langfun 0.0.2.dev20240330__py3-none-any.whl → 0.0.2.dev20240429__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langfun/__init__.py +2 -0
- langfun/core/__init__.py +1 -0
- langfun/core/coding/python/correction.py +0 -7
- langfun/core/component.py +6 -0
- langfun/core/component_test.py +1 -0
- langfun/core/eval/__init__.py +2 -0
- langfun/core/eval/base.py +202 -23
- langfun/core/eval/base_test.py +49 -10
- langfun/core/eval/matching.py +26 -9
- langfun/core/eval/matching_test.py +2 -1
- langfun/core/eval/scoring.py +15 -6
- langfun/core/eval/scoring_test.py +2 -1
- langfun/core/langfunc.py +0 -5
- langfun/core/langfunc_test.py +6 -4
- langfun/core/language_model.py +124 -24
- langfun/core/language_model_test.py +249 -26
- langfun/core/llms/__init__.py +19 -2
- langfun/core/llms/anthropic.py +263 -0
- langfun/core/llms/anthropic_test.py +167 -0
- langfun/core/llms/cache/in_memory_test.py +37 -28
- langfun/core/llms/fake.py +31 -22
- langfun/core/llms/fake_test.py +122 -11
- langfun/core/llms/google_genai_test.py +8 -3
- langfun/core/llms/groq.py +260 -0
- langfun/core/llms/groq_test.py +170 -0
- langfun/core/llms/llama_cpp.py +3 -1
- langfun/core/llms/openai.py +97 -79
- langfun/core/llms/openai_test.py +285 -59
- langfun/core/modalities/video.py +5 -2
- langfun/core/structured/__init__.py +3 -0
- langfun/core/structured/completion_test.py +2 -2
- langfun/core/structured/function_generation.py +245 -0
- langfun/core/structured/function_generation_test.py +329 -0
- langfun/core/structured/mapping.py +56 -2
- langfun/core/structured/mapping_test.py +17 -0
- langfun/core/structured/parsing_test.py +18 -13
- langfun/core/structured/prompting.py +27 -6
- langfun/core/structured/prompting_test.py +79 -12
- langfun/core/structured/schema.py +4 -2
- langfun/core/structured/schema_generation_test.py +2 -2
- langfun/core/structured/schema_test.py +4 -6
- langfun/core/template.py +125 -10
- langfun/core/template_test.py +75 -0
- langfun/core/templates/selfplay_test.py +6 -2
- {langfun-0.0.2.dev20240330.dist-info → langfun-0.0.2.dev20240429.dist-info}/METADATA +3 -2
- {langfun-0.0.2.dev20240330.dist-info → langfun-0.0.2.dev20240429.dist-info}/RECORD +49 -43
- {langfun-0.0.2.dev20240330.dist-info → langfun-0.0.2.dev20240429.dist-info}/LICENSE +0 -0
- {langfun-0.0.2.dev20240330.dist-info → langfun-0.0.2.dev20240429.dist-info}/WHEEL +0 -0
- {langfun-0.0.2.dev20240330.dist-info → langfun-0.0.2.dev20240429.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,167 @@
|
|
1
|
+
# Copyright 2023 The Langfun Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""Tests for Anthropic models."""
|
15
|
+
|
16
|
+
import base64
|
17
|
+
import os
|
18
|
+
from typing import Any
|
19
|
+
import unittest
|
20
|
+
from unittest import mock
|
21
|
+
from langfun.core import modalities as lf_modalities
|
22
|
+
from langfun.core.llms import anthropic
|
23
|
+
import pyglove as pg
|
24
|
+
import requests
|
25
|
+
|
26
|
+
|
27
|
+
def mock_requests_post(url: str, json: dict[str, Any], **kwargs):
|
28
|
+
del url, kwargs
|
29
|
+
|
30
|
+
response = requests.Response()
|
31
|
+
response.status_code = 200
|
32
|
+
response._content = pg.to_json_str({
|
33
|
+
'content': [{
|
34
|
+
'type': 'text',
|
35
|
+
'text': (
|
36
|
+
f'hello with temperature={json.get("temperature")}, '
|
37
|
+
f'top_k={json.get("top_k")}, '
|
38
|
+
f'top_p={json.get("top_p")}, '
|
39
|
+
f'max_tokens={json.get("max_tokens")}, '
|
40
|
+
f'stop={json.get("stop_sequences")}.'
|
41
|
+
),
|
42
|
+
}],
|
43
|
+
'usage': {
|
44
|
+
'input_tokens': 2,
|
45
|
+
'output_tokens': 1,
|
46
|
+
},
|
47
|
+
}).encode()
|
48
|
+
return response
|
49
|
+
|
50
|
+
|
51
|
+
image_content = (
|
52
|
+
b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x18\x00\x00\x00\x18\x04'
|
53
|
+
b'\x03\x00\x00\x00\x12Y \xcb\x00\x00\x00\x18PLTE\x00\x00'
|
54
|
+
b'\x00fff_chaag_cg_ch^ci_ciC\xedb\x94\x00\x00\x00\x08tRNS'
|
55
|
+
b'\x00\n\x9f*\xd4\xff_\xf4\xe4\x8b\xf3a\x00\x00\x00>IDATx'
|
56
|
+
b'\x01c \x05\x08)"\xd8\xcc\xae!\x06pNz\x88k\x19\\Q\xa8"\x10'
|
57
|
+
b'\xc1\x14\x95\x01%\xc1\n\xa143Ta\xa8"D-\x84\x03QM\x98\xc3'
|
58
|
+
b'\x1a\x1a\x1a@5\x0e\x04\xa0q\x88\x05\x00\x07\xf8\x18\xf9'
|
59
|
+
b'\xdao\xd0|\x00\x00\x00\x00IEND\xaeB`\x82'
|
60
|
+
)
|
61
|
+
|
62
|
+
|
63
|
+
def mock_mm_requests_post(url: str, json: dict[str, Any], **kwargs):
|
64
|
+
del url, kwargs
|
65
|
+
v = json['messages'][0]['content'][0]
|
66
|
+
image = lf_modalities.Image.from_bytes(base64.b64decode(v['source']['data']))
|
67
|
+
|
68
|
+
response = requests.Response()
|
69
|
+
response.status_code = 200
|
70
|
+
response._content = pg.to_json_str({
|
71
|
+
'content': [{
|
72
|
+
'type': 'text',
|
73
|
+
'text': f'{v["type"]}: {image.mime_type}',
|
74
|
+
}],
|
75
|
+
'usage': {
|
76
|
+
'input_tokens': 2,
|
77
|
+
'output_tokens': 1,
|
78
|
+
},
|
79
|
+
}).encode()
|
80
|
+
return response
|
81
|
+
|
82
|
+
|
83
|
+
def mock_requests_post_error(status_code, error_type, error_message):
|
84
|
+
def _mock_requests(url: str, json: dict[str, Any], **kwargs):
|
85
|
+
del url, json, kwargs
|
86
|
+
response = requests.Response()
|
87
|
+
response.status_code = status_code
|
88
|
+
response._content = pg.to_json_str(
|
89
|
+
{
|
90
|
+
'error': {
|
91
|
+
'type': error_type,
|
92
|
+
'message': error_message,
|
93
|
+
}
|
94
|
+
}
|
95
|
+
).encode()
|
96
|
+
return response
|
97
|
+
|
98
|
+
return _mock_requests
|
99
|
+
|
100
|
+
|
101
|
+
class AnthropicTest(unittest.TestCase):
|
102
|
+
|
103
|
+
def test_basics(self):
|
104
|
+
self.assertEqual(
|
105
|
+
anthropic.Claude3Haiku().model_id, 'claude-3-haiku-20240307'
|
106
|
+
)
|
107
|
+
self.assertGreater(anthropic.Claude3Haiku().max_concurrency, 0)
|
108
|
+
|
109
|
+
def test_api_key(self):
|
110
|
+
lm = anthropic.Claude3Haiku()
|
111
|
+
with self.assertRaisesRegex(ValueError, 'Please specify `api_key`'):
|
112
|
+
lm('hi')
|
113
|
+
|
114
|
+
with mock.patch('requests.Session.post') as mock_request:
|
115
|
+
mock_request.side_effect = mock_requests_post
|
116
|
+
|
117
|
+
lm = anthropic.Claude3Haiku(api_key='fake key')
|
118
|
+
self.assertRegex(lm('hi').text, 'hello.*')
|
119
|
+
|
120
|
+
os.environ['ANTHROPIC_API_KEY'] = 'abc'
|
121
|
+
lm = anthropic.Claude3Haiku()
|
122
|
+
self.assertRegex(lm('hi').text, 'hello.*')
|
123
|
+
del os.environ['ANTHROPIC_API_KEY']
|
124
|
+
|
125
|
+
def test_call(self):
|
126
|
+
with mock.patch('requests.Session.post') as mock_request:
|
127
|
+
mock_request.side_effect = mock_requests_post
|
128
|
+
lm = anthropic.Claude3Haiku(api_key='fake_key')
|
129
|
+
response = lm('hello', temperature=0.0, top_k=0.1, top_p=0.2, stop=['\n'])
|
130
|
+
self.assertEqual(
|
131
|
+
response.text,
|
132
|
+
(
|
133
|
+
'hello with temperature=0.0, top_k=0.1, top_p=0.2, '
|
134
|
+
"max_tokens=4096, stop=['\\n']."
|
135
|
+
),
|
136
|
+
)
|
137
|
+
self.assertIsNotNone(response.usage)
|
138
|
+
self.assertIsNotNone(response.usage.prompt_tokens, 2)
|
139
|
+
self.assertIsNotNone(response.usage.completion_tokens, 1)
|
140
|
+
self.assertIsNotNone(response.usage.total_tokens, 3)
|
141
|
+
|
142
|
+
def test_mm_call(self):
|
143
|
+
with mock.patch('requests.Session.post') as mock_mm_request:
|
144
|
+
mock_mm_request.side_effect = mock_mm_requests_post
|
145
|
+
lm = anthropic.Claude3Haiku(api_key='fake_key')
|
146
|
+
response = lm(lf_modalities.Image.from_bytes(image_content), lm=lm)
|
147
|
+
self.assertEqual(response.text, 'image: image/png')
|
148
|
+
|
149
|
+
def test_call_errors(self):
|
150
|
+
for status_code, error_type, error_message in [
|
151
|
+
(429, 'rate_limit', 'Rate limit exceeded.'),
|
152
|
+
(529, 'service_unavailable', 'Service unavailable.'),
|
153
|
+
(500, 'bad_request', 'Bad request.'),
|
154
|
+
]:
|
155
|
+
with mock.patch('requests.Session.post') as mock_mm_request:
|
156
|
+
mock_mm_request.side_effect = mock_requests_post_error(
|
157
|
+
status_code, error_type, error_message
|
158
|
+
)
|
159
|
+
lm = anthropic.Claude3Haiku(api_key='fake_key')
|
160
|
+
with self.assertRaisesRegex(
|
161
|
+
Exception, f'.*{status_code}: .*{error_message}'
|
162
|
+
):
|
163
|
+
lm('hello', lm=lm, max_attempts=1)
|
164
|
+
|
165
|
+
|
166
|
+
if __name__ == '__main__':
|
167
|
+
unittest.main()
|
@@ -44,28 +44,37 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
44
44
|
self.assertEqual(
|
45
45
|
list(cache.keys()),
|
46
46
|
[
|
47
|
-
('a', (
|
48
|
-
('a', (
|
49
|
-
('b', (
|
50
|
-
('c', (
|
47
|
+
('a', (None, None, 1, 40, None, None), 0),
|
48
|
+
('a', (None, None, 1, 40, None, None), 1),
|
49
|
+
('b', (None, None, 1, 40, None, None), 0),
|
50
|
+
('c', (None, None, 1, 40, None, None), 0),
|
51
51
|
],
|
52
52
|
)
|
53
53
|
self.assertEqual(
|
54
54
|
list(cache.keys('StaticSequence')),
|
55
55
|
[
|
56
|
-
('a', (
|
57
|
-
('a', (
|
58
|
-
('b', (
|
59
|
-
('c', (
|
56
|
+
('a', (None, None, 1, 40, None, None), 0),
|
57
|
+
('a', (None, None, 1, 40, None, None), 1),
|
58
|
+
('b', (None, None, 1, 40, None, None), 0),
|
59
|
+
('c', (None, None, 1, 40, None, None), 0),
|
60
60
|
],
|
61
61
|
)
|
62
62
|
|
63
63
|
def cache_entry(response_text, cache_seed=0):
|
64
64
|
return base.LMCacheEntry(
|
65
|
-
lf.LMSamplingResult(
|
66
|
-
|
67
|
-
lf.
|
68
|
-
|
65
|
+
lf.LMSamplingResult(
|
66
|
+
[
|
67
|
+
lf.LMSample(
|
68
|
+
lf.AIMessage(response_text, cache_seed=cache_seed),
|
69
|
+
score=1.0
|
70
|
+
)
|
71
|
+
],
|
72
|
+
usage=lf.LMSamplingUsage(
|
73
|
+
1,
|
74
|
+
len(response_text),
|
75
|
+
len(response_text) + 1,
|
76
|
+
)
|
77
|
+
)
|
69
78
|
)
|
70
79
|
|
71
80
|
self.assertEqual(
|
@@ -90,19 +99,19 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
90
99
|
list(cache.items()),
|
91
100
|
[
|
92
101
|
(
|
93
|
-
('a', (
|
102
|
+
('a', (None, None, 1, 40, None, None), 0),
|
94
103
|
cache_entry('1'),
|
95
104
|
),
|
96
105
|
(
|
97
|
-
('a', (
|
106
|
+
('a', (None, None, 1, 40, None, None), 1),
|
98
107
|
cache_entry('2', 1),
|
99
108
|
),
|
100
109
|
(
|
101
|
-
('b', (
|
110
|
+
('b', (None, None, 1, 40, None, None), 0),
|
102
111
|
cache_entry('3'),
|
103
112
|
),
|
104
113
|
(
|
105
|
-
('c', (
|
114
|
+
('c', (None, None, 1, 40, None, None), 0),
|
106
115
|
cache_entry('4'),
|
107
116
|
),
|
108
117
|
],
|
@@ -111,19 +120,19 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
111
120
|
list(cache.items('StaticSequence')),
|
112
121
|
[
|
113
122
|
(
|
114
|
-
('a', (
|
123
|
+
('a', (None, None, 1, 40, None, None), 0),
|
115
124
|
cache_entry('1'),
|
116
125
|
),
|
117
126
|
(
|
118
|
-
('a', (
|
127
|
+
('a', (None, None, 1, 40, None, None), 1),
|
119
128
|
cache_entry('2', 1),
|
120
129
|
),
|
121
130
|
(
|
122
|
-
('b', (
|
131
|
+
('b', (None, None, 1, 40, None, None), 0),
|
123
132
|
cache_entry('3'),
|
124
133
|
),
|
125
134
|
(
|
126
|
-
('c', (
|
135
|
+
('c', (None, None, 1, 40, None, None), 0),
|
127
136
|
cache_entry('4'),
|
128
137
|
),
|
129
138
|
],
|
@@ -161,15 +170,15 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
161
170
|
self.assertEqual(
|
162
171
|
list(cache.keys()),
|
163
172
|
[
|
164
|
-
('a', (
|
165
|
-
('a', (1.0,
|
173
|
+
('a', (None, None, 1, 40, None, None), 0),
|
174
|
+
('a', (1.0, None, 1, 40, None, None), 0),
|
166
175
|
],
|
167
176
|
)
|
168
177
|
|
169
178
|
def test_different_model(self):
|
170
179
|
cache = in_memory.InMemory()
|
171
|
-
lm1 = fake.StaticSequence(['1', '2', '3'], cache=cache)
|
172
|
-
lm2 = fake.Echo(cache=cache)
|
180
|
+
lm1 = fake.StaticSequence(['1', '2', '3'], cache=cache, temperature=0.0)
|
181
|
+
lm2 = fake.Echo(cache=cache, temperature=0.0)
|
173
182
|
|
174
183
|
self.assertEqual(lm1('a'), '1')
|
175
184
|
self.assertEqual(lm2('a'), 'a')
|
@@ -180,15 +189,15 @@ class InMemoryLMCacheTest(unittest.TestCase):
|
|
180
189
|
self.assertEqual(
|
181
190
|
list(cache.keys('StaticSequence')),
|
182
191
|
[
|
183
|
-
('a', (0.0,
|
184
|
-
('b', (0.0,
|
192
|
+
('a', (0.0, None, 1, 40, None, None), 0),
|
193
|
+
('b', (0.0, None, 1, 40, None, None), 0),
|
185
194
|
],
|
186
195
|
)
|
187
196
|
self.assertEqual(
|
188
197
|
list(cache.keys('Echo')),
|
189
198
|
[
|
190
|
-
('a', (0.0,
|
191
|
-
('b', (0.0,
|
199
|
+
('a', (0.0, None, 1, 40, None, None), 0),
|
200
|
+
('b', (0.0, None, 1, 40, None, None), 0),
|
192
201
|
],
|
193
202
|
)
|
194
203
|
self.assertEqual(len(cache), 4)
|
langfun/core/llms/fake.py
CHANGED
@@ -13,6 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
"""Fake LMs for testing."""
|
15
15
|
|
16
|
+
import abc
|
16
17
|
from typing import Annotated
|
17
18
|
import langfun.core as lf
|
18
19
|
|
@@ -23,15 +24,32 @@ class Fake(lf.LanguageModel):
|
|
23
24
|
def _score(self, prompt: lf.Message, completions: list[lf.Message]):
|
24
25
|
return [lf.LMScoringResult(score=-i * 1.0) for i in range(len(completions))]
|
25
26
|
|
27
|
+
def _sample(self, prompts: list[lf.Message]) -> list[lf.LMSamplingResult]:
|
28
|
+
results = []
|
29
|
+
for prompt in prompts:
|
30
|
+
response = self._response_from(prompt)
|
31
|
+
results.append(
|
32
|
+
lf.LMSamplingResult(
|
33
|
+
[lf.LMSample(response, 1.0)],
|
34
|
+
usage=lf.LMSamplingUsage(
|
35
|
+
prompt_tokens=len(prompt.text),
|
36
|
+
completion_tokens=len(response.text),
|
37
|
+
total_tokens=len(prompt.text) + len(response.text),
|
38
|
+
)
|
39
|
+
)
|
40
|
+
)
|
41
|
+
return results
|
42
|
+
|
43
|
+
@abc.abstractmethod
|
44
|
+
def _response_from(self, prompt: lf.Message) -> lf.Message:
|
45
|
+
"""Returns the response for the given prompt."""
|
46
|
+
|
26
47
|
|
27
48
|
class Echo(Fake):
|
28
49
|
"""A simple echo language model for testing."""
|
29
50
|
|
30
|
-
def
|
31
|
-
return
|
32
|
-
lf.LMSamplingResult([lf.LMSample(prompt.text, 1.0)])
|
33
|
-
for prompt in prompts
|
34
|
-
]
|
51
|
+
def _response_from(self, prompt: lf.Message) -> lf.Message:
|
52
|
+
return lf.AIMessage(prompt.text)
|
35
53
|
|
36
54
|
|
37
55
|
@lf.use_init_args(['response'])
|
@@ -43,11 +61,8 @@ class StaticResponse(Fake):
|
|
43
61
|
'A canned response that will be returned regardless of the prompt.'
|
44
62
|
]
|
45
63
|
|
46
|
-
def
|
47
|
-
return
|
48
|
-
lf.LMSamplingResult([lf.LMSample(self.response, 1.0)])
|
49
|
-
for _ in prompts
|
50
|
-
]
|
64
|
+
def _response_from(self, prompt: lf.Message) -> lf.Message:
|
65
|
+
return lf.AIMessage(self.response)
|
51
66
|
|
52
67
|
|
53
68
|
@lf.use_init_args(['mapping'])
|
@@ -59,11 +74,8 @@ class StaticMapping(Fake):
|
|
59
74
|
'A mapping from prompt to response.'
|
60
75
|
]
|
61
76
|
|
62
|
-
def
|
63
|
-
return [
|
64
|
-
lf.LMSamplingResult([lf.LMSample(self.mapping[prompt], 1.0)])
|
65
|
-
for prompt in prompts
|
66
|
-
]
|
77
|
+
def _response_from(self, prompt: lf.Message) -> lf.Message:
|
78
|
+
return lf.AIMessage(self.mapping[prompt])
|
67
79
|
|
68
80
|
|
69
81
|
@lf.use_init_args(['sequence'])
|
@@ -79,10 +91,7 @@ class StaticSequence(Fake):
|
|
79
91
|
super()._on_bound()
|
80
92
|
self._pos = 0
|
81
93
|
|
82
|
-
def
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
[lf.LMSample(self.sequence[self._pos], 1.0)]))
|
87
|
-
self._pos += 1
|
88
|
-
return results
|
94
|
+
def _response_from(self, prompt: lf.Message) -> lf.Message:
|
95
|
+
r = lf.AIMessage(self.sequence[self._pos])
|
96
|
+
self._pos += 1
|
97
|
+
return r
|
langfun/core/llms/fake_test.py
CHANGED
@@ -25,7 +25,24 @@ class EchoTest(unittest.TestCase):
|
|
25
25
|
def test_sample(self):
|
26
26
|
lm = fakelm.Echo()
|
27
27
|
self.assertEqual(
|
28
|
-
lm.sample(['hi']),
|
28
|
+
lm.sample(['hi']),
|
29
|
+
[
|
30
|
+
lf.LMSamplingResult(
|
31
|
+
[
|
32
|
+
lf.LMSample(
|
33
|
+
lf.AIMessage(
|
34
|
+
'hi',
|
35
|
+
score=1.0,
|
36
|
+
logprobs=None,
|
37
|
+
usage=lf.LMSamplingUsage(2, 2, 4),
|
38
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
39
|
+
),
|
40
|
+
score=1.0,
|
41
|
+
logprobs=None,
|
42
|
+
)
|
43
|
+
],
|
44
|
+
lf.LMSamplingUsage(2, 2, 4))
|
45
|
+
]
|
29
46
|
)
|
30
47
|
|
31
48
|
def test_call(self):
|
@@ -34,8 +51,8 @@ class EchoTest(unittest.TestCase):
|
|
34
51
|
with contextlib.redirect_stdout(string_io):
|
35
52
|
self.assertEqual(lm('hi'), 'hi')
|
36
53
|
debug_info = string_io.getvalue()
|
37
|
-
self.assertIn('[0] LM INFO
|
38
|
-
self.assertIn('[0] PROMPT SENT TO LM
|
54
|
+
self.assertIn('[0] LM INFO', debug_info)
|
55
|
+
self.assertIn('[0] PROMPT SENT TO LM', debug_info)
|
39
56
|
self.assertIn('[0] LM RESPONSE', debug_info)
|
40
57
|
|
41
58
|
def test_score(self):
|
@@ -53,11 +70,45 @@ class StaticResponseTest(unittest.TestCase):
|
|
53
70
|
lm = fakelm.StaticResponse(canned_response)
|
54
71
|
self.assertEqual(
|
55
72
|
lm.sample(['hi']),
|
56
|
-
[
|
73
|
+
[
|
74
|
+
lf.LMSamplingResult(
|
75
|
+
[
|
76
|
+
lf.LMSample(
|
77
|
+
lf.AIMessage(
|
78
|
+
canned_response,
|
79
|
+
score=1.0,
|
80
|
+
logprobs=None,
|
81
|
+
usage=lf.LMSamplingUsage(2, 38, 40),
|
82
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
83
|
+
),
|
84
|
+
score=1.0,
|
85
|
+
logprobs=None,
|
86
|
+
)
|
87
|
+
],
|
88
|
+
usage=lf.LMSamplingUsage(2, 38, 40)
|
89
|
+
)
|
90
|
+
],
|
57
91
|
)
|
58
92
|
self.assertEqual(
|
59
93
|
lm.sample(['Tell me a joke.']),
|
60
|
-
[
|
94
|
+
[
|
95
|
+
lf.LMSamplingResult(
|
96
|
+
[
|
97
|
+
lf.LMSample(
|
98
|
+
lf.AIMessage(
|
99
|
+
canned_response,
|
100
|
+
score=1.0,
|
101
|
+
logprobs=None,
|
102
|
+
usage=lf.LMSamplingUsage(15, 38, 53),
|
103
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
104
|
+
),
|
105
|
+
score=1.0,
|
106
|
+
logprobs=None,
|
107
|
+
)
|
108
|
+
],
|
109
|
+
usage=lf.LMSamplingUsage(15, 38, 53)
|
110
|
+
)
|
111
|
+
],
|
61
112
|
)
|
62
113
|
|
63
114
|
def test_call(self):
|
@@ -69,8 +120,8 @@ class StaticResponseTest(unittest.TestCase):
|
|
69
120
|
self.assertEqual(lm('hi'), canned_response)
|
70
121
|
|
71
122
|
debug_info = string_io.getvalue()
|
72
|
-
self.assertIn('[0] LM INFO
|
73
|
-
self.assertIn('[0] PROMPT SENT TO LM
|
123
|
+
self.assertIn('[0] LM INFO', debug_info)
|
124
|
+
self.assertIn('[0] PROMPT SENT TO LM', debug_info)
|
74
125
|
self.assertIn('[0] LM RESPONSE', debug_info)
|
75
126
|
|
76
127
|
|
@@ -85,8 +136,38 @@ class StaticMappingTest(unittest.TestCase):
|
|
85
136
|
self.assertEqual(
|
86
137
|
lm.sample(['Hi', 'How are you?']),
|
87
138
|
[
|
88
|
-
lf.LMSamplingResult(
|
89
|
-
|
139
|
+
lf.LMSamplingResult(
|
140
|
+
[
|
141
|
+
lf.LMSample(
|
142
|
+
lf.AIMessage(
|
143
|
+
'Hello',
|
144
|
+
score=1.0,
|
145
|
+
logprobs=None,
|
146
|
+
usage=lf.LMSamplingUsage(2, 5, 7),
|
147
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
148
|
+
),
|
149
|
+
score=1.0,
|
150
|
+
logprobs=None,
|
151
|
+
)
|
152
|
+
],
|
153
|
+
usage=lf.LMSamplingUsage(2, 5, 7)
|
154
|
+
),
|
155
|
+
lf.LMSamplingResult(
|
156
|
+
[
|
157
|
+
lf.LMSample(
|
158
|
+
lf.AIMessage(
|
159
|
+
'I am fine, how about you?',
|
160
|
+
score=1.0,
|
161
|
+
logprobs=None,
|
162
|
+
usage=lf.LMSamplingUsage(12, 25, 37),
|
163
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
164
|
+
),
|
165
|
+
score=1.0,
|
166
|
+
logprobs=None,
|
167
|
+
)
|
168
|
+
],
|
169
|
+
usage=lf.LMSamplingUsage(12, 25, 37)
|
170
|
+
)
|
90
171
|
]
|
91
172
|
)
|
92
173
|
with self.assertRaises(KeyError):
|
@@ -104,8 +185,38 @@ class StaticSequenceTest(unittest.TestCase):
|
|
104
185
|
self.assertEqual(
|
105
186
|
lm.sample(['Hi', 'How are you?']),
|
106
187
|
[
|
107
|
-
lf.LMSamplingResult(
|
108
|
-
|
188
|
+
lf.LMSamplingResult(
|
189
|
+
[
|
190
|
+
lf.LMSample(
|
191
|
+
lf.AIMessage(
|
192
|
+
'Hello',
|
193
|
+
score=1.0,
|
194
|
+
logprobs=None,
|
195
|
+
usage=lf.LMSamplingUsage(2, 5, 7),
|
196
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
197
|
+
),
|
198
|
+
score=1.0,
|
199
|
+
logprobs=None,
|
200
|
+
)
|
201
|
+
],
|
202
|
+
usage=lf.LMSamplingUsage(2, 5, 7)
|
203
|
+
),
|
204
|
+
lf.LMSamplingResult(
|
205
|
+
[
|
206
|
+
lf.LMSample(
|
207
|
+
lf.AIMessage(
|
208
|
+
'I am fine, how about you?',
|
209
|
+
score=1.0,
|
210
|
+
logprobs=None,
|
211
|
+
usage=lf.LMSamplingUsage(12, 25, 37),
|
212
|
+
tags=[lf.Message.TAG_LM_RESPONSE],
|
213
|
+
),
|
214
|
+
score=1.0,
|
215
|
+
logprobs=None,
|
216
|
+
)
|
217
|
+
],
|
218
|
+
usage=lf.LMSamplingUsage(12, 25, 37)
|
219
|
+
)
|
109
220
|
]
|
110
221
|
)
|
111
222
|
with self.assertRaises(IndexError):
|
@@ -152,10 +152,15 @@ class GenAITest(unittest.TestCase):
|
|
152
152
|
)
|
153
153
|
|
154
154
|
def test_model_hub(self):
|
155
|
+
orig_get_model = genai.get_model
|
156
|
+
genai.get_model = mock_get_model
|
157
|
+
|
155
158
|
model = google_genai._GOOGLE_GENAI_MODEL_HUB.get('gemini-pro')
|
156
159
|
self.assertIsNotNone(model)
|
157
160
|
self.assertIs(google_genai._GOOGLE_GENAI_MODEL_HUB.get('gemini-pro'), model)
|
158
161
|
|
162
|
+
genai.get_model = orig_get_model
|
163
|
+
|
159
164
|
def test_api_key_check(self):
|
160
165
|
with self.assertRaisesRegex(ValueError, 'Please specify `api_key`'):
|
161
166
|
_ = google_genai.GeminiPro()._api_initialized
|
@@ -167,7 +172,7 @@ class GenAITest(unittest.TestCase):
|
|
167
172
|
|
168
173
|
def test_call(self):
|
169
174
|
with mock.patch(
|
170
|
-
'google.generativeai.
|
175
|
+
'google.generativeai.GenerativeModel.generate_content',
|
171
176
|
) as mock_generate:
|
172
177
|
orig_get_model = genai.get_model
|
173
178
|
genai.get_model = mock_get_model
|
@@ -176,7 +181,7 @@ class GenAITest(unittest.TestCase):
|
|
176
181
|
lm = google_genai.GeminiPro(api_key='test_key')
|
177
182
|
self.maxDiff = None
|
178
183
|
self.assertEqual(
|
179
|
-
lm('hello', temperature=2.0, top_k=20).text,
|
184
|
+
lm('hello', temperature=2.0, top_k=20, max_tokens=1024).text,
|
180
185
|
(
|
181
186
|
'This is a response to hello with n=1, temperature=2.0, '
|
182
187
|
'top_p=None, top_k=20, max_tokens=1024, stop=None.'
|
@@ -197,7 +202,7 @@ class GenAITest(unittest.TestCase):
|
|
197
202
|
(
|
198
203
|
"hello to models/text-bison-001 with {'temperature': 2.0, "
|
199
204
|
"'top_k': 20, 'top_p': None, 'candidate_count': 1, "
|
200
|
-
"'max_output_tokens':
|
205
|
+
"'max_output_tokens': None, 'stop_sequences': None}"
|
201
206
|
),
|
202
207
|
)
|
203
208
|
genai.get_model = orig_get_model
|