langflow-base-nightly 0.6.4.dev10__py3-none-any.whl → 0.6.5.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. langflow/__main__.py +9 -1
  2. langflow/api/v1/knowledge_bases.py +15 -7
  3. langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +50 -4
  4. langflow/initial_setup/starter_projects/Basic Prompting.json +50 -4
  5. langflow/initial_setup/starter_projects/Blog Writer.json +25 -2
  6. langflow/initial_setup/starter_projects/Custom Component Generator.json +50 -4
  7. langflow/initial_setup/starter_projects/Document Q&A.json +50 -4
  8. langflow/initial_setup/starter_projects/Financial Report Parser.json +50 -4
  9. langflow/initial_setup/starter_projects/Hybrid Search RAG.json +57 -11
  10. langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +50 -4
  11. langflow/initial_setup/starter_projects/Instagram Copywriter.json +75 -6
  12. langflow/initial_setup/starter_projects/Invoice Summarizer.json +75 -6
  13. langflow/initial_setup/starter_projects/Knowledge Ingestion.json +2 -2
  14. langflow/initial_setup/starter_projects/Knowledge Retrieval.json +27 -4
  15. langflow/initial_setup/starter_projects/Market Research.json +75 -6
  16. langflow/initial_setup/starter_projects/Meeting Summary.json +100 -8
  17. langflow/initial_setup/starter_projects/Memory Chatbot.json +50 -4
  18. langflow/initial_setup/starter_projects/News Aggregator.json +75 -6
  19. langflow/initial_setup/starter_projects/Nvidia Remix.json +76 -7
  20. langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +75 -6
  21. langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +25 -2
  22. langflow/initial_setup/starter_projects/Price Deal Finder.json +75 -6
  23. langflow/initial_setup/starter_projects/Research Agent.json +75 -6
  24. langflow/initial_setup/starter_projects/Research Translation Loop.json +52 -6
  25. langflow/initial_setup/starter_projects/SEO Keyword Generator.json +25 -2
  26. langflow/initial_setup/starter_projects/SaaS Pricing.json +50 -4
  27. langflow/initial_setup/starter_projects/Search agent.json +75 -6
  28. langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +125 -10
  29. langflow/initial_setup/starter_projects/Simple Agent.json +76 -7
  30. langflow/initial_setup/starter_projects/Social Media Agent.json +75 -6
  31. langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +50 -4
  32. langflow/initial_setup/starter_projects/Travel Planning Agents.json +125 -10
  33. langflow/initial_setup/starter_projects/Twitter Thread Generator.json +50 -4
  34. langflow/initial_setup/starter_projects/Vector Store RAG.json +64 -18
  35. langflow/initial_setup/starter_projects/Youtube Analysis.json +75 -6
  36. langflow/services/deps.py +11 -0
  37. {langflow_base_nightly-0.6.4.dev10.dist-info → langflow_base_nightly-0.6.5.dev1.dist-info}/METADATA +2 -2
  38. {langflow_base_nightly-0.6.4.dev10.dist-info → langflow_base_nightly-0.6.5.dev1.dist-info}/RECORD +40 -40
  39. {langflow_base_nightly-0.6.4.dev10.dist-info → langflow_base_nightly-0.6.5.dev1.dist-info}/WHEEL +0 -0
  40. {langflow_base_nightly-0.6.4.dev10.dist-info → langflow_base_nightly-0.6.5.dev1.dist-info}/entry_points.txt +0 -0
@@ -206,7 +206,7 @@
206
206
  "legacy": false,
207
207
  "lf_version": "1.6.0",
208
208
  "metadata": {
209
- "code_hash": "f701f686b325",
209
+ "code_hash": "0014a5b41817",
210
210
  "dependencies": {
211
211
  "dependencies": [
212
212
  {
@@ -254,7 +254,30 @@
254
254
  "show": true,
255
255
  "title_case": false,
256
256
  "type": "code",
257
- "value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n # Ensure files is a list and filter out empty/None values\n files = self.files if self.files else []\n if files and not isinstance(files, list):\n files = [files]\n # Filter out None/empty values\n files = [f for f in files if f is not None and f != \"\"]\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=files,\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
257
+ "value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n # Ensure files is a list and filter out empty/None values\n files = self.files if self.files else []\n if files and not isinstance(files, list):\n files = [files]\n # Filter out None/empty values\n files = [f for f in files if f is not None and f != \"\"]\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n context_id=self.context_id,\n files=files,\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
258
+ },
259
+ "context_id": {
260
+ "_input_type": "MessageTextInput",
261
+ "advanced": true,
262
+ "display_name": "Context ID",
263
+ "dynamic": false,
264
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
265
+ "input_types": [
266
+ "Message"
267
+ ],
268
+ "list": false,
269
+ "list_add_label": "Add More",
270
+ "load_from_db": false,
271
+ "name": "context_id",
272
+ "placeholder": "",
273
+ "required": false,
274
+ "show": true,
275
+ "title_case": false,
276
+ "tool_mode": false,
277
+ "trace_as_input": true,
278
+ "trace_as_metadata": true,
279
+ "type": "str",
280
+ "value": ""
258
281
  },
259
282
  "files": {
260
283
  "_input_type": "FileInput",
@@ -453,7 +476,7 @@
453
476
  "legacy": false,
454
477
  "lf_version": "1.6.0",
455
478
  "metadata": {
456
- "code_hash": "9647f4d2f4b4",
479
+ "code_hash": "4848ad3e35d5",
457
480
  "dependencies": {
458
481
  "dependencies": [
459
482
  {
@@ -527,7 +550,30 @@
527
550
  "show": true,
528
551
  "title_case": false,
529
552
  "type": "code",
530
- "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
553
+ "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.context_id = self.context_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
554
+ },
555
+ "context_id": {
556
+ "_input_type": "MessageTextInput",
557
+ "advanced": true,
558
+ "display_name": "Context ID",
559
+ "dynamic": false,
560
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
561
+ "input_types": [
562
+ "Message"
563
+ ],
564
+ "list": false,
565
+ "list_add_label": "Add More",
566
+ "load_from_db": false,
567
+ "name": "context_id",
568
+ "placeholder": "",
569
+ "required": false,
570
+ "show": true,
571
+ "title_case": false,
572
+ "tool_mode": false,
573
+ "trace_as_input": true,
574
+ "trace_as_metadata": true,
575
+ "type": "str",
576
+ "value": ""
531
577
  },
532
578
  "data_template": {
533
579
  "_input_type": "MessageTextInput",
@@ -1501,7 +1547,7 @@
1501
1547
  "legacy": false,
1502
1548
  "lf_version": "1.6.0",
1503
1549
  "metadata": {
1504
- "code_hash": "72ff02a84bcb",
1550
+ "code_hash": "bdb8b8db6375",
1505
1551
  "dependencies": {
1506
1552
  "dependencies": [
1507
1553
  {
@@ -1673,7 +1719,30 @@
1673
1719
  "show": true,
1674
1720
  "title_case": false,
1675
1721
  "type": "code",
1676
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS_DICT,\n MODEL_PROVIDERS_LIST,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST],\n value=\"OpenAI\",\n real_time_refresh=True,\n refresh_button=False,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA],\n external_options={\n \"fields\": {\n \"data\": {\n \"node\": {\n \"name\": \"connect_other_models\",\n \"display_name\": \"Connect other models\",\n \"icon\": \"CornerDownLeft\",\n }\n }\n },\n },\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n await logger.adebug(f\"Retrieved {len(self.chat_history)} chat history messages\")\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\n \"true\",\n \"1\",\n \"t\",\n \"y\",\n \"yes\",\n ]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (\n ExceptionWithMessageError,\n ValueError,\n TypeError,\n RuntimeError,\n ) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (\n ExceptionWithMessageError,\n ValueError,\n TypeError,\n NotImplementedError,\n AttributeError,\n ) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(\n session_id=self.graph.session_id,\n order=\"Ascending\",\n n_messages=self.n_messages,\n )\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"connect_other_models\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST],\n real_time_refresh=True,\n refresh_button=False,\n input_types=[\"LanguageModel\"],\n placeholder=\"Awaiting model input.\",\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA],\n external_options={\n \"fields\": {\n \"data\": {\n \"node\": {\n \"name\": \"connect_other_models\",\n \"display_name\": \"Connect other models\",\n \"icon\": \"CornerDownLeft\",\n },\n }\n },\n },\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\",\n tool_description=description,\n callbacks=self.get_langchain_callbacks(),\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
1722
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS_DICT,\n MODEL_PROVIDERS_LIST,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import DropdownInput, IntInput, MessageTextInput, MultilineInput, Output, TableInput\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST],\n value=\"OpenAI\",\n real_time_refresh=True,\n refresh_button=False,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA],\n external_options={\n \"fields\": {\n \"data\": {\n \"node\": {\n \"name\": \"connect_other_models\",\n \"display_name\": \"Connect other models\",\n \"icon\": \"CornerDownLeft\",\n }\n }\n },\n },\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n await logger.adebug(f\"Retrieved {len(self.chat_history)} chat history messages\")\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\n \"true\",\n \"1\",\n \"t\",\n \"y\",\n \"yes\",\n ]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (\n ExceptionWithMessageError,\n ValueError,\n TypeError,\n RuntimeError,\n ) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (\n ExceptionWithMessageError,\n ValueError,\n TypeError,\n NotImplementedError,\n AttributeError,\n ) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(\n session_id=self.graph.session_id,\n context_id=self.context_id,\n order=\"Ascending\",\n n_messages=self.n_messages,\n )\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"connect_other_models\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST],\n real_time_refresh=True,\n refresh_button=False,\n input_types=[\"LanguageModel\"],\n placeholder=\"Awaiting model input.\",\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA],\n external_options={\n \"fields\": {\n \"data\": {\n \"node\": {\n \"name\": \"connect_other_models\",\n \"display_name\": \"Connect other models\",\n \"icon\": \"CornerDownLeft\",\n },\n }\n },\n },\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\",\n tool_description=description,\n callbacks=self.get_langchain_callbacks(),\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
1723
+ },
1724
+ "context_id": {
1725
+ "_input_type": "MessageTextInput",
1726
+ "advanced": true,
1727
+ "display_name": "Context ID",
1728
+ "dynamic": false,
1729
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
1730
+ "input_types": [
1731
+ "Message"
1732
+ ],
1733
+ "list": false,
1734
+ "list_add_label": "Add More",
1735
+ "load_from_db": false,
1736
+ "name": "context_id",
1737
+ "placeholder": "",
1738
+ "required": false,
1739
+ "show": true,
1740
+ "title_case": false,
1741
+ "tool_mode": false,
1742
+ "trace_as_input": true,
1743
+ "trace_as_metadata": true,
1744
+ "type": "str",
1745
+ "value": ""
1677
1746
  },
1678
1747
  "format_instructions": {
1679
1748
  "_input_type": "MultilineInput",
@@ -639,7 +639,7 @@
639
639
  "legacy": false,
640
640
  "lf_version": "1.1.5",
641
641
  "metadata": {
642
- "code_hash": "9647f4d2f4b4",
642
+ "code_hash": "4848ad3e35d5",
643
643
  "dependencies": {
644
644
  "dependencies": [
645
645
  {
@@ -715,7 +715,30 @@
715
715
  "show": true,
716
716
  "title_case": false,
717
717
  "type": "code",
718
- "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
718
+ "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.context_id = self.context_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
719
+ },
720
+ "context_id": {
721
+ "_input_type": "MessageTextInput",
722
+ "advanced": true,
723
+ "display_name": "Context ID",
724
+ "dynamic": false,
725
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
726
+ "input_types": [
727
+ "Message"
728
+ ],
729
+ "list": false,
730
+ "list_add_label": "Add More",
731
+ "load_from_db": false,
732
+ "name": "context_id",
733
+ "placeholder": "",
734
+ "required": false,
735
+ "show": true,
736
+ "title_case": false,
737
+ "tool_mode": false,
738
+ "trace_as_input": true,
739
+ "trace_as_metadata": true,
740
+ "type": "str",
741
+ "value": ""
719
742
  },
720
743
  "data_template": {
721
744
  "_input_type": "MessageTextInput",
@@ -895,7 +918,7 @@
895
918
  "legacy": false,
896
919
  "lf_version": "1.1.1",
897
920
  "metadata": {
898
- "code_hash": "9647f4d2f4b4",
921
+ "code_hash": "4848ad3e35d5",
899
922
  "dependencies": {
900
923
  "dependencies": [
901
924
  {
@@ -971,7 +994,30 @@
971
994
  "show": true,
972
995
  "title_case": false,
973
996
  "type": "code",
974
- "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
997
+ "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.context_id = self.context_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
998
+ },
999
+ "context_id": {
1000
+ "_input_type": "MessageTextInput",
1001
+ "advanced": true,
1002
+ "display_name": "Context ID",
1003
+ "dynamic": false,
1004
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
1005
+ "input_types": [
1006
+ "Message"
1007
+ ],
1008
+ "list": false,
1009
+ "list_add_label": "Add More",
1010
+ "load_from_db": false,
1011
+ "name": "context_id",
1012
+ "placeholder": "",
1013
+ "required": false,
1014
+ "show": true,
1015
+ "title_case": false,
1016
+ "tool_mode": false,
1017
+ "trace_as_input": true,
1018
+ "trace_as_metadata": true,
1019
+ "type": "str",
1020
+ "value": ""
975
1021
  },
976
1022
  "data_template": {
977
1023
  "_input_type": "MessageTextInput",
@@ -1151,7 +1197,7 @@
1151
1197
  "legacy": false,
1152
1198
  "lf_version": "1.1.5",
1153
1199
  "metadata": {
1154
- "code_hash": "9647f4d2f4b4",
1200
+ "code_hash": "4848ad3e35d5",
1155
1201
  "dependencies": {
1156
1202
  "dependencies": [
1157
1203
  {
@@ -1227,7 +1273,30 @@
1227
1273
  "show": true,
1228
1274
  "title_case": false,
1229
1275
  "type": "code",
1230
- "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
1276
+ "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n advanced=True,\n info=\"Whether to clean data before converting to string.\",\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, _, display_name, source_id = self.get_properties_from_source_component()\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.context_id = self.context_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n clean_data: bool = getattr(self, \"clean_data\", False)\n return \"\\n\".join([safe_convert(item, clean_data=clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
1277
+ },
1278
+ "context_id": {
1279
+ "_input_type": "MessageTextInput",
1280
+ "advanced": true,
1281
+ "display_name": "Context ID",
1282
+ "dynamic": false,
1283
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
1284
+ "input_types": [
1285
+ "Message"
1286
+ ],
1287
+ "list": false,
1288
+ "list_add_label": "Add More",
1289
+ "load_from_db": false,
1290
+ "name": "context_id",
1291
+ "placeholder": "",
1292
+ "required": false,
1293
+ "show": true,
1294
+ "title_case": false,
1295
+ "tool_mode": false,
1296
+ "trace_as_input": true,
1297
+ "trace_as_metadata": true,
1298
+ "type": "str",
1299
+ "value": ""
1231
1300
  },
1232
1301
  "data_template": {
1233
1302
  "_input_type": "MessageTextInput",
@@ -1946,7 +2015,7 @@
1946
2015
  "legacy": false,
1947
2016
  "lf_version": "1.1.5",
1948
2017
  "metadata": {
1949
- "code_hash": "f701f686b325",
2018
+ "code_hash": "0014a5b41817",
1950
2019
  "dependencies": {
1951
2020
  "dependencies": [
1952
2021
  {
@@ -1995,7 +2064,30 @@
1995
2064
  "show": true,
1996
2065
  "title_case": false,
1997
2066
  "type": "code",
1998
- "value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n # Ensure files is a list and filter out empty/None values\n files = self.files if self.files else []\n if files and not isinstance(files, list):\n files = [files]\n # Filter out None/empty values\n files = [f for f in files if f is not None and f != \"\"]\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=files,\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
2067
+ "value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"context_id\",\n display_name=\"Context ID\",\n info=\"The context ID of the chat. Adds an extra layer to the local memory.\",\n value=\"\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n # Ensure files is a list and filter out empty/None values\n files = self.files if self.files else []\n if files and not isinstance(files, list):\n files = [files]\n # Filter out None/empty values\n files = [f for f in files if f is not None and f != \"\"]\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n context_id=self.context_id,\n files=files,\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
2068
+ },
2069
+ "context_id": {
2070
+ "_input_type": "MessageTextInput",
2071
+ "advanced": true,
2072
+ "display_name": "Context ID",
2073
+ "dynamic": false,
2074
+ "info": "The context ID of the chat. Adds an extra layer to the local memory.",
2075
+ "input_types": [
2076
+ "Message"
2077
+ ],
2078
+ "list": false,
2079
+ "list_add_label": "Add More",
2080
+ "load_from_db": false,
2081
+ "name": "context_id",
2082
+ "placeholder": "",
2083
+ "required": false,
2084
+ "show": true,
2085
+ "title_case": false,
2086
+ "tool_mode": false,
2087
+ "trace_as_input": true,
2088
+ "trace_as_metadata": true,
2089
+ "type": "str",
2090
+ "value": ""
1999
2091
  },
2000
2092
  "files": {
2001
2093
  "_input_type": "FileInput",