittest.TestCase):
189
291
  lm_lib.LMSamplingResult(
190
292
  [
191
293
  lm_lib.LMSample(
192
- message_lib.AIMessage('foo', cache_seed=0), score=-1.0
294
+ message_lib.AIMessage(
295
+ 'foo',
296
+ cache_seed=0,
297
+ score=-1.0,
298
+ logprobs=None,
299
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
300
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
301
+ ),
302
+ score=-1.0,
303
+ logprobs=None,
193
304
  )
194
305
  ],
195
306
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
@@ -197,7 +308,16 @@ class LanguageModelTest(unittest.TestCase):
197
308
  lm_lib.LMSamplingResult(
198
309
  [
199
310
  lm_lib.LMSample(
200
- message_lib.AIMessage('bar', cache_seed=0), score=-1.0
311
+ message_lib.AIMessage(
312
+ 'bar',
313
+ cache_seed=0,
314
+ score=-1.0,
315
+ logprobs=None,
316
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
317
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
318
+ ),
319
+ score=-1.0,
320
+ logprobs=None,
201
321
  )
202
322
  ],
203
323
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
@@ -225,7 +345,16 @@ class LanguageModelTest(unittest.TestCase):
225
345
  lm_lib.LMSamplingResult(
226
346
  [
227
347
  lm_lib.LMSample(
228
- message_lib.AIMessage('foo', cache_seed=0), score=1.0
348
+ message_lib.AIMessage(
349
+ 'foo',
350
+ cache_seed=0,
351
+ score=1.0,
352
+ logprobs=None,
353
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
354
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
355
+ ),
356
+ score=1.0,
357
+ logprobs=None,
229
358
  )
230
359
  ],
231
360
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
@@ -233,7 +362,16 @@ class LanguageModelTest(unittest.TestCase):
233
362
  lm_lib.LMSamplingResult(
234
363
  [
235
364
  lm_lib.LMSample(
236
- message_lib.AIMessage('baz', cache_seed=0), score=1.0
365
+ message_lib.AIMessage(
366
+ 'baz',
367
+ cache_seed=0,
368
+ score=1.0,
369
+ logprobs=None,
370
+ usage=lm_lib.LMSamplingUsage(100, 100, 200),
371
+ tags=[message_lib.Message.TAG_LM_RESPONSE],
372
+ ),
373
+ score=1.0,
374
+ logprobs=None,
237
375
  )
238
376
  ],
239
377
  usage=lm_lib.LMSamplingUsage(100, 100, 200),
@@ -28,7 +28,19 @@ class EchoTest(unittest.TestCase):
28
28
  lm.sample(['hi']),
29
29
  [
30
30
  lf.LMSamplingResult(
31
- [lf.LMSample('hi', 1.0)],
31
+ [
32
+ lf.LMSample(
33
+ lf.AIMessage(
34
+ 'hi',
35
+ score=1.0,
36
+ logprobs=None,
37
+ usage=lf.LMSamplingUsage(2, 2, 4),
38
+ tags=[lf.Message.TAG_LM_RESPONSE],
39
+ ),
40
+ score=1.0,
41
+ logprobs=None,
42
+ )
43
+ ],
32
44
  lf.LMSamplingUsage(2, 2, 4))
33
45
  ]
34
46
  )
@@ -60,7 +72,19 @@ class StaticResponseTest(unittest.TestCase):
60
72
  lm.sample(['hi']),
61
73
  [
62
74
  lf.LMSamplingResult(
63
- [lf.LMSample(canned_response, 1.0)],
75
+ [
76
+ lf.LMSample(
77
+ lf.AIMessage(
78
+ canned_response,
79
+ score=1.0,
80
+ logprobs=None,
81
+ usage=lf.LMSamplingUsage(2, 38, 40),
82
+ tags=[lf.Message.TAG_LM_RESPONSE],
83
+ ),
84
+ score=1.0,
85
+ logprobs=None,
86
+ )
87
+ ],
64
88
  usage=lf.LMSamplingUsage(2, 38, 40)
65
89
  )
66
90
  ],
@@ -69,7 +93,19 @@ class StaticResponseTest(unittest.TestCase):
69
93
  lm.sample(['Tell me a joke.']),
70
94
  [
71
95
  lf.LMSamplingResult(
72
- [lf.LMSample(canned_response, 1.0)],
96
+ [
97
+ lf.LMSample(
98
+ lf.AIMessage(
99
+ canned_response,
100
+ score=1.0,
101
+ logprobs=None,
102
+ usage=lf.LMSamplingUsage(15, 38, 53),
103
+ tags=[lf.Message.TAG_LM_RESPONSE],
104
+ ),
105
+ score=1.0,
106
+ logprobs=None,
107
+ )
108
+ ],
73
109
  usage=lf.LMSamplingUsage(15, 38, 53)
74
110
  )
75
111
  ],
@@ -101,11 +137,35 @@ class StaticMappingTest(unittest.TestCase):
101
137
  lm.sample(['Hi', 'How are you?']),
102
138
  [
103
139
  lf.LMSamplingResult(
104
- [lf.LMSample('Hello', 1.0)],
140
+ [
141
+ lf.LMSample(
142
+ lf.AIMessage(
143
+ 'Hello',
144
+ score=1.0,
145
+ logprobs=None,
146
+ usage=lf.LMSamplingUsage(2, 5, 7),
147
+ tags=[lf.Message.TAG_LM_RESPONSE],
148
+ ),
149
+ score=1.0,
150
+ logprobs=None,
151
+ )
152
+ ],
105
153
  usage=lf.LMSamplingUsage(2, 5, 7)
106
154
  ),
107
155
  lf.LMSamplingResult(
108
- [lf.LMSample('I am fine, how about you?', 1.0)],
156
+ [
157
+ lf.LMSample(
158
+ lf.AIMessage(
159
+ 'I am fine, how about you?',
160
+ score=1.0,
161
+ logprobs=None,
162
+ usage=lf.LMSamplingUsage(12, 25, 37),
163
+ tags=[lf.Message.TAG_LM_RESPONSE],
164
+ ),
165
+ score=1.0,
166
+ logprobs=None,
167
+ )
168
+ ],
109
169
  usage=lf.LMSamplingUsage(12, 25, 37)
110
170
  )
111
171
  ]
@@ -126,11 +186,35 @@ class StaticSequenceTest(unittest.TestCase):
126
186
  lm.sample(['Hi', 'How are you?']),
127
187
  [
128
188
  lf.LMSamplingResult(
129
- [lf.LMSample('Hello', 1.0)],
189
+ [
190
+ lf.LMSample(
191
+ lf.AIMessage(
192
+ 'Hello',
193
+ score=1.0,
194
+ logprobs=None,
195
+ usage=lf.LMSamplingUsage(2, 5, 7),
196
+ tags=[lf.Message.TAG_LM_RESPONSE],
197
+ ),
198
+ score=1.0,
199
+ logprobs=None,
200
+ )
201
+ ],
130
202
  usage=lf.LMSamplingUsage(2, 5, 7)
131
203
  ),
132
204
  lf.LMSamplingResult(
133
- [lf.LMSample('I am fine, how about you?', 1.0)],
205
+ [
206
+ lf.LMSample(
207
+ lf.AIMessage(
208
+ 'I am fine, how about you?',
209
+ score=1.0,
210
+ logprobs=None,
211
+ usage=lf.LMSamplingUsage(12, 25, 37),
212
+ tags=[lf.Message.TAG_LM_RESPONSE],
213
+ ),
214
+ score=1.0,
215
+ logprobs=None,
216
+ )
217
+ ],
134
218
  usage=lf.LMSamplingUsage(12, 25, 37)
135
219
  )
136
220
  ]
@@ -184,23 +184,96 @@ class OpenAITest(unittest.TestCase):
184
184
  results[0],
185
185
  lf.LMSamplingResult(
186
186
  [
187
- lf.LMSample('Sample 0 for prompt 0.', score=0.0),
188
- lf.LMSample('Sample 1 for prompt 0.', score=0.1),
189
- lf.LMSample('Sample 2 for prompt 0.', score=0.2),
187
+ lf.LMSample(
188
+ lf.AIMessage(
189
+ 'Sample 0 for prompt 0.',
190
+ score=0.0,
191
+ logprobs=None,
192
+ usage=lf.LMSamplingUsage(
193
+ prompt_tokens=33,
194
+ completion_tokens=33,
195
+ total_tokens=66
196
+ ),
197
+ tags=[lf.Message.TAG_LM_RESPONSE],
198
+ ),
199
+ score=0.0,
200
+ logprobs=None,
201
+ ),
202
+ lf.LMSample(
203
+ lf.AIMessage(
204
+ 'Sample 1 for prompt 0.',
205
+ score=0.1,
206
+ logprobs=None,
207
+ usage=lf.LMSamplingUsage(
208
+ prompt_tokens=33,
209
+ completion_tokens=33,
210
+ total_tokens=66
211
+ ),
212
+ tags=[lf.Message.TAG_LM_RESPONSE],
213
+ ),
214
+ score=0.1,
215
+ logprobs=None,
216
+ ),
217
+ lf.LMSample(
218
+ lf.AIMessage(
219
+ 'Sample 2 for prompt 0.',
220
+ score=0.2,
221
+ logprobs=None,
222
+ usage=lf.LMSamplingUsage(
223
+ prompt_tokens=33,
224
+ completion_tokens=33,
225
+ total_tokens=66
226
+ ),
227
+ tags=[lf.Message.TAG_LM_RESPONSE],
228
+ ),
229
+ score=0.2,
230
+ logprobs=None,
231
+ ),
190
232
  ],
191
233
  usage=lf.LMSamplingUsage(
192
234
  prompt_tokens=100, completion_tokens=100, total_tokens=200
193
235
  ),
194
236
  ),
195
237
  )
196
-
197
238
  self.assertEqual(
198
239
  results[1],
199
- lf.LMSamplingResult([
200
- lf.LMSample('Sample 0 for prompt 1.', score=0.0),
201
- lf.LMSample('Sample 1 for prompt 1.', score=0.1),
202
- lf.LMSample('Sample 2 for prompt 1.', score=0.2),
203
- ]),
240
+ lf.LMSamplingResult(
241
+ [
242
+ lf.LMSample(
243
+ lf.AIMessage(
244
+ 'Sample 0 for prompt 1.',
245
+ score=0.0,
246
+ logprobs=None,
247
+ usage=None,
248
+ tags=[lf.Message.TAG_LM_RESPONSE],
249
+ ),
250
+ score=0.0,
251
+ logprobs=None,
252
+ ),
253
+ lf.LMSample(
254
+ lf.AIMessage(
255
+ 'Sample 1 for prompt 1.',
256
+ score=0.1,
257
+ logprobs=None,
258
+ usage=None,
259
+ tags=[lf.Message.TAG_LM_RESPONSE],
260
+ ),
261
+ score=0.1,
262
+ logprobs=None,
263
+ ),
264
+ lf.LMSample(
265
+ lf.AIMessage(
266
+ 'Sample 2 for prompt 1.',
267
+ score=0.2,
268
+ logprobs=None,
269
+ usage=None,
270
+ tags=[lf.Message.TAG_LM_RESPONSE],
271
+ ),
272
+ score=0.2,
273
+ logprobs=None,
274
+ ),
275
+ ],
276
+ ),
204
277
  )
205
278
 
206
279
  def test_sample_chat_completion(self):
@@ -216,9 +289,51 @@ class OpenAITest(unittest.TestCase):
216
289
  results[0],
217
290
  lf.LMSamplingResult(
218
291
  [
219
- lf.LMSample('Sample 0 for message.', score=0.0),
220
- lf.LMSample('Sample 1 for message.', score=0.0),
221
- lf.LMSample('Sample 2 for message.', score=0.0),
292
+ lf.LMSample(
293
+ lf.AIMessage(
294
+ 'Sample 0 for message.',
295
+ score=0.0,
296
+ logprobs=None,
297
+ usage=lf.LMSamplingUsage(
298
+ prompt_tokens=33,
299
+ completion_tokens=33,
300
+ total_tokens=66
301
+ ),
302
+ tags=[lf.Message.TAG_LM_RESPONSE],
303
+ ),
304
+ score=0.0,
305
+ logprobs=None,
306
+ ),
307
+ lf.LMSample(
308
+ lf.AIMessage(
309
+ 'Sample 1 for message.',
310
+ score=0.0,
311
+ logprobs=None,
312
+ usage=lf.LMSamplingUsage(
313
+ prompt_tokens=33,
314
+ completion_tokens=33,
315
+ total_tokens=66
316
+ ),
317
+ tags=[lf.Message.TAG_LM_RESPONSE],
318
+ ),
319
+ score=0.0,
320
+ logprobs=None,
321
+ ),
322
+ lf.LMSample(
323
+ lf.AIMessage(
324
+ 'Sample 2 for message.',
325
+ score=0.0,
326
+ logprobs=None,
327
+ usage=lf.LMSamplingUsage(
328
+ prompt_tokens=33,
329
+ completion_tokens=33,
330
+ total_tokens=66
331
+ ),
332
+ tags=[lf.Message.TAG_LM_RESPONSE],
333
+ ),
334
+ score=0.0,
335
+ logprobs=None,
336
+ ),
222
337
  ],
223
338
  usage=lf.LMSamplingUsage(
224
339
  prompt_tokens=100, completion_tokens=100, total_tokens=200
@@ -229,9 +344,51 @@ class OpenAITest(unittest.TestCase):
229
344
  results[1],
230
345
  lf.LMSamplingResult(
231
346
  [
232
- lf.LMSample('Sample 0 for message.', score=0.0),
233
- lf.LMSample('Sample 1 for message.', score=0.0),
234
- lf.LMSample('Sample 2 for message.', score=0.0),
347
+ lf.LMSample(
348
+ lf.AIMessage(
349
+ 'Sample 0 for message.',
350
+ score=0.0,
351
+ logprobs=None,
352
+ usage=lf.LMSamplingUsage(
353
+ prompt_tokens=33,
354
+ completion_tokens=33,
355
+ total_tokens=66
356
+ ),
357
+ tags=[lf.Message.TAG_LM_RESPONSE],
358
+ ),
359
+ score=0.0,
360
+ logprobs=None,
361
+ ),
362
+ lf.LMSample(
363
+ lf.AIMessage(
364
+ 'Sample 1 for message.',
365
+ score=0.0,
366
+ logprobs=None,
367
+ usage=lf.LMSamplingUsage(
368
+ prompt_tokens=33,
369
+ completion_tokens=33,
370
+ total_tokens=66
371
+ ),
372
+ tags=[lf.Message.TAG_LM_RESPONSE],
373
+ ),
374
+ score=0.0,
375
+ logprobs=None,
376
+ ),
377
+ lf.LMSample(
378
+ lf.AIMessage(
379
+ 'Sample 2 for message.',
380
+ score=0.0,
381
+ logprobs=None,
382
+ usage=lf.LMSamplingUsage(
383
+ prompt_tokens=33,
384
+ completion_tokens=33,
385
+ total_tokens=66
386
+ ),
387
+ tags=[lf.Message.TAG_LM_RESPONSE],
388
+ ),
389
+ score=0.0,
390
+ logprobs=None,
391
+ ),
235
392
  ],
236
393
  usage=lf.LMSamplingUsage(
237
394
  prompt_tokens=100, completion_tokens=100, total_tokens=200
@@ -251,8 +408,36 @@ class OpenAITest(unittest.TestCase):
251
408
  results[0],
252
409
  lf.LMSamplingResult(
253
410
  [
254
- lf.LMSample('Sample 0 for prompt 0.', score=0.0),
255
- lf.LMSample('Sample 1 for prompt 0.', score=0.1),
411
+ lf.LMSample(
412
+ lf.AIMessage(
413
+ 'Sample 0 for prompt 0.',
414
+ score=0.0,
415
+ logprobs=None,
416
+ usage=lf.LMSamplingUsage(
417
+ prompt_tokens=50,
418
+ completion_tokens=50,
419
+ total_tokens=100,
420
+ ),
421
+ tags=[lf.Message.TAG_LM_RESPONSE],
422
+ ),
423
+ score=0.0,
424
+ logprobs=None,
425
+ ),
426
+ lf.LMSample(
427
+ lf.AIMessage(
428
+ 'Sample 1 for prompt 0.',
429
+ score=0.1,
430
+ logprobs=None,
431
+ usage=lf.LMSamplingUsage(
432
+ prompt_tokens=50,
433
+ completion_tokens=50,
434
+ total_tokens=100,
435
+ ),
436
+ tags=[lf.Message.TAG_LM_RESPONSE],
437
+ ),
438
+ score=0.1,
439
+ logprobs=None,
440
+ ),
256
441
  ],
257
442
  usage=lf.LMSamplingUsage(
258
443
  prompt_tokens=100, completion_tokens=100, total_tokens=200
@@ -51,6 +51,7 @@ from langfun.core.structured.schema_generation import default_classgen_examples
51
51
  from langfun.core.structured.function_generation import function_gen
52
52
 
53
53
  from langfun.core.structured.mapping import Mapping
54
+ from langfun.core.structured.mapping import MappingError
54
55
  from langfun.core.structured.mapping import MappingExample
55
56
 
56
57
  from langfun.core.structured.parsing import ParseStructure
@@ -17,7 +17,6 @@ import inspect
17
17
  import unittest
18
18
 
19
19
  import langfun.core as lf
20
- from langfun.core import coding
21
20
  from langfun.core import modalities
22
21
  from langfun.core.llms import fake
23
22
  from langfun.core.structured import completion
@@ -608,7 +607,7 @@ class CompleteStructureTest(unittest.TestCase):
608
607
  override_attrs=True,
609
608
  ):
610
609
  with self.assertRaisesRegex(
611
- coding.CodeError,
610
+ mapping.MappingError,
612
611
  'Expect .* but encountered .*',
613
612
  ):
614
613
  completion.complete(Activity.partial(), autofix=0)