langflow-base-nightly 0.5.1.dev3__py3-none-any.whl → 0.5.1.dev5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langflow/__init__.py +215 -0
- langflow/__main__.py +16 -2
- langflow/alembic/versions/006b3990db50_add_unique_constraints.py +4 -7
- langflow/alembic/versions/012fb73ac359_add_folder_table.py +4 -5
- langflow/alembic/versions/0ae3a2674f32_update_the_columns_that_need_to_change_.py +11 -20
- langflow/alembic/versions/0b8757876a7c_.py +4 -7
- langflow/alembic/versions/0d60fcbd4e8e_create_vertex_builds_table.py +4 -6
- langflow/alembic/versions/1a110b568907_replace_credential_table_with_variable.py +4 -5
- langflow/alembic/versions/1b8b740a6fa3_remove_fk_constraint_in_message_.py +32 -27
- langflow/alembic/versions/1c79524817ed_add_unique_constraints_per_user_in_.py +4 -5
- langflow/alembic/versions/1d90f8a0efe1_update_description_columns_type.py +4 -5
- langflow/alembic/versions/1eab2c3eb45e_event_error.py +14 -15
- langflow/alembic/versions/1ef9c4f3765d_.py +5 -10
- langflow/alembic/versions/1f4d6df60295_add_default_fields_column.py +4 -5
- langflow/alembic/versions/260dbcc8b680_adds_tables.py +4 -5
- langflow/alembic/versions/29fe8f1f806b_add_missing_index.py +4 -5
- langflow/alembic/versions/2ac71eb9c3ae_adds_credential_table.py +4 -7
- langflow/alembic/versions/3bb0ddf32dfb_add_unique_constraints_per_user_in_flow_.py +4 -5
- langflow/alembic/versions/4e5980a44eaa_fix_date_times_again.py +1 -2
- langflow/alembic/versions/58b28437a398_modify_nullable.py +1 -2
- langflow/alembic/versions/5ace73a7f223_new_remove_table_upgrade_op.py +6 -12
- langflow/alembic/versions/631faacf5da2_add_webhook_columns.py +4 -5
- langflow/alembic/versions/63b9c451fd30_add_icon_and_icon_bg_color_to_flow.py +4 -5
- langflow/alembic/versions/66f72f04a1de_add_mcp_support_with_project_settings_.py +21 -23
- langflow/alembic/versions/67cc006d50bf_add_profile_image_column.py +4 -5
- langflow/alembic/versions/6e7b581b5648_fix_nullable.py +4 -5
- langflow/alembic/versions/7843803a87b5_store_updates.py +4 -6
- langflow/alembic/versions/79e675cb6752_change_datetime_type.py +1 -2
- langflow/alembic/versions/7d2162acc8b2_adds_updated_at_and_folder_cols.py +4 -10
- langflow/alembic/versions/90be8e2ed91e_create_transactions_table.py +4 -6
- langflow/alembic/versions/93e2705fa8d6_add_column_save_path_to_flow.py +7 -9
- langflow/alembic/versions/a72f5cf9c2f9_add_endpoint_name_col.py +4 -5
- langflow/alembic/versions/b2fa308044b5_add_unique_constraints.py +1 -2
- langflow/alembic/versions/bc2f01c40e4a_new_fixes.py +4 -5
- langflow/alembic/versions/c153816fd85f_set_name_and_value_to_not_nullable.py +4 -5
- langflow/alembic/versions/d066bfd22890_add_message_table.py +4 -4
- langflow/alembic/versions/d2d475a1f7c0_add_tags_column_to_flow.py +12 -13
- langflow/alembic/versions/d3dbf656a499_add_gradient_column_in_flow.py +12 -12
- langflow/alembic/versions/d9a6ea21edcd_rename_default_folder.py +7 -10
- langflow/alembic/versions/dd9e0804ebd1_add_v2_file_table.py +8 -7
- langflow/alembic/versions/e3162c1804e6_add_persistent_locked_state.py +10 -10
- langflow/alembic/versions/e3bc869fa272_fix_nullable.py +4 -5
- langflow/alembic/versions/e56d87f8994a_add_optins_column_to_user.py +13 -14
- langflow/alembic/versions/e5a65ecff2cd_nullable_in_vertex_build.py +4 -5
- langflow/alembic/versions/eb5866d51fd2_change_columns_to_be_nullable.py +4 -5
- langflow/alembic/versions/eb5e72293a8e_add_error_and_edit_flags_to_message.py +4 -5
- langflow/alembic/versions/f3b2d1f1002d_add_column_access_type_to_flow.py +19 -15
- langflow/alembic/versions/f5ee9749d1a6_user_id_can_be_null_in_flow.py +4 -6
- langflow/alembic/versions/fd531f8868b1_fix_credential_table.py +5 -8
- langflow/api/build.py +5 -4
- langflow/api/health_check_router.py +1 -1
- langflow/api/limited_background_tasks.py +1 -1
- langflow/api/log_router.py +1 -2
- langflow/api/utils.py +2 -2
- langflow/api/v1/base.py +1 -2
- langflow/api/v1/callback.py +4 -9
- langflow/api/v1/chat.py +6 -7
- langflow/api/v1/endpoints.py +15 -15
- langflow/api/v1/files.py +1 -1
- langflow/api/v1/flows.py +1 -1
- langflow/api/v1/knowledge_bases.py +1 -1
- langflow/api/v1/mcp.py +1 -1
- langflow/api/v1/mcp_projects.py +14 -5
- langflow/api/v1/mcp_utils.py +3 -3
- langflow/api/v1/openai_responses.py +4 -4
- langflow/api/v1/schemas.py +3 -38
- langflow/api/v1/starter_projects.py +61 -3
- langflow/api/v1/store.py +1 -1
- langflow/api/v1/validate.py +3 -3
- langflow/api/v1/voice_mode.py +2 -2
- langflow/api/v2/files.py +1 -1
- langflow/api/v2/mcp.py +2 -2
- langflow/base/__init__.py +11 -0
- langflow/base/agents/__init__.py +3 -0
- langflow/base/data/__init__.py +2 -4
- langflow/base/data/utils.py +2 -197
- langflow/base/embeddings/__init__.py +3 -0
- langflow/base/io/__init__.py +7 -0
- langflow/base/io/chat.py +5 -18
- langflow/base/io/text.py +2 -21
- langflow/base/knowledge_bases/__init__.py +3 -0
- langflow/base/memory/__init__.py +3 -0
- langflow/base/models/__init__.py +2 -2
- langflow/base/models/openai_constants.py +6 -120
- langflow/base/prompts/__init__.py +3 -0
- langflow/base/prompts/api_utils.py +2 -223
- langflow/base/textsplitters/__init__.py +3 -0
- langflow/base/tools/__init__.py +3 -0
- langflow/base/vectorstores/__init__.py +3 -0
- langflow/components/__init__.py +7 -259
- langflow/components/agents.py +6 -0
- langflow/components/anthropic.py +6 -0
- langflow/components/data.py +6 -0
- langflow/components/helpers.py +6 -0
- langflow/components/knowledge_bases/ingestion.py +13 -14
- langflow/components/knowledge_bases/retrieval.py +8 -7
- langflow/components/openai.py +6 -0
- langflow/components/processing/__init__.py +1 -117
- langflow/components/processing/converter.py +3 -149
- langflow/custom/__init__.py +26 -3
- langflow/custom/custom_component/__init__.py +4 -0
- langflow/custom/custom_component/component.py +20 -1738
- langflow/custom/custom_component/component_with_cache.py +1 -8
- langflow/custom/custom_component/custom_component.py +1 -552
- langflow/custom/utils.py +1 -872
- langflow/custom/validate.py +1 -0
- langflow/events/event_manager.py +18 -108
- langflow/field_typing/__init__.py +6 -6
- langflow/field_typing/constants.py +87 -122
- langflow/field_typing/range_spec.py +2 -32
- langflow/frontend/assets/{SlackIcon-Cc7Qnzki.js → SlackIcon-v88osOTA.js} +1 -1
- langflow/frontend/assets/{Wikipedia-7ulMZY46.js → Wikipedia-DD_S2k00.js} +1 -1
- langflow/frontend/assets/{Wolfram-By9PGsHS.js → Wolfram-EO2C5noN.js} +1 -1
- langflow/frontend/assets/{index-DVLIDc2_.js → index-1Gv1mfvk.js} +1 -1
- langflow/frontend/assets/{index-MVW4HTEk.js → index-7v-bzlzf.js} +1 -1
- langflow/frontend/assets/{index-CUzlcce2.js → index-9CbMazbV.js} +1 -1
- langflow/frontend/assets/{index-CU16NJD7.js → index-B8ZHP8g2.js} +1 -1
- langflow/frontend/assets/{index-v8eXbWlM.js → index-B8y2e6vN.js} +1 -1
- langflow/frontend/assets/{index-BX_asvRB.js → index-BBRUGsyr.js} +1 -1
- langflow/frontend/assets/{index-9FL5xjkL.js → index-BGwqQwlh.js} +1 -1
- langflow/frontend/assets/{index-BAn-AzCS.js → index-BIq-k-FG.js} +1 -1
- langflow/frontend/assets/{index-D5c2nNvp.js → index-BSN73YP8.js} +1 -1
- langflow/frontend/assets/{index-DMCerPJM.js → index-BU8R8jRn.js} +1 -1
- langflow/frontend/assets/{index-CvSoff-8.js → index-BV6yx8ey.js} +1 -1
- langflow/frontend/assets/{index-BISPW-f6.js → index-BYIsg-Eh.js} +1 -1
- langflow/frontend/assets/{index-GzOGB_fo.js → index-B_ksDBSQ.js} +1 -1
- langflow/frontend/assets/{index-BIqEYjNT.js → index-Ba1UOZ9A.js} +1 -1
- langflow/frontend/assets/{index-ByxGmq5p.js → index-Ba9tKRQg.js} +1 -1
- langflow/frontend/assets/{index-BLEWsL1U.js → index-Bbfaw8ca.js} +1 -1
- langflow/frontend/assets/{index-C_MhBX6R.js → index-BbuGqvAx.js} +1 -1
- langflow/frontend/assets/{index-RH_I78z_.js → index-BeoXu1YX.js} +1 -1
- langflow/frontend/assets/{index-cYFKmtmg.js → index-BfjZmOnH.js} +1 -1
- langflow/frontend/assets/{index-Bm9i8F4W.js → index-Bjzy_HZB.js} +1 -1
- langflow/frontend/assets/{index-_szO7sta.js → index-BofEkpYB.js} +1 -1
- langflow/frontend/assets/{index-DP1oE6QB.js → index-Bp7Mty2H.js} +1 -1
- langflow/frontend/assets/{index-CeswGUz3.js → index-BqX1H6yK.js} +1 -1
- langflow/frontend/assets/{index-C8pI0lzi.js → index-BqtBAJAN.js} +1 -1
- langflow/frontend/assets/{index-BusCv3bR.js → index-Bsfraj7A.js} +1 -1
- langflow/frontend/assets/{index-BWnKMRFJ.js → index-BtFl7fER.js} +1 -1
- langflow/frontend/assets/{index-DnlVWWU8.js → index-BvX993Sv.js} +1 -1
- langflow/frontend/assets/{index-C676MS3I.js → index-BvgQ2vzM.js} +1 -1
- langflow/frontend/assets/{index-DJ6HD14g.js → index-BwY98u8n.js} +1 -1
- langflow/frontend/assets/{index-C51yNvIL.js → index-C-RIJAOS.js} +1 -1
- langflow/frontend/assets/{index-DiblXWmk.js → index-C1K6A38P.js} +1 -1
- langflow/frontend/assets/{index-Co__gFM1.js → index-C3Vwhx0t.js} +1 -1
- langflow/frontend/assets/{index-Coi86oqP.js → index-C5XUG_gr.js} +1 -1
- langflow/frontend/assets/{index-jwzN3Jd_.js → index-C6ouLG9o.js} +1 -1
- langflow/frontend/assets/{index-CQQ-4XMS.js → index-C7ZJ_Z6f.js} +1 -1
- langflow/frontend/assets/{index-Bl7RpmrB.js → index-CCOGIwGY.js} +1 -1
- langflow/frontend/assets/{index-CVkIdc6y.js → index-CCcye2rt.js} +1 -1
- langflow/frontend/assets/{index-bMhyLtgS.js → index-CFR4yJQB.js} +1 -1
- langflow/frontend/assets/{index-aAgSKWb3.js → index-CIGmPP0H.js} +1 -1
- langflow/frontend/assets/{index-BGt6jQ4x.js → index-CJmMEa6d.js} +1 -1
- langflow/frontend/assets/{index-DX7JcSMz.js → index-CJxD7lyU.js} +1 -1
- langflow/frontend/assets/{index-BZ-A4K98.js → index-CL_vu6ut.js} +1 -1
- langflow/frontend/assets/{index-BMpKFGhI.js → index-COf3UnBn.js} +1 -1
- langflow/frontend/assets/{index-xN8ogFdo.js → index-CV9650h_.js} +1 -1
- langflow/frontend/assets/{index-OsUvqIUr.js → index-CVDzych0.js} +1 -1
- langflow/frontend/assets/{index-BH7AyHxp.js → index-CWIHsC4D.js} +1 -1
- langflow/frontend/assets/{index-mjwtJmkP.js → index-CXCnFZ0L.js} +1 -1
- langflow/frontend/assets/{index-3jlSQi5Y.js → index-Ca_Pw_Dn.js} +1 -1
- langflow/frontend/assets/{index-D-SnFlhU.js → index-Cbb3bX9e.js} +1 -1
- langflow/frontend/assets/{index--e0oQqZh.js → index-CcJtOz-Z.js} +1 -1
- langflow/frontend/assets/{index-S-sc0Cm9.js → index-CfTbTHEv.js} +1 -1
- langflow/frontend/assets/{index-Deu8rlaZ.js → index-ChoxDAgX.js} +1 -1
- langflow/frontend/assets/{index-lnF9Eqr2.js → index-Cn4gw8aE.js} +1 -1
- langflow/frontend/assets/{index-C_NwzK6j.js → index-CnpLg4zX.js} +1 -1
- langflow/frontend/assets/{index-DznH7Jbq.js → index-Cpao2omG.js} +1 -1
- langflow/frontend/assets/{index-DpWrk8mA.js → index-CqoxM01j.js} +1 -1
- langflow/frontend/assets/{index-Bw-TIIC6.js → index-CrHf2Ic1.js} +1 -1
- langflow/frontend/assets/{index-DmYLDQag.js → index-CrV0uIjp.js} +1 -1
- langflow/frontend/assets/{index-Dp7ZQyL3.js → index-CssADaak.js} +1 -1
- langflow/frontend/assets/{index-CNh0rwur.js → index-CtJdNLy9.js} +1 -1
- langflow/frontend/assets/{index-Ca1b7Iag.js → index-CyeWD2dh.js} +1 -1
- langflow/frontend/assets/{index-DcApTyZ7.js → index-D1xzD7uc.js} +1 -1
- langflow/frontend/assets/{index-B3GvPjhD.js → index-D6MuXC4L.js} +1 -1
- langflow/frontend/assets/{index-Cw0UComa.js → index-D8w9zvIF.js} +1 -1
- langflow/frontend/assets/{index-C-2MRYoJ.js → index-D98Gn0A6.js} +1 -1
- langflow/frontend/assets/{index-aWnZIwHd.js → index-DBhjpWkf.js} +1 -1
- langflow/frontend/assets/{index-nw3WF9lY.js → index-DCCRJzcY.js} +1 -1
- langflow/frontend/assets/{index-RjeC0kaX.js → index-DCTRSkEW.js} +1 -1
- langflow/frontend/assets/{index-B_kBTgxV.js → index-DCUfitVj.js} +1 -1
- langflow/frontend/assets/{index-ChsGhZn3.js → index-DDdz-Xcl.js} +1 -1
- langflow/frontend/assets/{index-7yAHPRxv.js → index-DGdMwZjG.js} +1 -1
- langflow/frontend/assets/{index-DjQElpEg.js → index-DGtl2vMw.js} +1 -1
- langflow/frontend/assets/{index-BCXhKCOK.js → index-DHVdkrni.js} +1 -1
- langflow/frontend/assets/{index-S8uJXTOq.js → index-DJBWwjgl.js} +1 -1
- langflow/frontend/assets/{index-qiVTWUuf.js → index-DMAkJ_qX.js} +1 -1
- langflow/frontend/assets/{index-D-WStJI6.js → index-DMEvEQI5.js} +1 -1
- langflow/frontend/assets/{index-BhqVw9WQ.js → index-DNGRoOsp.js} +1 -1
- langflow/frontend/assets/{index-Cu7vC48Y.js → index-DNT_TUTa.js} +1 -1
- langflow/frontend/assets/{index-Bhcv5M0n.js → index-DQKOH_9K.js} +1 -1
- langflow/frontend/assets/{index-CLcaktde.js → index-DQhqqtqQ.js} +1 -1
- langflow/frontend/assets/{index-DZVgPCio.js → index-DRM7KKnG.js} +1 -1
- langflow/frontend/assets/{index-uybez8MR.js → index-DSCtl3a5.js} +1 -1
- langflow/frontend/assets/{index-CJ5A6STv.js → index-DSLNlm0Z.js} +1 -1
- langflow/frontend/assets/{index-Drg8me2a.js → index-DT-PspE-.js} +1 -1
- langflow/frontend/assets/{index-DsEZjOcp.js → index-DTpbH-p8.js} +1 -1
- langflow/frontend/assets/{index-DrXXKzpD.js → index-DWV6MsIq.js} +1 -1
- langflow/frontend/assets/{index-4JIEdyIM.js → index-DWeL4US_.js} +1 -1
- langflow/frontend/assets/{index-BlDsBQ_1.js → index-DYKZHhpU.js} +1 -1
- langflow/frontend/assets/{index-DFY8YFbC.js → index-DZyQHiMR.js} +1 -1
- langflow/frontend/assets/{index-CKPZpkQk.js → index-Dc6qVuSa.js} +1 -1
- langflow/frontend/assets/{index-yyAaYjLR.js → index-DkYuicnC.js} +1 -1
- langflow/frontend/assets/{index-DmVt5Jlx.js → index-Dlj_2mMs.js} +1 -1
- langflow/frontend/assets/{index-BvRIG6P5.js → index-DmGJUrEp.js} +1 -1
- langflow/frontend/assets/{index-BWFIrwW1.js → index-Dn6hpCAZ.js} +1 -1
- langflow/frontend/assets/{index-Cb5G9Ifd.js → index-DrJU8Fgb.js} +1 -1
- langflow/frontend/assets/{index-COoTCxvs.js → index-DsWfdCzp.js} +1 -1
- langflow/frontend/assets/{index-ZjeocHyu.js → index-DvCPWs2_.js} +1 -1
- langflow/frontend/assets/{index-B5LHnuQR.js → index-DvPVq7OP.js} +1 -1
- langflow/frontend/assets/{index-BnCnYnao.js → index-Dw71ufW4.js} +1 -1
- langflow/frontend/assets/{index-AALDfCyt.js → index-DxkJactf.js} +1 -1
- langflow/frontend/assets/{index-k9jP5chN.js → index-Dz2GTphU.js} +1 -1
- langflow/frontend/assets/{index-BdjfHsrf.js → index-Fvd524_c.js} +1 -1
- langflow/frontend/assets/{index-AKVkmT4S.js → index-GAQ0Mk2M.js} +1 -1
- langflow/frontend/assets/{index-BZSa2qz7.js → index-Hm5-4ItD.js} +1 -1
- langflow/frontend/assets/{index-DbfS_UH-.js → index-IT67FzsK.js} +1 -1
- langflow/frontend/assets/{index-BLXN681C.js → index-ItYiij1i.js} +1 -1
- langflow/frontend/assets/{index-CiklyQU3.js → index-IuR_FEdB.js} +1 -1
- langflow/frontend/assets/{index-xV6ystWy.js → index-Jj60FQkv.js} +1 -1
- langflow/frontend/assets/{index-C_157Mb-.js → index-LlvshmVz.js} +1 -1
- langflow/frontend/assets/{index-CDphUsa3.js → index-LwKh3I_W.js} +1 -1
- langflow/frontend/assets/{index-BrDz-PxE.js → index-N-xxmKKH.js} +1 -1
- langflow/frontend/assets/{index-BsdLyYMY.js → index-RwpaHIAH.js} +1 -1
- langflow/frontend/assets/{index-Cu2Xr6_j.js → index-TVvsp-xh.js} +1 -1
- langflow/frontend/assets/{index-CPiM2oyj.js → index-TdE2u9zP.js} +1 -1
- langflow/frontend/assets/{index-DOj_QWqG.js → index-_x-NkYeW.js} +1 -1
- langflow/frontend/assets/{index-YJsAl7vm.js → index-a-YclEbW.js} +1 -1
- langflow/frontend/assets/{index-5-CSw2-z.js → index-e9MFKUCo.js} +1 -1
- langflow/frontend/assets/{index-BSwBVwyF.js → index-krPr8f2F.js} +1 -1
- langflow/frontend/assets/{index-Df6psZEj.js → index-kveiUWuL.js} +1 -1
- langflow/frontend/assets/{index-CF4_Og1m.js → index-lE3oSjJi.js} +1 -1
- langflow/frontend/assets/{index-C6nzdeYx.js → index-lM3UYg7F.js} +1 -1
- langflow/frontend/assets/{index-C-wnbBBY.js → index-nsRk3qgA.js} +1 -1
- langflow/frontend/assets/{index-D234yKNJ.js → index-pBO0SZLD.js} +4 -4
- langflow/frontend/assets/{index-BMvp94tO.js → index-pbZHsbuE.js} +1 -1
- langflow/frontend/assets/{index-hg2y9OAt.js → index-sfX3aWyp.js} +1 -1
- langflow/frontend/assets/{index-DTCrijba.js → index-xQz-VJ0-.js} +1 -1
- langflow/frontend/assets/{index-SB4rw8D5.js → index-yfcsaHS6.js} +1 -1
- langflow/frontend/assets/{index-C-bjC2sz.js → index-zcGjo9fx.js} +1 -1
- langflow/frontend/assets/lazyIconImports-BjqDmNYG.js +2 -0
- langflow/frontend/assets/{use-post-add-user-JUeLDErC.js → use-post-add-user-w3vpKSOB.js} +1 -1
- langflow/frontend/index.html +1 -1
- langflow/graph/__init__.py +4 -4
- langflow/helpers/data.py +2 -2
- langflow/helpers/flow.py +9 -7
- langflow/helpers/user.py +2 -2
- langflow/initial_setup/setup.py +9 -9
- langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +119 -41
- langflow/initial_setup/starter_projects/Basic Prompting.json +45 -19
- langflow/initial_setup/starter_projects/Blog Writer.json +53 -21
- langflow/initial_setup/starter_projects/Custom Component Generator.json +121 -97
- langflow/initial_setup/starter_projects/Document Q&A.json +46 -18
- langflow/initial_setup/starter_projects/Financial Report Parser.json +49 -17
- langflow/initial_setup/starter_projects/Hybrid Search RAG.json +89 -50
- langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +86 -22
- langflow/initial_setup/starter_projects/Instagram Copywriter.json +210 -57
- langflow/initial_setup/starter_projects/Invoice Summarizer.json +132 -35
- langflow/initial_setup/starter_projects/Knowledge Ingestion.json +8 -8
- langflow/initial_setup/starter_projects/Knowledge Retrieval.json +8 -8
- langflow/initial_setup/starter_projects/Market Research.json +174 -48
- langflow/initial_setup/starter_projects/Meeting Summary.json +102 -38
- langflow/initial_setup/starter_projects/Memory Chatbot.json +49 -21
- langflow/initial_setup/starter_projects/News Aggregator.json +140 -39
- langflow/initial_setup/starter_projects/Nvidia Remix.json +153 -181
- langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +132 -35
- langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +106 -43
- langflow/initial_setup/starter_projects/Price Deal Finder.json +136 -39
- langflow/initial_setup/starter_projects/Research Agent.json +206 -53
- langflow/initial_setup/starter_projects/Research Translation Loop.json +66 -34
- langflow/initial_setup/starter_projects/SEO Keyword Generator.json +41 -15
- langflow/initial_setup/starter_projects/SaaS Pricing.json +128 -31
- langflow/initial_setup/starter_projects/Search agent.json +132 -35
- langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +422 -98
- langflow/initial_setup/starter_projects/Simple Agent.json +150 -42
- langflow/initial_setup/starter_projects/Social Media Agent.json +150 -42
- langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +120 -24
- langflow/initial_setup/starter_projects/Travel Planning Agents.json +418 -94
- langflow/initial_setup/starter_projects/Twitter Thread Generator.json +69 -37
- langflow/initial_setup/starter_projects/Vector Store RAG.json +66 -38
- langflow/initial_setup/starter_projects/Youtube Analysis.json +191 -51
- langflow/initial_setup/starter_projects/basic_prompting.py +4 -4
- langflow/initial_setup/starter_projects/blog_writer.py +5 -5
- langflow/initial_setup/starter_projects/complex_agent.py +8 -8
- langflow/initial_setup/starter_projects/document_qa.py +5 -5
- langflow/initial_setup/starter_projects/hierarchical_tasks_agent.py +8 -8
- langflow/initial_setup/starter_projects/memory_chatbot.py +6 -6
- langflow/initial_setup/starter_projects/sequential_tasks_agent.py +7 -7
- langflow/initial_setup/starter_projects/vector_store_rag.py +8 -8
- langflow/inputs/__init__.py +3 -2
- langflow/inputs/constants.py +3 -2
- langflow/inputs/input_mixin.py +49 -310
- langflow/inputs/inputs.py +72 -703
- langflow/inputs/validators.py +2 -18
- langflow/interface/__init__.py +4 -0
- langflow/interface/components.py +3 -491
- langflow/interface/initialize/loading.py +7 -6
- langflow/interface/listing.py +3 -25
- langflow/interface/run.py +1 -1
- langflow/interface/utils.py +3 -111
- langflow/io/__init__.py +2 -2
- langflow/io/schema.py +11 -302
- langflow/load/__init__.py +4 -2
- langflow/load/utils.py +2 -96
- langflow/logging/__init__.py +2 -1
- langflow/logging/setup.py +1 -1
- langflow/main.py +8 -5
- langflow/memory.py +12 -6
- langflow/middleware.py +1 -1
- langflow/processing/process.py +7 -7
- langflow/schema/__init__.py +22 -5
- langflow/schema/artifact.py +1 -1
- langflow/schema/data.py +5 -303
- langflow/schema/dataframe.py +2 -205
- langflow/schema/graph.py +4 -45
- langflow/schema/image.py +2 -67
- langflow/schema/message.py +6 -470
- langflow/schema/playground_events.py +5 -6
- langflow/schema/schema.py +24 -117
- langflow/serialization/constants.py +3 -2
- langflow/serialization/serialization.py +1 -1
- langflow/server.py +1 -2
- langflow/services/__init__.py +1 -2
- langflow/services/auth/mcp_encryption.py +1 -1
- langflow/services/auth/service.py +1 -1
- langflow/services/auth/utils.py +5 -5
- langflow/services/cache/disk.py +2 -2
- langflow/services/cache/factory.py +2 -2
- langflow/services/cache/service.py +2 -2
- langflow/services/cache/utils.py +0 -11
- langflow/services/database/factory.py +1 -1
- langflow/services/database/models/flow/model.py +1 -1
- langflow/services/database/models/message/crud.py +2 -1
- langflow/services/database/models/transactions/crud.py +1 -1
- langflow/services/database/models/user/crud.py +1 -1
- langflow/services/database/service.py +2 -2
- langflow/services/database/utils.py +1 -2
- langflow/services/deps.py +12 -17
- langflow/services/enhanced_manager.py +71 -0
- langflow/services/factory.py +14 -7
- langflow/services/flow/flow_runner.py +4 -4
- langflow/services/job_queue/service.py +2 -1
- langflow/services/manager.py +14 -130
- langflow/services/schema.py +0 -1
- langflow/services/session/service.py +3 -2
- langflow/services/settings/__init__.py +0 -3
- langflow/services/settings/base.py +16 -549
- langflow/services/settings/factory.py +2 -21
- langflow/services/settings/feature_flags.py +2 -11
- langflow/services/settings/service.py +2 -31
- langflow/services/shared_component_cache/factory.py +1 -1
- langflow/services/socket/service.py +1 -1
- langflow/services/socket/utils.py +1 -8
- langflow/services/state/factory.py +1 -1
- langflow/services/state/service.py +3 -2
- langflow/services/storage/factory.py +2 -2
- langflow/services/storage/local.py +1 -2
- langflow/services/storage/s3.py +1 -2
- langflow/services/storage/service.py +2 -1
- langflow/services/store/factory.py +1 -1
- langflow/services/store/service.py +2 -2
- langflow/services/store/utils.py +1 -2
- langflow/services/task/service.py +2 -1
- langflow/services/task/temp_flow_cleanup.py +1 -1
- langflow/services/telemetry/factory.py +1 -1
- langflow/services/telemetry/service.py +2 -3
- langflow/services/tracing/arize_phoenix.py +3 -3
- langflow/services/tracing/base.py +1 -1
- langflow/services/tracing/factory.py +1 -1
- langflow/services/tracing/langfuse.py +2 -2
- langflow/services/tracing/langsmith.py +2 -2
- langflow/services/tracing/langwatch.py +4 -4
- langflow/services/tracing/opik.py +2 -2
- langflow/services/tracing/service.py +17 -11
- langflow/services/tracing/traceloop.py +2 -2
- langflow/services/tracing/utils.py +1 -1
- langflow/services/utils.py +54 -9
- langflow/services/variable/factory.py +1 -1
- langflow/services/variable/kubernetes.py +2 -3
- langflow/services/variable/kubernetes_secrets.py +1 -2
- langflow/services/variable/service.py +2 -3
- langflow/template/__init__.py +2 -9
- langflow/template/field/__init__.py +3 -0
- langflow/template/field/base.py +2 -256
- langflow/template/frontend_node.py +3 -0
- langflow/template/utils.py +2 -216
- langflow/utils/constants.py +28 -204
- langflow/utils/lazy_load.py +3 -14
- langflow/utils/schemas.py +2 -3
- langflow/utils/template_validation.py +2 -2
- langflow/utils/util.py +59 -479
- langflow/utils/validate.py +2 -488
- langflow/utils/voice_utils.py +1 -2
- langflow/worker.py +1 -1
- {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev5.dist-info}/METADATA +2 -1
- langflow_base_nightly-0.5.1.dev5.dist-info/RECORD +633 -0
- langflow/base/agents/agent.py +0 -267
- langflow/base/agents/callback.py +0 -130
- langflow/base/agents/context.py +0 -109
- langflow/base/agents/crewai/__init__.py +0 -0
- langflow/base/agents/crewai/crew.py +0 -231
- langflow/base/agents/crewai/tasks.py +0 -12
- langflow/base/agents/default_prompts.py +0 -23
- langflow/base/agents/errors.py +0 -15
- langflow/base/agents/events.py +0 -346
- langflow/base/agents/utils.py +0 -205
- langflow/base/astra_assistants/__init__.py +0 -0
- langflow/base/astra_assistants/util.py +0 -171
- langflow/base/chains/__init__.py +0 -0
- langflow/base/chains/model.py +0 -19
- langflow/base/composio/__init__.py +0 -0
- langflow/base/composio/composio_base.py +0 -1297
- langflow/base/compressors/__init__.py +0 -0
- langflow/base/compressors/model.py +0 -60
- langflow/base/constants.py +0 -46
- langflow/base/curl/__init__.py +0 -0
- langflow/base/curl/parse.py +0 -188
- langflow/base/data/base_file.py +0 -685
- langflow/base/data/docling_utils.py +0 -245
- langflow/base/document_transformers/__init__.py +0 -0
- langflow/base/document_transformers/model.py +0 -43
- langflow/base/embeddings/aiml_embeddings.py +0 -62
- langflow/base/embeddings/model.py +0 -26
- langflow/base/flow_processing/__init__.py +0 -0
- langflow/base/flow_processing/utils.py +0 -86
- langflow/base/huggingface/__init__.py +0 -0
- langflow/base/huggingface/model_bridge.py +0 -133
- langflow/base/langchain_utilities/__init__.py +0 -0
- langflow/base/langchain_utilities/model.py +0 -35
- langflow/base/langchain_utilities/spider_constants.py +0 -1
- langflow/base/langwatch/__init__.py +0 -0
- langflow/base/langwatch/utils.py +0 -18
- langflow/base/mcp/__init__.py +0 -0
- langflow/base/mcp/constants.py +0 -2
- langflow/base/mcp/util.py +0 -1524
- langflow/base/memory/memory.py +0 -49
- langflow/base/memory/model.py +0 -38
- langflow/base/models/aiml_constants.py +0 -51
- langflow/base/models/anthropic_constants.py +0 -47
- langflow/base/models/aws_constants.py +0 -151
- langflow/base/models/chat_result.py +0 -76
- langflow/base/models/google_generative_ai_constants.py +0 -70
- langflow/base/models/groq_constants.py +0 -134
- langflow/base/models/model.py +0 -375
- langflow/base/models/model_input_constants.py +0 -299
- langflow/base/models/model_metadata.py +0 -41
- langflow/base/models/model_utils.py +0 -8
- langflow/base/models/novita_constants.py +0 -35
- langflow/base/models/ollama_constants.py +0 -49
- langflow/base/models/sambanova_constants.py +0 -18
- langflow/base/processing/__init__.py +0 -0
- langflow/base/prompts/utils.py +0 -61
- langflow/base/textsplitters/model.py +0 -28
- langflow/base/tools/base.py +0 -26
- langflow/base/tools/component_tool.py +0 -324
- langflow/base/tools/constants.py +0 -49
- langflow/base/tools/flow_tool.py +0 -131
- langflow/base/tools/run_flow.py +0 -227
- langflow/base/vectorstores/model.py +0 -193
- langflow/base/vectorstores/utils.py +0 -22
- langflow/base/vectorstores/vector_store_connection_decorator.py +0 -52
- langflow/components/FAISS/__init__.py +0 -34
- langflow/components/FAISS/faiss.py +0 -111
- langflow/components/Notion/__init__.py +0 -19
- langflow/components/Notion/add_content_to_page.py +0 -269
- langflow/components/Notion/create_page.py +0 -94
- langflow/components/Notion/list_database_properties.py +0 -68
- langflow/components/Notion/list_pages.py +0 -122
- langflow/components/Notion/list_users.py +0 -77
- langflow/components/Notion/page_content_viewer.py +0 -93
- langflow/components/Notion/search.py +0 -111
- langflow/components/Notion/update_page_property.py +0 -114
- langflow/components/_importing.py +0 -37
- langflow/components/agentql/__init__.py +0 -3
- langflow/components/agentql/agentql_api.py +0 -151
- langflow/components/agents/__init__.py +0 -4
- langflow/components/agents/agent.py +0 -554
- langflow/components/agents/mcp_component.py +0 -501
- langflow/components/aiml/__init__.py +0 -37
- langflow/components/aiml/aiml.py +0 -112
- langflow/components/aiml/aiml_embeddings.py +0 -37
- langflow/components/amazon/__init__.py +0 -36
- langflow/components/amazon/amazon_bedrock_embedding.py +0 -109
- langflow/components/amazon/amazon_bedrock_model.py +0 -124
- langflow/components/amazon/s3_bucket_uploader.py +0 -211
- langflow/components/anthropic/__init__.py +0 -34
- langflow/components/anthropic/anthropic.py +0 -187
- langflow/components/apify/__init__.py +0 -5
- langflow/components/apify/apify_actor.py +0 -325
- langflow/components/arxiv/__init__.py +0 -3
- langflow/components/arxiv/arxiv.py +0 -163
- langflow/components/assemblyai/__init__.py +0 -46
- langflow/components/assemblyai/assemblyai_get_subtitles.py +0 -83
- langflow/components/assemblyai/assemblyai_lemur.py +0 -183
- langflow/components/assemblyai/assemblyai_list_transcripts.py +0 -95
- langflow/components/assemblyai/assemblyai_poll_transcript.py +0 -72
- langflow/components/assemblyai/assemblyai_start_transcript.py +0 -188
- langflow/components/azure/__init__.py +0 -37
- langflow/components/azure/azure_openai.py +0 -95
- langflow/components/azure/azure_openai_embeddings.py +0 -83
- langflow/components/baidu/__init__.py +0 -32
- langflow/components/baidu/baidu_qianfan_chat.py +0 -113
- langflow/components/bing/__init__.py +0 -3
- langflow/components/bing/bing_search_api.py +0 -61
- langflow/components/cassandra/__init__.py +0 -40
- langflow/components/cassandra/cassandra.py +0 -264
- langflow/components/cassandra/cassandra_chat.py +0 -92
- langflow/components/cassandra/cassandra_graph.py +0 -238
- langflow/components/chains/__init__.py +0 -0
- langflow/components/chroma/__init__.py +0 -34
- langflow/components/chroma/chroma.py +0 -167
- langflow/components/cleanlab/__init__.py +0 -40
- langflow/components/cleanlab/cleanlab_evaluator.py +0 -157
- langflow/components/cleanlab/cleanlab_rag_evaluator.py +0 -254
- langflow/components/cleanlab/cleanlab_remediator.py +0 -131
- langflow/components/clickhouse/__init__.py +0 -34
- langflow/components/clickhouse/clickhouse.py +0 -135
- langflow/components/cloudflare/__init__.py +0 -32
- langflow/components/cloudflare/cloudflare.py +0 -81
- langflow/components/cohere/__init__.py +0 -40
- langflow/components/cohere/cohere_embeddings.py +0 -81
- langflow/components/cohere/cohere_models.py +0 -46
- langflow/components/cohere/cohere_rerank.py +0 -51
- langflow/components/composio/__init__.py +0 -73
- langflow/components/composio/composio_api.py +0 -268
- langflow/components/composio/dropbox_compnent.py +0 -11
- langflow/components/composio/github_composio.py +0 -11
- langflow/components/composio/gmail_composio.py +0 -38
- langflow/components/composio/googlecalendar_composio.py +0 -11
- langflow/components/composio/googlemeet_composio.py +0 -11
- langflow/components/composio/googletasks_composio.py +0 -8
- langflow/components/composio/linear_composio.py +0 -11
- langflow/components/composio/outlook_composio.py +0 -11
- langflow/components/composio/reddit_composio.py +0 -11
- langflow/components/composio/slack_composio.py +0 -11
- langflow/components/composio/slackbot_composio.py +0 -11
- langflow/components/composio/supabase_composio.py +0 -11
- langflow/components/composio/todoist_composio.py +0 -11
- langflow/components/composio/youtube_composio.py +0 -11
- langflow/components/confluence/__init__.py +0 -3
- langflow/components/confluence/confluence.py +0 -84
- langflow/components/couchbase/__init__.py +0 -34
- langflow/components/couchbase/couchbase.py +0 -102
- langflow/components/crewai/__init__.py +0 -49
- langflow/components/crewai/crewai.py +0 -107
- langflow/components/crewai/hierarchical_crew.py +0 -46
- langflow/components/crewai/hierarchical_task.py +0 -44
- langflow/components/crewai/sequential_crew.py +0 -52
- langflow/components/crewai/sequential_task.py +0 -73
- langflow/components/crewai/sequential_task_agent.py +0 -143
- langflow/components/custom_component/__init__.py +0 -34
- langflow/components/custom_component/custom_component.py +0 -31
- langflow/components/data/__init__.py +0 -25
- langflow/components/data/api_request.py +0 -545
- langflow/components/data/csv_to_data.py +0 -95
- langflow/components/data/directory.py +0 -113
- langflow/components/data/file.py +0 -586
- langflow/components/data/json_to_data.py +0 -98
- langflow/components/data/news_search.py +0 -164
- langflow/components/data/rss.py +0 -69
- langflow/components/data/sql_executor.py +0 -99
- langflow/components/data/url.py +0 -299
- langflow/components/data/web_search.py +0 -112
- langflow/components/data/webhook.py +0 -56
- langflow/components/datastax/__init__.py +0 -70
- langflow/components/datastax/astra_assistant_manager.py +0 -306
- langflow/components/datastax/astra_db.py +0 -69
- langflow/components/datastax/astra_vectorize.py +0 -124
- langflow/components/datastax/astradb_cql.py +0 -314
- langflow/components/datastax/astradb_graph.py +0 -319
- langflow/components/datastax/astradb_tool.py +0 -414
- langflow/components/datastax/astradb_vectorstore.py +0 -1285
- langflow/components/datastax/create_assistant.py +0 -58
- langflow/components/datastax/create_thread.py +0 -32
- langflow/components/datastax/dotenv.py +0 -35
- langflow/components/datastax/get_assistant.py +0 -37
- langflow/components/datastax/getenvvar.py +0 -30
- langflow/components/datastax/graph_rag.py +0 -141
- langflow/components/datastax/hcd.py +0 -314
- langflow/components/datastax/list_assistants.py +0 -25
- langflow/components/datastax/run.py +0 -89
- langflow/components/deactivated/__init__.py +0 -19
- langflow/components/deactivated/amazon_kendra.py +0 -66
- langflow/components/deactivated/chat_litellm_model.py +0 -158
- langflow/components/deactivated/code_block_extractor.py +0 -26
- langflow/components/deactivated/documents_to_data.py +0 -22
- langflow/components/deactivated/embed.py +0 -16
- langflow/components/deactivated/extract_key_from_data.py +0 -46
- langflow/components/deactivated/json_document_builder.py +0 -59
- langflow/components/deactivated/list_flows.py +0 -20
- langflow/components/deactivated/mcp_sse.py +0 -61
- langflow/components/deactivated/mcp_stdio.py +0 -62
- langflow/components/deactivated/merge_data.py +0 -93
- langflow/components/deactivated/message.py +0 -37
- langflow/components/deactivated/metal.py +0 -54
- langflow/components/deactivated/multi_query.py +0 -59
- langflow/components/deactivated/retriever.py +0 -43
- langflow/components/deactivated/selective_passthrough.py +0 -77
- langflow/components/deactivated/should_run_next.py +0 -40
- langflow/components/deactivated/split_text.py +0 -63
- langflow/components/deactivated/store_message.py +0 -24
- langflow/components/deactivated/sub_flow.py +0 -124
- langflow/components/deactivated/vectara_self_query.py +0 -76
- langflow/components/deactivated/vector_store.py +0 -24
- langflow/components/deepseek/__init__.py +0 -34
- langflow/components/deepseek/deepseek.py +0 -136
- langflow/components/docling/__init__.py +0 -43
- langflow/components/docling/chunk_docling_document.py +0 -186
- langflow/components/docling/docling_inline.py +0 -235
- langflow/components/docling/docling_remote.py +0 -193
- langflow/components/docling/export_docling_document.py +0 -117
- langflow/components/documentloaders/__init__.py +0 -0
- langflow/components/duckduckgo/__init__.py +0 -3
- langflow/components/duckduckgo/duck_duck_go_search_run.py +0 -92
- langflow/components/elastic/__init__.py +0 -37
- langflow/components/elastic/elasticsearch.py +0 -267
- langflow/components/elastic/opensearch.py +0 -243
- langflow/components/embeddings/__init__.py +0 -37
- langflow/components/embeddings/similarity.py +0 -76
- langflow/components/embeddings/text_embedder.py +0 -64
- langflow/components/exa/__init__.py +0 -3
- langflow/components/exa/exa_search.py +0 -68
- langflow/components/firecrawl/__init__.py +0 -43
- langflow/components/firecrawl/firecrawl_crawl_api.py +0 -88
- langflow/components/firecrawl/firecrawl_extract_api.py +0 -136
- langflow/components/firecrawl/firecrawl_map_api.py +0 -89
- langflow/components/firecrawl/firecrawl_scrape_api.py +0 -73
- langflow/components/git/__init__.py +0 -4
- langflow/components/git/git.py +0 -262
- langflow/components/git/gitextractor.py +0 -196
- langflow/components/glean/__init__.py +0 -3
- langflow/components/glean/glean_search_api.py +0 -173
- langflow/components/google/__init__.py +0 -17
- langflow/components/google/gmail.py +0 -192
- langflow/components/google/google_bq_sql_executor.py +0 -157
- langflow/components/google/google_drive.py +0 -92
- langflow/components/google/google_drive_search.py +0 -152
- langflow/components/google/google_generative_ai.py +0 -147
- langflow/components/google/google_generative_ai_embeddings.py +0 -141
- langflow/components/google/google_oauth_token.py +0 -89
- langflow/components/google/google_search_api_core.py +0 -68
- langflow/components/google/google_serper_api_core.py +0 -74
- langflow/components/groq/__init__.py +0 -34
- langflow/components/groq/groq.py +0 -140
- langflow/components/helpers/__init__.py +0 -52
- langflow/components/helpers/calculator_core.py +0 -89
- langflow/components/helpers/create_list.py +0 -40
- langflow/components/helpers/current_date.py +0 -42
- langflow/components/helpers/id_generator.py +0 -42
- langflow/components/helpers/memory.py +0 -251
- langflow/components/helpers/output_parser.py +0 -45
- langflow/components/helpers/store_message.py +0 -90
- langflow/components/homeassistant/__init__.py +0 -7
- langflow/components/homeassistant/home_assistant_control.py +0 -152
- langflow/components/homeassistant/list_home_assistant_states.py +0 -137
- langflow/components/huggingface/__init__.py +0 -37
- langflow/components/huggingface/huggingface.py +0 -197
- langflow/components/huggingface/huggingface_inference_api.py +0 -106
- langflow/components/ibm/__init__.py +0 -34
- langflow/components/ibm/watsonx.py +0 -203
- langflow/components/ibm/watsonx_embeddings.py +0 -135
- langflow/components/icosacomputing/__init__.py +0 -5
- langflow/components/icosacomputing/combinatorial_reasoner.py +0 -84
- langflow/components/input_output/__init__.py +0 -38
- langflow/components/input_output/chat.py +0 -120
- langflow/components/input_output/chat_output.py +0 -200
- langflow/components/input_output/text.py +0 -27
- langflow/components/input_output/text_output.py +0 -29
- langflow/components/jigsawstack/__init__.py +0 -23
- langflow/components/jigsawstack/ai_scrape.py +0 -126
- langflow/components/jigsawstack/ai_web_search.py +0 -136
- langflow/components/jigsawstack/file_read.py +0 -115
- langflow/components/jigsawstack/file_upload.py +0 -94
- langflow/components/jigsawstack/image_generation.py +0 -205
- langflow/components/jigsawstack/nsfw.py +0 -60
- langflow/components/jigsawstack/object_detection.py +0 -124
- langflow/components/jigsawstack/sentiment.py +0 -112
- langflow/components/jigsawstack/text_to_sql.py +0 -90
- langflow/components/jigsawstack/text_translate.py +0 -77
- langflow/components/jigsawstack/vocr.py +0 -107
- langflow/components/langchain_utilities/__init__.py +0 -109
- langflow/components/langchain_utilities/character.py +0 -53
- langflow/components/langchain_utilities/conversation.py +0 -52
- langflow/components/langchain_utilities/csv_agent.py +0 -107
- langflow/components/langchain_utilities/fake_embeddings.py +0 -26
- langflow/components/langchain_utilities/html_link_extractor.py +0 -35
- langflow/components/langchain_utilities/json_agent.py +0 -45
- langflow/components/langchain_utilities/langchain_hub.py +0 -126
- langflow/components/langchain_utilities/language_recursive.py +0 -49
- langflow/components/langchain_utilities/language_semantic.py +0 -138
- langflow/components/langchain_utilities/llm_checker.py +0 -39
- langflow/components/langchain_utilities/llm_math.py +0 -42
- langflow/components/langchain_utilities/natural_language.py +0 -61
- langflow/components/langchain_utilities/openai_tools.py +0 -53
- langflow/components/langchain_utilities/openapi.py +0 -48
- langflow/components/langchain_utilities/recursive_character.py +0 -60
- langflow/components/langchain_utilities/retrieval_qa.py +0 -83
- langflow/components/langchain_utilities/runnable_executor.py +0 -137
- langflow/components/langchain_utilities/self_query.py +0 -80
- langflow/components/langchain_utilities/spider.py +0 -142
- langflow/components/langchain_utilities/sql.py +0 -40
- langflow/components/langchain_utilities/sql_database.py +0 -35
- langflow/components/langchain_utilities/sql_generator.py +0 -78
- langflow/components/langchain_utilities/tool_calling.py +0 -59
- langflow/components/langchain_utilities/vector_store_info.py +0 -49
- langflow/components/langchain_utilities/vector_store_router.py +0 -33
- langflow/components/langchain_utilities/xml_agent.py +0 -71
- langflow/components/langwatch/__init__.py +0 -3
- langflow/components/langwatch/langwatch.py +0 -278
- langflow/components/link_extractors/__init__.py +0 -0
- langflow/components/lmstudio/__init__.py +0 -34
- langflow/components/lmstudio/lmstudioembeddings.py +0 -89
- langflow/components/lmstudio/lmstudiomodel.py +0 -129
- langflow/components/logic/__init__.py +0 -52
- langflow/components/logic/conditional_router.py +0 -171
- langflow/components/logic/data_conditional_router.py +0 -125
- langflow/components/logic/flow_tool.py +0 -110
- langflow/components/logic/listen.py +0 -29
- langflow/components/logic/loop.py +0 -125
- langflow/components/logic/notify.py +0 -88
- langflow/components/logic/pass_message.py +0 -35
- langflow/components/logic/run_flow.py +0 -71
- langflow/components/logic/sub_flow.py +0 -114
- langflow/components/maritalk/__init__.py +0 -32
- langflow/components/maritalk/maritalk.py +0 -52
- langflow/components/mem0/__init__.py +0 -3
- langflow/components/mem0/mem0_chat_memory.py +0 -136
- langflow/components/milvus/__init__.py +0 -34
- langflow/components/milvus/milvus.py +0 -115
- langflow/components/mistral/__init__.py +0 -37
- langflow/components/mistral/mistral.py +0 -114
- langflow/components/mistral/mistral_embeddings.py +0 -58
- langflow/components/models/__init__.py +0 -34
- langflow/components/models/embedding_model.py +0 -114
- langflow/components/models/language_model.py +0 -144
- langflow/components/mongodb/__init__.py +0 -34
- langflow/components/mongodb/mongodb_atlas.py +0 -213
- langflow/components/needle/__init__.py +0 -3
- langflow/components/needle/needle.py +0 -104
- langflow/components/notdiamond/__init__.py +0 -36
- langflow/components/notdiamond/notdiamond.py +0 -228
- langflow/components/novita/__init__.py +0 -32
- langflow/components/novita/novita.py +0 -130
- langflow/components/nvidia/__init__.py +0 -57
- langflow/components/nvidia/nvidia.py +0 -157
- langflow/components/nvidia/nvidia_embedding.py +0 -77
- langflow/components/nvidia/nvidia_ingest.py +0 -317
- langflow/components/nvidia/nvidia_rerank.py +0 -63
- langflow/components/nvidia/system_assist.py +0 -65
- langflow/components/olivya/__init__.py +0 -3
- langflow/components/olivya/olivya.py +0 -116
- langflow/components/ollama/__init__.py +0 -37
- langflow/components/ollama/ollama.py +0 -330
- langflow/components/ollama/ollama_embeddings.py +0 -106
- langflow/components/openai/__init__.py +0 -37
- langflow/components/openai/openai.py +0 -100
- langflow/components/openai/openai_chat_model.py +0 -158
- langflow/components/openrouter/__init__.py +0 -32
- langflow/components/openrouter/openrouter.py +0 -202
- langflow/components/output_parsers/__init__.py +0 -0
- langflow/components/perplexity/__init__.py +0 -34
- langflow/components/perplexity/perplexity.py +0 -75
- langflow/components/pgvector/__init__.py +0 -34
- langflow/components/pgvector/pgvector.py +0 -72
- langflow/components/pinecone/__init__.py +0 -34
- langflow/components/pinecone/pinecone.py +0 -134
- langflow/components/processing/alter_metadata.py +0 -108
- langflow/components/processing/batch_run.py +0 -205
- langflow/components/processing/combine_text.py +0 -39
- langflow/components/processing/create_data.py +0 -110
- langflow/components/processing/data_operations.py +0 -438
- langflow/components/processing/data_to_dataframe.py +0 -70
- langflow/components/processing/dataframe_operations.py +0 -321
- langflow/components/processing/extract_key.py +0 -53
- langflow/components/processing/filter_data.py +0 -42
- langflow/components/processing/filter_data_values.py +0 -88
- langflow/components/processing/json_cleaner.py +0 -103
- langflow/components/processing/lambda_filter.py +0 -154
- langflow/components/processing/llm_router.py +0 -499
- langflow/components/processing/merge_data.py +0 -90
- langflow/components/processing/message_to_data.py +0 -36
- langflow/components/processing/parse_data.py +0 -70
- langflow/components/processing/parse_dataframe.py +0 -68
- langflow/components/processing/parse_json_data.py +0 -90
- langflow/components/processing/parser.py +0 -143
- langflow/components/processing/prompt.py +0 -67
- langflow/components/processing/python_repl_core.py +0 -98
- langflow/components/processing/regex.py +0 -82
- langflow/components/processing/save_file.py +0 -208
- langflow/components/processing/select_data.py +0 -48
- langflow/components/processing/split_text.py +0 -141
- langflow/components/processing/structured_output.py +0 -202
- langflow/components/processing/update_data.py +0 -160
- langflow/components/prototypes/__init__.py +0 -34
- langflow/components/prototypes/python_function.py +0 -73
- langflow/components/qdrant/__init__.py +0 -34
- langflow/components/qdrant/qdrant.py +0 -109
- langflow/components/redis/__init__.py +0 -37
- langflow/components/redis/redis.py +0 -89
- langflow/components/redis/redis_chat.py +0 -43
- langflow/components/sambanova/__init__.py +0 -32
- langflow/components/sambanova/sambanova.py +0 -84
- langflow/components/scrapegraph/__init__.py +0 -40
- langflow/components/scrapegraph/scrapegraph_markdownify_api.py +0 -64
- langflow/components/scrapegraph/scrapegraph_search_api.py +0 -64
- langflow/components/scrapegraph/scrapegraph_smart_scraper_api.py +0 -71
- langflow/components/searchapi/__init__.py +0 -36
- langflow/components/searchapi/search.py +0 -79
- langflow/components/serpapi/__init__.py +0 -3
- langflow/components/serpapi/serp.py +0 -115
- langflow/components/serper/__init__.py +0 -3
- langflow/components/serper/google_serper_api_core.py +0 -74
- langflow/components/supabase/__init__.py +0 -37
- langflow/components/supabase/supabase.py +0 -76
- langflow/components/tavily/__init__.py +0 -4
- langflow/components/tavily/tavily_extract.py +0 -117
- langflow/components/tavily/tavily_search.py +0 -212
- langflow/components/textsplitters/__init__.py +0 -0
- langflow/components/toolkits/__init__.py +0 -0
- langflow/components/tools/__init__.py +0 -72
- langflow/components/tools/calculator.py +0 -103
- langflow/components/tools/google_search_api.py +0 -45
- langflow/components/tools/google_serper_api.py +0 -115
- langflow/components/tools/python_code_structured_tool.py +0 -327
- langflow/components/tools/python_repl.py +0 -97
- langflow/components/tools/search_api.py +0 -87
- langflow/components/tools/searxng.py +0 -145
- langflow/components/tools/serp_api.py +0 -119
- langflow/components/tools/tavily_search_tool.py +0 -344
- langflow/components/tools/wikidata_api.py +0 -102
- langflow/components/tools/wikipedia_api.py +0 -49
- langflow/components/tools/yahoo_finance.py +0 -124
- langflow/components/twelvelabs/__init__.py +0 -52
- langflow/components/twelvelabs/convert_astra_results.py +0 -84
- langflow/components/twelvelabs/pegasus_index.py +0 -311
- langflow/components/twelvelabs/split_video.py +0 -291
- langflow/components/twelvelabs/text_embeddings.py +0 -57
- langflow/components/twelvelabs/twelvelabs_pegasus.py +0 -408
- langflow/components/twelvelabs/video_embeddings.py +0 -100
- langflow/components/twelvelabs/video_file.py +0 -179
- langflow/components/unstructured/__init__.py +0 -3
- langflow/components/unstructured/unstructured.py +0 -121
- langflow/components/upstash/__init__.py +0 -34
- langflow/components/upstash/upstash.py +0 -124
- langflow/components/vectara/__init__.py +0 -37
- langflow/components/vectara/vectara.py +0 -97
- langflow/components/vectara/vectara_rag.py +0 -164
- langflow/components/vectorstores/__init__.py +0 -34
- langflow/components/vectorstores/local_db.py +0 -261
- langflow/components/vertexai/__init__.py +0 -37
- langflow/components/vertexai/vertexai.py +0 -71
- langflow/components/vertexai/vertexai_embeddings.py +0 -67
- langflow/components/weaviate/__init__.py +0 -34
- langflow/components/weaviate/weaviate.py +0 -89
- langflow/components/wikipedia/__init__.py +0 -4
- langflow/components/wikipedia/wikidata.py +0 -86
- langflow/components/wikipedia/wikipedia.py +0 -53
- langflow/components/wolframalpha/__init__.py +0 -3
- langflow/components/wolframalpha/wolfram_alpha_api.py +0 -54
- langflow/components/xai/__init__.py +0 -32
- langflow/components/xai/xai.py +0 -167
- langflow/components/yahoosearch/__init__.py +0 -3
- langflow/components/yahoosearch/yahoo.py +0 -137
- langflow/components/youtube/__init__.py +0 -52
- langflow/components/youtube/channel.py +0 -227
- langflow/components/youtube/comments.py +0 -231
- langflow/components/youtube/playlist.py +0 -33
- langflow/components/youtube/search.py +0 -120
- langflow/components/youtube/trending.py +0 -285
- langflow/components/youtube/video_details.py +0 -263
- langflow/components/youtube/youtube_transcripts.py +0 -118
- langflow/components/zep/__init__.py +0 -3
- langflow/components/zep/zep.py +0 -44
- langflow/custom/attributes.py +0 -86
- langflow/custom/code_parser/__init__.py +0 -3
- langflow/custom/code_parser/code_parser.py +0 -361
- langflow/custom/custom_component/base_component.py +0 -118
- langflow/custom/dependency_analyzer.py +0 -165
- langflow/custom/directory_reader/__init__.py +0 -3
- langflow/custom/directory_reader/directory_reader.py +0 -359
- langflow/custom/directory_reader/utils.py +0 -171
- langflow/custom/eval.py +0 -12
- langflow/custom/schema.py +0 -32
- langflow/custom/tree_visitor.py +0 -21
- langflow/frontend/assets/lazyIconImports-Ci-S9xBA.js +0 -2
- langflow/graph/edge/__init__.py +0 -0
- langflow/graph/edge/base.py +0 -277
- langflow/graph/edge/schema.py +0 -119
- langflow/graph/edge/utils.py +0 -0
- langflow/graph/graph/__init__.py +0 -0
- langflow/graph/graph/ascii.py +0 -202
- langflow/graph/graph/base.py +0 -2185
- langflow/graph/graph/constants.py +0 -58
- langflow/graph/graph/runnable_vertices_manager.py +0 -133
- langflow/graph/graph/schema.py +0 -53
- langflow/graph/graph/state_model.py +0 -66
- langflow/graph/graph/utils.py +0 -1024
- langflow/graph/schema.py +0 -75
- langflow/graph/state/__init__.py +0 -0
- langflow/graph/state/model.py +0 -237
- langflow/graph/utils.py +0 -229
- langflow/graph/vertex/__init__.py +0 -0
- langflow/graph/vertex/base.py +0 -811
- langflow/graph/vertex/constants.py +0 -0
- langflow/graph/vertex/exceptions.py +0 -4
- langflow/graph/vertex/param_handler.py +0 -255
- langflow/graph/vertex/schema.py +0 -26
- langflow/graph/vertex/utils.py +0 -19
- langflow/graph/vertex/vertex_types.py +0 -489
- langflow/legacy_custom/__init__.py +0 -0
- langflow/legacy_custom/customs.py +0 -16
- langflow/load/load.py +0 -250
- langflow/logging/logger.py +0 -369
- langflow/processing/utils.py +0 -25
- langflow/schema/openai_responses_schemas.py +0 -74
- langflow/schema/serialize.py +0 -13
- langflow/services/chat/config.py +0 -2
- langflow/services/settings/auth.py +0 -130
- langflow/services/settings/constants.py +0 -31
- langflow/services/settings/manager.py +0 -49
- langflow/services/settings/utils.py +0 -40
- langflow/template/field/prompt.py +0 -2
- langflow/template/frontend_node/__init__.py +0 -6
- langflow/template/frontend_node/base.py +0 -212
- langflow/template/frontend_node/constants.py +0 -65
- langflow/template/frontend_node/custom_components.py +0 -97
- langflow/template/template/__init__.py +0 -0
- langflow/template/template/base.py +0 -99
- langflow/utils/async_helpers.py +0 -42
- langflow/utils/concurrency.py +0 -60
- langflow/utils/util_strings.py +0 -56
- langflow_base_nightly-0.5.1.dev3.dist-info/RECORD +0 -1159
- {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev5.dist-info}/WHEEL +0 -0
- {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev5.dist-info}/entry_points.txt +0 -0
|
@@ -356,7 +356,27 @@
|
|
|
356
356
|
"frozen": false,
|
|
357
357
|
"icon": "bot",
|
|
358
358
|
"legacy": false,
|
|
359
|
-
"metadata": {
|
|
359
|
+
"metadata": {
|
|
360
|
+
"code_hash": "1a4bc0f629fe",
|
|
361
|
+
"dependencies": {
|
|
362
|
+
"dependencies": [
|
|
363
|
+
{
|
|
364
|
+
"name": "langchain_core",
|
|
365
|
+
"version": "0.3.75"
|
|
366
|
+
},
|
|
367
|
+
{
|
|
368
|
+
"name": "pydantic",
|
|
369
|
+
"version": "2.10.6"
|
|
370
|
+
},
|
|
371
|
+
{
|
|
372
|
+
"name": "lfx",
|
|
373
|
+
"version": null
|
|
374
|
+
}
|
|
375
|
+
],
|
|
376
|
+
"total_dependencies": 3
|
|
377
|
+
},
|
|
378
|
+
"module": "lfx.components.agents.agent.AgentComponent"
|
|
379
|
+
},
|
|
360
380
|
"minimized": false,
|
|
361
381
|
"output_types": [],
|
|
362
382
|
"outputs": [
|
|
@@ -365,17 +385,28 @@
|
|
|
365
385
|
"cache": true,
|
|
366
386
|
"display_name": "Response",
|
|
367
387
|
"group_outputs": false,
|
|
368
|
-
"hidden": null,
|
|
369
388
|
"method": "message_response",
|
|
370
389
|
"name": "response",
|
|
371
|
-
"options": null,
|
|
372
|
-
"required_inputs": null,
|
|
373
390
|
"selected": "Message",
|
|
374
391
|
"tool_mode": true,
|
|
375
392
|
"types": [
|
|
376
393
|
"Message"
|
|
377
394
|
],
|
|
378
395
|
"value": "__UNDEFINED__"
|
|
396
|
+
},
|
|
397
|
+
{
|
|
398
|
+
"allows_loop": false,
|
|
399
|
+
"cache": true,
|
|
400
|
+
"display_name": "Structured Response",
|
|
401
|
+
"group_outputs": false,
|
|
402
|
+
"method": "json_response",
|
|
403
|
+
"name": "structured_response",
|
|
404
|
+
"selected": "Data",
|
|
405
|
+
"tool_mode": false,
|
|
406
|
+
"types": [
|
|
407
|
+
"Data"
|
|
408
|
+
],
|
|
409
|
+
"value": "__UNDEFINED__"
|
|
379
410
|
}
|
|
380
411
|
],
|
|
381
412
|
"pinned": false,
|
|
@@ -481,7 +512,7 @@
|
|
|
481
512
|
"password": true,
|
|
482
513
|
"placeholder": "",
|
|
483
514
|
"real_time_refresh": true,
|
|
484
|
-
"required":
|
|
515
|
+
"required": false,
|
|
485
516
|
"show": true,
|
|
486
517
|
"title_case": false,
|
|
487
518
|
"type": "str",
|
|
@@ -503,7 +534,32 @@
|
|
|
503
534
|
"show": true,
|
|
504
535
|
"title_case": false,
|
|
505
536
|
"type": "code",
|
|
506
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
537
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
538
|
+
},
|
|
539
|
+
"format_instructions": {
|
|
540
|
+
"_input_type": "MultilineInput",
|
|
541
|
+
"advanced": true,
|
|
542
|
+
"copy_field": false,
|
|
543
|
+
"display_name": "Output Format Instructions",
|
|
544
|
+
"dynamic": false,
|
|
545
|
+
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
|
546
|
+
"input_types": [
|
|
547
|
+
"Message"
|
|
548
|
+
],
|
|
549
|
+
"list": false,
|
|
550
|
+
"list_add_label": "Add More",
|
|
551
|
+
"load_from_db": false,
|
|
552
|
+
"multiline": true,
|
|
553
|
+
"name": "format_instructions",
|
|
554
|
+
"placeholder": "",
|
|
555
|
+
"required": false,
|
|
556
|
+
"show": true,
|
|
557
|
+
"title_case": false,
|
|
558
|
+
"tool_mode": false,
|
|
559
|
+
"trace_as_input": true,
|
|
560
|
+
"trace_as_metadata": true,
|
|
561
|
+
"type": "str",
|
|
562
|
+
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
|
507
563
|
},
|
|
508
564
|
"handle_parsing_errors": {
|
|
509
565
|
"_input_type": "BoolInput",
|
|
@@ -546,24 +602,6 @@
|
|
|
546
602
|
"type": "str",
|
|
547
603
|
"value": ""
|
|
548
604
|
},
|
|
549
|
-
"json_mode": {
|
|
550
|
-
"_input_type": "BoolInput",
|
|
551
|
-
"advanced": true,
|
|
552
|
-
"display_name": "JSON Mode",
|
|
553
|
-
"dynamic": false,
|
|
554
|
-
"info": "If True, it will output JSON regardless of passing a schema.",
|
|
555
|
-
"list": false,
|
|
556
|
-
"list_add_label": "Add More",
|
|
557
|
-
"name": "json_mode",
|
|
558
|
-
"placeholder": "",
|
|
559
|
-
"required": false,
|
|
560
|
-
"show": true,
|
|
561
|
-
"title_case": false,
|
|
562
|
-
"tool_mode": false,
|
|
563
|
-
"trace_as_metadata": true,
|
|
564
|
-
"type": "bool",
|
|
565
|
-
"value": false
|
|
566
|
-
},
|
|
567
605
|
"max_iterations": {
|
|
568
606
|
"_input_type": "IntInput",
|
|
569
607
|
"advanced": true,
|
|
@@ -658,12 +696,20 @@
|
|
|
658
696
|
"gpt-4.1",
|
|
659
697
|
"gpt-4.1-mini",
|
|
660
698
|
"gpt-4.1-nano",
|
|
661
|
-
"gpt-4.5-preview",
|
|
662
699
|
"gpt-4-turbo",
|
|
663
700
|
"gpt-4-turbo-preview",
|
|
664
701
|
"gpt-4",
|
|
665
702
|
"gpt-3.5-turbo",
|
|
666
|
-
"
|
|
703
|
+
"gpt-5",
|
|
704
|
+
"gpt-5-mini",
|
|
705
|
+
"gpt-5-nano",
|
|
706
|
+
"gpt-5-chat-latest",
|
|
707
|
+
"o1",
|
|
708
|
+
"o3-mini",
|
|
709
|
+
"o3",
|
|
710
|
+
"o3-pro",
|
|
711
|
+
"o4-mini",
|
|
712
|
+
"o4-mini-high"
|
|
667
713
|
],
|
|
668
714
|
"options_metadata": [],
|
|
669
715
|
"placeholder": "",
|
|
@@ -714,6 +760,68 @@
|
|
|
714
760
|
"type": "str",
|
|
715
761
|
"value": ""
|
|
716
762
|
},
|
|
763
|
+
"output_schema": {
|
|
764
|
+
"_input_type": "TableInput",
|
|
765
|
+
"advanced": true,
|
|
766
|
+
"display_name": "Output Schema",
|
|
767
|
+
"dynamic": false,
|
|
768
|
+
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
|
769
|
+
"is_list": true,
|
|
770
|
+
"list_add_label": "Add More",
|
|
771
|
+
"name": "output_schema",
|
|
772
|
+
"placeholder": "",
|
|
773
|
+
"required": false,
|
|
774
|
+
"show": true,
|
|
775
|
+
"table_icon": "Table",
|
|
776
|
+
"table_schema": [
|
|
777
|
+
{
|
|
778
|
+
"default": "field",
|
|
779
|
+
"description": "Specify the name of the output field.",
|
|
780
|
+
"display_name": "Name",
|
|
781
|
+
"edit_mode": "inline",
|
|
782
|
+
"name": "name",
|
|
783
|
+
"type": "str"
|
|
784
|
+
},
|
|
785
|
+
{
|
|
786
|
+
"default": "description of field",
|
|
787
|
+
"description": "Describe the purpose of the output field.",
|
|
788
|
+
"display_name": "Description",
|
|
789
|
+
"edit_mode": "popover",
|
|
790
|
+
"name": "description",
|
|
791
|
+
"type": "str"
|
|
792
|
+
},
|
|
793
|
+
{
|
|
794
|
+
"default": "str",
|
|
795
|
+
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
|
796
|
+
"display_name": "Type",
|
|
797
|
+
"edit_mode": "inline",
|
|
798
|
+
"name": "type",
|
|
799
|
+
"options": [
|
|
800
|
+
"str",
|
|
801
|
+
"int",
|
|
802
|
+
"float",
|
|
803
|
+
"bool",
|
|
804
|
+
"dict"
|
|
805
|
+
],
|
|
806
|
+
"type": "str"
|
|
807
|
+
},
|
|
808
|
+
{
|
|
809
|
+
"default": "False",
|
|
810
|
+
"description": "Set to True if this output field should be a list of the specified type.",
|
|
811
|
+
"display_name": "As List",
|
|
812
|
+
"edit_mode": "inline",
|
|
813
|
+
"name": "multiple",
|
|
814
|
+
"type": "boolean"
|
|
815
|
+
}
|
|
816
|
+
],
|
|
817
|
+
"title_case": false,
|
|
818
|
+
"tool_mode": false,
|
|
819
|
+
"trace_as_metadata": true,
|
|
820
|
+
"trigger_icon": "Table",
|
|
821
|
+
"trigger_text": "Open table",
|
|
822
|
+
"type": "table",
|
|
823
|
+
"value": []
|
|
824
|
+
},
|
|
717
825
|
"seed": {
|
|
718
826
|
"_input_type": "IntInput",
|
|
719
827
|
"advanced": true,
|
|
@@ -907,7 +1015,27 @@
|
|
|
907
1015
|
"frozen": false,
|
|
908
1016
|
"icon": "bot",
|
|
909
1017
|
"legacy": false,
|
|
910
|
-
"metadata": {
|
|
1018
|
+
"metadata": {
|
|
1019
|
+
"code_hash": "1a4bc0f629fe",
|
|
1020
|
+
"dependencies": {
|
|
1021
|
+
"dependencies": [
|
|
1022
|
+
{
|
|
1023
|
+
"name": "langchain_core",
|
|
1024
|
+
"version": "0.3.75"
|
|
1025
|
+
},
|
|
1026
|
+
{
|
|
1027
|
+
"name": "pydantic",
|
|
1028
|
+
"version": "2.10.6"
|
|
1029
|
+
},
|
|
1030
|
+
{
|
|
1031
|
+
"name": "lfx",
|
|
1032
|
+
"version": null
|
|
1033
|
+
}
|
|
1034
|
+
],
|
|
1035
|
+
"total_dependencies": 3
|
|
1036
|
+
},
|
|
1037
|
+
"module": "lfx.components.agents.agent.AgentComponent"
|
|
1038
|
+
},
|
|
911
1039
|
"minimized": false,
|
|
912
1040
|
"output_types": [],
|
|
913
1041
|
"outputs": [
|
|
@@ -916,17 +1044,28 @@
|
|
|
916
1044
|
"cache": true,
|
|
917
1045
|
"display_name": "Response",
|
|
918
1046
|
"group_outputs": false,
|
|
919
|
-
"hidden": null,
|
|
920
1047
|
"method": "message_response",
|
|
921
1048
|
"name": "response",
|
|
922
|
-
"options": null,
|
|
923
|
-
"required_inputs": null,
|
|
924
1049
|
"selected": "Message",
|
|
925
1050
|
"tool_mode": true,
|
|
926
1051
|
"types": [
|
|
927
1052
|
"Message"
|
|
928
1053
|
],
|
|
929
1054
|
"value": "__UNDEFINED__"
|
|
1055
|
+
},
|
|
1056
|
+
{
|
|
1057
|
+
"allows_loop": false,
|
|
1058
|
+
"cache": true,
|
|
1059
|
+
"display_name": "Structured Response",
|
|
1060
|
+
"group_outputs": false,
|
|
1061
|
+
"method": "json_response",
|
|
1062
|
+
"name": "structured_response",
|
|
1063
|
+
"selected": "Data",
|
|
1064
|
+
"tool_mode": false,
|
|
1065
|
+
"types": [
|
|
1066
|
+
"Data"
|
|
1067
|
+
],
|
|
1068
|
+
"value": "__UNDEFINED__"
|
|
930
1069
|
}
|
|
931
1070
|
],
|
|
932
1071
|
"pinned": false,
|
|
@@ -1032,7 +1171,7 @@
|
|
|
1032
1171
|
"password": true,
|
|
1033
1172
|
"placeholder": "",
|
|
1034
1173
|
"real_time_refresh": true,
|
|
1035
|
-
"required":
|
|
1174
|
+
"required": false,
|
|
1036
1175
|
"show": true,
|
|
1037
1176
|
"title_case": false,
|
|
1038
1177
|
"type": "str",
|
|
@@ -1054,7 +1193,32 @@
|
|
|
1054
1193
|
"show": true,
|
|
1055
1194
|
"title_case": false,
|
|
1056
1195
|
"type": "code",
|
|
1057
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1196
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1197
|
+
},
|
|
1198
|
+
"format_instructions": {
|
|
1199
|
+
"_input_type": "MultilineInput",
|
|
1200
|
+
"advanced": true,
|
|
1201
|
+
"copy_field": false,
|
|
1202
|
+
"display_name": "Output Format Instructions",
|
|
1203
|
+
"dynamic": false,
|
|
1204
|
+
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
|
1205
|
+
"input_types": [
|
|
1206
|
+
"Message"
|
|
1207
|
+
],
|
|
1208
|
+
"list": false,
|
|
1209
|
+
"list_add_label": "Add More",
|
|
1210
|
+
"load_from_db": false,
|
|
1211
|
+
"multiline": true,
|
|
1212
|
+
"name": "format_instructions",
|
|
1213
|
+
"placeholder": "",
|
|
1214
|
+
"required": false,
|
|
1215
|
+
"show": true,
|
|
1216
|
+
"title_case": false,
|
|
1217
|
+
"tool_mode": false,
|
|
1218
|
+
"trace_as_input": true,
|
|
1219
|
+
"trace_as_metadata": true,
|
|
1220
|
+
"type": "str",
|
|
1221
|
+
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
|
1058
1222
|
},
|
|
1059
1223
|
"handle_parsing_errors": {
|
|
1060
1224
|
"_input_type": "BoolInput",
|
|
@@ -1097,24 +1261,6 @@
|
|
|
1097
1261
|
"type": "str",
|
|
1098
1262
|
"value": "Start the analysis"
|
|
1099
1263
|
},
|
|
1100
|
-
"json_mode": {
|
|
1101
|
-
"_input_type": "BoolInput",
|
|
1102
|
-
"advanced": true,
|
|
1103
|
-
"display_name": "JSON Mode",
|
|
1104
|
-
"dynamic": false,
|
|
1105
|
-
"info": "If True, it will output JSON regardless of passing a schema.",
|
|
1106
|
-
"list": false,
|
|
1107
|
-
"list_add_label": "Add More",
|
|
1108
|
-
"name": "json_mode",
|
|
1109
|
-
"placeholder": "",
|
|
1110
|
-
"required": false,
|
|
1111
|
-
"show": true,
|
|
1112
|
-
"title_case": false,
|
|
1113
|
-
"tool_mode": false,
|
|
1114
|
-
"trace_as_metadata": true,
|
|
1115
|
-
"type": "bool",
|
|
1116
|
-
"value": false
|
|
1117
|
-
},
|
|
1118
1264
|
"max_iterations": {
|
|
1119
1265
|
"_input_type": "IntInput",
|
|
1120
1266
|
"advanced": true,
|
|
@@ -1209,12 +1355,20 @@
|
|
|
1209
1355
|
"gpt-4.1",
|
|
1210
1356
|
"gpt-4.1-mini",
|
|
1211
1357
|
"gpt-4.1-nano",
|
|
1212
|
-
"gpt-4.5-preview",
|
|
1213
1358
|
"gpt-4-turbo",
|
|
1214
1359
|
"gpt-4-turbo-preview",
|
|
1215
1360
|
"gpt-4",
|
|
1216
1361
|
"gpt-3.5-turbo",
|
|
1217
|
-
"
|
|
1362
|
+
"gpt-5",
|
|
1363
|
+
"gpt-5-mini",
|
|
1364
|
+
"gpt-5-nano",
|
|
1365
|
+
"gpt-5-chat-latest",
|
|
1366
|
+
"o1",
|
|
1367
|
+
"o3-mini",
|
|
1368
|
+
"o3",
|
|
1369
|
+
"o3-pro",
|
|
1370
|
+
"o4-mini",
|
|
1371
|
+
"o4-mini-high"
|
|
1218
1372
|
],
|
|
1219
1373
|
"options_metadata": [],
|
|
1220
1374
|
"placeholder": "",
|
|
@@ -1265,6 +1419,68 @@
|
|
|
1265
1419
|
"type": "str",
|
|
1266
1420
|
"value": ""
|
|
1267
1421
|
},
|
|
1422
|
+
"output_schema": {
|
|
1423
|
+
"_input_type": "TableInput",
|
|
1424
|
+
"advanced": true,
|
|
1425
|
+
"display_name": "Output Schema",
|
|
1426
|
+
"dynamic": false,
|
|
1427
|
+
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
|
1428
|
+
"is_list": true,
|
|
1429
|
+
"list_add_label": "Add More",
|
|
1430
|
+
"name": "output_schema",
|
|
1431
|
+
"placeholder": "",
|
|
1432
|
+
"required": false,
|
|
1433
|
+
"show": true,
|
|
1434
|
+
"table_icon": "Table",
|
|
1435
|
+
"table_schema": [
|
|
1436
|
+
{
|
|
1437
|
+
"default": "field",
|
|
1438
|
+
"description": "Specify the name of the output field.",
|
|
1439
|
+
"display_name": "Name",
|
|
1440
|
+
"edit_mode": "inline",
|
|
1441
|
+
"name": "name",
|
|
1442
|
+
"type": "str"
|
|
1443
|
+
},
|
|
1444
|
+
{
|
|
1445
|
+
"default": "description of field",
|
|
1446
|
+
"description": "Describe the purpose of the output field.",
|
|
1447
|
+
"display_name": "Description",
|
|
1448
|
+
"edit_mode": "popover",
|
|
1449
|
+
"name": "description",
|
|
1450
|
+
"type": "str"
|
|
1451
|
+
},
|
|
1452
|
+
{
|
|
1453
|
+
"default": "str",
|
|
1454
|
+
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
|
1455
|
+
"display_name": "Type",
|
|
1456
|
+
"edit_mode": "inline",
|
|
1457
|
+
"name": "type",
|
|
1458
|
+
"options": [
|
|
1459
|
+
"str",
|
|
1460
|
+
"int",
|
|
1461
|
+
"float",
|
|
1462
|
+
"bool",
|
|
1463
|
+
"dict"
|
|
1464
|
+
],
|
|
1465
|
+
"type": "str"
|
|
1466
|
+
},
|
|
1467
|
+
{
|
|
1468
|
+
"default": "False",
|
|
1469
|
+
"description": "Set to True if this output field should be a list of the specified type.",
|
|
1470
|
+
"display_name": "As List",
|
|
1471
|
+
"edit_mode": "inline",
|
|
1472
|
+
"name": "multiple",
|
|
1473
|
+
"type": "boolean"
|
|
1474
|
+
}
|
|
1475
|
+
],
|
|
1476
|
+
"title_case": false,
|
|
1477
|
+
"tool_mode": false,
|
|
1478
|
+
"trace_as_metadata": true,
|
|
1479
|
+
"trigger_icon": "Table",
|
|
1480
|
+
"trigger_text": "Open table",
|
|
1481
|
+
"type": "table",
|
|
1482
|
+
"value": []
|
|
1483
|
+
},
|
|
1268
1484
|
"seed": {
|
|
1269
1485
|
"_input_type": "IntInput",
|
|
1270
1486
|
"advanced": true,
|
|
@@ -1910,17 +2126,17 @@
|
|
|
1910
2126
|
"legacy": false,
|
|
1911
2127
|
"lf_version": "1.0.19.post2",
|
|
1912
2128
|
"metadata": {
|
|
1913
|
-
"code_hash": "
|
|
2129
|
+
"code_hash": "715a37648834",
|
|
1914
2130
|
"dependencies": {
|
|
1915
2131
|
"dependencies": [
|
|
1916
2132
|
{
|
|
1917
|
-
"name": "
|
|
2133
|
+
"name": "lfx",
|
|
1918
2134
|
"version": null
|
|
1919
2135
|
}
|
|
1920
2136
|
],
|
|
1921
2137
|
"total_dependencies": 1
|
|
1922
2138
|
},
|
|
1923
|
-
"module": "
|
|
2139
|
+
"module": "lfx.components.input_output.chat.ChatInput"
|
|
1924
2140
|
},
|
|
1925
2141
|
"output_types": [],
|
|
1926
2142
|
"outputs": [
|
|
@@ -2002,7 +2218,7 @@
|
|
|
2002
2218
|
"show": true,
|
|
2003
2219
|
"title_case": false,
|
|
2004
2220
|
"type": "code",
|
|
2005
|
-
"value": "from
|
|
2221
|
+
"value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n background_color = self.background_color\n text_color = self.text_color\n icon = self.chat_icon\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=self.files,\n properties={\n \"background_color\": background_color,\n \"text_color\": text_color,\n \"icon\": icon,\n },\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
|
|
2006
2222
|
},
|
|
2007
2223
|
"files": {
|
|
2008
2224
|
"_input_type": "FileInput",
|
|
@@ -2272,7 +2488,27 @@
|
|
|
2272
2488
|
"frozen": false,
|
|
2273
2489
|
"icon": "bot",
|
|
2274
2490
|
"legacy": false,
|
|
2275
|
-
"metadata": {
|
|
2491
|
+
"metadata": {
|
|
2492
|
+
"code_hash": "1a4bc0f629fe",
|
|
2493
|
+
"dependencies": {
|
|
2494
|
+
"dependencies": [
|
|
2495
|
+
{
|
|
2496
|
+
"name": "langchain_core",
|
|
2497
|
+
"version": "0.3.75"
|
|
2498
|
+
},
|
|
2499
|
+
{
|
|
2500
|
+
"name": "pydantic",
|
|
2501
|
+
"version": "2.10.6"
|
|
2502
|
+
},
|
|
2503
|
+
{
|
|
2504
|
+
"name": "lfx",
|
|
2505
|
+
"version": null
|
|
2506
|
+
}
|
|
2507
|
+
],
|
|
2508
|
+
"total_dependencies": 3
|
|
2509
|
+
},
|
|
2510
|
+
"module": "lfx.components.agents.agent.AgentComponent"
|
|
2511
|
+
},
|
|
2276
2512
|
"minimized": false,
|
|
2277
2513
|
"output_types": [],
|
|
2278
2514
|
"outputs": [
|
|
@@ -2281,17 +2517,28 @@
|
|
|
2281
2517
|
"cache": true,
|
|
2282
2518
|
"display_name": "Response",
|
|
2283
2519
|
"group_outputs": false,
|
|
2284
|
-
"hidden": null,
|
|
2285
2520
|
"method": "message_response",
|
|
2286
2521
|
"name": "response",
|
|
2287
|
-
"options": null,
|
|
2288
|
-
"required_inputs": null,
|
|
2289
2522
|
"selected": "Message",
|
|
2290
2523
|
"tool_mode": true,
|
|
2291
2524
|
"types": [
|
|
2292
2525
|
"Message"
|
|
2293
2526
|
],
|
|
2294
2527
|
"value": "__UNDEFINED__"
|
|
2528
|
+
},
|
|
2529
|
+
{
|
|
2530
|
+
"allows_loop": false,
|
|
2531
|
+
"cache": true,
|
|
2532
|
+
"display_name": "Structured Response",
|
|
2533
|
+
"group_outputs": false,
|
|
2534
|
+
"method": "json_response",
|
|
2535
|
+
"name": "structured_response",
|
|
2536
|
+
"selected": "Data",
|
|
2537
|
+
"tool_mode": false,
|
|
2538
|
+
"types": [
|
|
2539
|
+
"Data"
|
|
2540
|
+
],
|
|
2541
|
+
"value": "__UNDEFINED__"
|
|
2295
2542
|
}
|
|
2296
2543
|
],
|
|
2297
2544
|
"pinned": false,
|
|
@@ -2397,7 +2644,7 @@
|
|
|
2397
2644
|
"password": true,
|
|
2398
2645
|
"placeholder": "",
|
|
2399
2646
|
"real_time_refresh": true,
|
|
2400
|
-
"required":
|
|
2647
|
+
"required": false,
|
|
2401
2648
|
"show": true,
|
|
2402
2649
|
"title_case": false,
|
|
2403
2650
|
"type": "str",
|
|
@@ -2419,7 +2666,32 @@
|
|
|
2419
2666
|
"show": true,
|
|
2420
2667
|
"title_case": false,
|
|
2421
2668
|
"type": "code",
|
|
2422
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
2669
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
2670
|
+
},
|
|
2671
|
+
"format_instructions": {
|
|
2672
|
+
"_input_type": "MultilineInput",
|
|
2673
|
+
"advanced": true,
|
|
2674
|
+
"copy_field": false,
|
|
2675
|
+
"display_name": "Output Format Instructions",
|
|
2676
|
+
"dynamic": false,
|
|
2677
|
+
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
|
2678
|
+
"input_types": [
|
|
2679
|
+
"Message"
|
|
2680
|
+
],
|
|
2681
|
+
"list": false,
|
|
2682
|
+
"list_add_label": "Add More",
|
|
2683
|
+
"load_from_db": false,
|
|
2684
|
+
"multiline": true,
|
|
2685
|
+
"name": "format_instructions",
|
|
2686
|
+
"placeholder": "",
|
|
2687
|
+
"required": false,
|
|
2688
|
+
"show": true,
|
|
2689
|
+
"title_case": false,
|
|
2690
|
+
"tool_mode": false,
|
|
2691
|
+
"trace_as_input": true,
|
|
2692
|
+
"trace_as_metadata": true,
|
|
2693
|
+
"type": "str",
|
|
2694
|
+
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
|
2423
2695
|
},
|
|
2424
2696
|
"handle_parsing_errors": {
|
|
2425
2697
|
"_input_type": "BoolInput",
|
|
@@ -2462,24 +2734,6 @@
|
|
|
2462
2734
|
"type": "str",
|
|
2463
2735
|
"value": ""
|
|
2464
2736
|
},
|
|
2465
|
-
"json_mode": {
|
|
2466
|
-
"_input_type": "BoolInput",
|
|
2467
|
-
"advanced": true,
|
|
2468
|
-
"display_name": "JSON Mode",
|
|
2469
|
-
"dynamic": false,
|
|
2470
|
-
"info": "If True, it will output JSON regardless of passing a schema.",
|
|
2471
|
-
"list": false,
|
|
2472
|
-
"list_add_label": "Add More",
|
|
2473
|
-
"name": "json_mode",
|
|
2474
|
-
"placeholder": "",
|
|
2475
|
-
"required": false,
|
|
2476
|
-
"show": true,
|
|
2477
|
-
"title_case": false,
|
|
2478
|
-
"tool_mode": false,
|
|
2479
|
-
"trace_as_metadata": true,
|
|
2480
|
-
"type": "bool",
|
|
2481
|
-
"value": false
|
|
2482
|
-
},
|
|
2483
2737
|
"max_iterations": {
|
|
2484
2738
|
"_input_type": "IntInput",
|
|
2485
2739
|
"advanced": true,
|
|
@@ -2574,12 +2828,20 @@
|
|
|
2574
2828
|
"gpt-4.1",
|
|
2575
2829
|
"gpt-4.1-mini",
|
|
2576
2830
|
"gpt-4.1-nano",
|
|
2577
|
-
"gpt-4.5-preview",
|
|
2578
2831
|
"gpt-4-turbo",
|
|
2579
2832
|
"gpt-4-turbo-preview",
|
|
2580
2833
|
"gpt-4",
|
|
2581
2834
|
"gpt-3.5-turbo",
|
|
2582
|
-
"
|
|
2835
|
+
"gpt-5",
|
|
2836
|
+
"gpt-5-mini",
|
|
2837
|
+
"gpt-5-nano",
|
|
2838
|
+
"gpt-5-chat-latest",
|
|
2839
|
+
"o1",
|
|
2840
|
+
"o3-mini",
|
|
2841
|
+
"o3",
|
|
2842
|
+
"o3-pro",
|
|
2843
|
+
"o4-mini",
|
|
2844
|
+
"o4-mini-high"
|
|
2583
2845
|
],
|
|
2584
2846
|
"options_metadata": [],
|
|
2585
2847
|
"placeholder": "",
|
|
@@ -2630,6 +2892,68 @@
|
|
|
2630
2892
|
"type": "str",
|
|
2631
2893
|
"value": ""
|
|
2632
2894
|
},
|
|
2895
|
+
"output_schema": {
|
|
2896
|
+
"_input_type": "TableInput",
|
|
2897
|
+
"advanced": true,
|
|
2898
|
+
"display_name": "Output Schema",
|
|
2899
|
+
"dynamic": false,
|
|
2900
|
+
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
|
2901
|
+
"is_list": true,
|
|
2902
|
+
"list_add_label": "Add More",
|
|
2903
|
+
"name": "output_schema",
|
|
2904
|
+
"placeholder": "",
|
|
2905
|
+
"required": false,
|
|
2906
|
+
"show": true,
|
|
2907
|
+
"table_icon": "Table",
|
|
2908
|
+
"table_schema": [
|
|
2909
|
+
{
|
|
2910
|
+
"default": "field",
|
|
2911
|
+
"description": "Specify the name of the output field.",
|
|
2912
|
+
"display_name": "Name",
|
|
2913
|
+
"edit_mode": "inline",
|
|
2914
|
+
"name": "name",
|
|
2915
|
+
"type": "str"
|
|
2916
|
+
},
|
|
2917
|
+
{
|
|
2918
|
+
"default": "description of field",
|
|
2919
|
+
"description": "Describe the purpose of the output field.",
|
|
2920
|
+
"display_name": "Description",
|
|
2921
|
+
"edit_mode": "popover",
|
|
2922
|
+
"name": "description",
|
|
2923
|
+
"type": "str"
|
|
2924
|
+
},
|
|
2925
|
+
{
|
|
2926
|
+
"default": "str",
|
|
2927
|
+
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
|
2928
|
+
"display_name": "Type",
|
|
2929
|
+
"edit_mode": "inline",
|
|
2930
|
+
"name": "type",
|
|
2931
|
+
"options": [
|
|
2932
|
+
"str",
|
|
2933
|
+
"int",
|
|
2934
|
+
"float",
|
|
2935
|
+
"bool",
|
|
2936
|
+
"dict"
|
|
2937
|
+
],
|
|
2938
|
+
"type": "str"
|
|
2939
|
+
},
|
|
2940
|
+
{
|
|
2941
|
+
"default": "False",
|
|
2942
|
+
"description": "Set to True if this output field should be a list of the specified type.",
|
|
2943
|
+
"display_name": "As List",
|
|
2944
|
+
"edit_mode": "inline",
|
|
2945
|
+
"name": "multiple",
|
|
2946
|
+
"type": "boolean"
|
|
2947
|
+
}
|
|
2948
|
+
],
|
|
2949
|
+
"title_case": false,
|
|
2950
|
+
"tool_mode": false,
|
|
2951
|
+
"trace_as_metadata": true,
|
|
2952
|
+
"trigger_icon": "Table",
|
|
2953
|
+
"trigger_text": "Open table",
|
|
2954
|
+
"type": "table",
|
|
2955
|
+
"value": []
|
|
2956
|
+
},
|
|
2633
2957
|
"seed": {
|
|
2634
2958
|
"_input_type": "IntInput",
|
|
2635
2959
|
"advanced": true,
|
|
@@ -2809,7 +3133,7 @@
|
|
|
2809
3133
|
"icon": "trending-up",
|
|
2810
3134
|
"legacy": false,
|
|
2811
3135
|
"metadata": {
|
|
2812
|
-
"code_hash": "
|
|
3136
|
+
"code_hash": "d6bf628ab821",
|
|
2813
3137
|
"dependencies": {
|
|
2814
3138
|
"dependencies": [
|
|
2815
3139
|
{
|
|
@@ -2825,13 +3149,13 @@
|
|
|
2825
3149
|
"version": "2.10.6"
|
|
2826
3150
|
},
|
|
2827
3151
|
{
|
|
2828
|
-
"name": "
|
|
3152
|
+
"name": "lfx",
|
|
2829
3153
|
"version": null
|
|
2830
3154
|
}
|
|
2831
3155
|
],
|
|
2832
3156
|
"total_dependencies": 4
|
|
2833
3157
|
},
|
|
2834
|
-
"module": "
|
|
3158
|
+
"module": "lfx.components.yahoosearch.yahoo.YfinanceComponent"
|
|
2835
3159
|
},
|
|
2836
3160
|
"minimized": false,
|
|
2837
3161
|
"output_types": [],
|
|
@@ -2873,7 +3197,7 @@
|
|
|
2873
3197
|
"show": true,
|
|
2874
3198
|
"title_case": false,
|
|
2875
3199
|
"type": "code",
|
|
2876
|
-
"value": "import ast\nimport pprint\nfrom enum import Enum\n\nimport yfinance as yf\nfrom langchain_core.tools import ToolException\nfrom pydantic import BaseModel, Field\n\nfrom
|
|
3200
|
+
"value": "import ast\nimport pprint\nfrom enum import Enum\n\nimport yfinance as yf\nfrom langchain_core.tools import ToolException\nfrom pydantic import BaseModel, Field\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import DropdownInput, IntInput, MessageTextInput\nfrom lfx.io import Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\n\n\nclass YahooFinanceMethod(Enum):\n GET_INFO = \"get_info\"\n GET_NEWS = \"get_news\"\n GET_ACTIONS = \"get_actions\"\n GET_ANALYSIS = \"get_analysis\"\n GET_BALANCE_SHEET = \"get_balance_sheet\"\n GET_CALENDAR = \"get_calendar\"\n GET_CASHFLOW = \"get_cashflow\"\n GET_INSTITUTIONAL_HOLDERS = \"get_institutional_holders\"\n GET_RECOMMENDATIONS = \"get_recommendations\"\n GET_SUSTAINABILITY = \"get_sustainability\"\n GET_MAJOR_HOLDERS = \"get_major_holders\"\n GET_MUTUALFUND_HOLDERS = \"get_mutualfund_holders\"\n GET_INSIDER_PURCHASES = \"get_insider_purchases\"\n GET_INSIDER_TRANSACTIONS = \"get_insider_transactions\"\n GET_INSIDER_ROSTER_HOLDERS = \"get_insider_roster_holders\"\n GET_DIVIDENDS = \"get_dividends\"\n GET_CAPITAL_GAINS = \"get_capital_gains\"\n GET_SPLITS = \"get_splits\"\n GET_SHARES = \"get_shares\"\n GET_FAST_INFO = \"get_fast_info\"\n GET_SEC_FILINGS = \"get_sec_filings\"\n GET_RECOMMENDATIONS_SUMMARY = \"get_recommendations_summary\"\n GET_UPGRADES_DOWNGRADES = \"get_upgrades_downgrades\"\n GET_EARNINGS = \"get_earnings\"\n GET_INCOME_STMT = \"get_income_stmt\"\n\n\nclass YahooFinanceSchema(BaseModel):\n symbol: str = Field(..., description=\"The stock symbol to retrieve data for.\")\n method: YahooFinanceMethod = Field(YahooFinanceMethod.GET_INFO, description=\"The type of data to retrieve.\")\n num_news: int | None = Field(5, description=\"The number of news articles to retrieve.\")\n\n\nclass YfinanceComponent(Component):\n display_name = \"Yahoo! Finance\"\n description = \"\"\"Uses [yfinance](https://pypi.org/project/yfinance/) (unofficial package) \\\nto access financial data and market information from Yahoo! Finance.\"\"\"\n icon = \"trending-up\"\n\n inputs = [\n MessageTextInput(\n name=\"symbol\",\n display_name=\"Stock Symbol\",\n info=\"The stock symbol to retrieve data for (e.g., AAPL, GOOG).\",\n tool_mode=True,\n ),\n DropdownInput(\n name=\"method\",\n display_name=\"Data Method\",\n info=\"The type of data to retrieve.\",\n options=list(YahooFinanceMethod),\n value=\"get_news\",\n ),\n IntInput(\n name=\"num_news\",\n display_name=\"Number of News\",\n info=\"The number of news articles to retrieve (only applicable for get_news).\",\n value=5,\n ),\n ]\n\n outputs = [\n Output(display_name=\"DataFrame\", name=\"dataframe\", method=\"fetch_content_dataframe\"),\n ]\n\n def run_model(self) -> DataFrame:\n return self.fetch_content_dataframe()\n\n def _fetch_yfinance_data(self, ticker: yf.Ticker, method: YahooFinanceMethod, num_news: int | None) -> str:\n try:\n if method == YahooFinanceMethod.GET_INFO:\n result = ticker.info\n elif method == YahooFinanceMethod.GET_NEWS:\n result = ticker.news[:num_news]\n else:\n result = getattr(ticker, method.value)()\n return pprint.pformat(result)\n except Exception as e:\n error_message = f\"Error retrieving data: {e}\"\n logger.debug(error_message)\n self.status = error_message\n raise ToolException(error_message) from e\n\n def fetch_content(self) -> list[Data]:\n try:\n return self._yahoo_finance_tool(\n self.symbol,\n YahooFinanceMethod(self.method),\n self.num_news,\n )\n except ToolException:\n raise\n except Exception as e:\n error_message = f\"Unexpected error: {e}\"\n logger.debug(error_message)\n self.status = error_message\n raise ToolException(error_message) from e\n\n def _yahoo_finance_tool(\n self,\n symbol: str,\n method: YahooFinanceMethod,\n num_news: int | None = 5,\n ) -> list[Data]:\n ticker = yf.Ticker(symbol)\n result = self._fetch_yfinance_data(ticker, method, num_news)\n\n if method == YahooFinanceMethod.GET_NEWS:\n data_list = [\n Data(text=f\"{article['title']}: {article['link']}\", data=article)\n for article in ast.literal_eval(result)\n ]\n else:\n data_list = [Data(text=result, data={\"result\": result})]\n\n return data_list\n\n def fetch_content_dataframe(self) -> DataFrame:\n data = self.fetch_content()\n return DataFrame(data)\n"
|
|
2877
3201
|
},
|
|
2878
3202
|
"method": {
|
|
2879
3203
|
"_input_type": "DropdownInput",
|
|
@@ -3044,17 +3368,17 @@
|
|
|
3044
3368
|
"key": "CalculatorComponent",
|
|
3045
3369
|
"legacy": false,
|
|
3046
3370
|
"metadata": {
|
|
3047
|
-
"code_hash": "
|
|
3371
|
+
"code_hash": "5fcfa26be77d",
|
|
3048
3372
|
"dependencies": {
|
|
3049
3373
|
"dependencies": [
|
|
3050
3374
|
{
|
|
3051
|
-
"name": "
|
|
3375
|
+
"name": "lfx",
|
|
3052
3376
|
"version": null
|
|
3053
3377
|
}
|
|
3054
3378
|
],
|
|
3055
3379
|
"total_dependencies": 1
|
|
3056
3380
|
},
|
|
3057
|
-
"module": "
|
|
3381
|
+
"module": "lfx.components.helpers.calculator_core.CalculatorComponent"
|
|
3058
3382
|
},
|
|
3059
3383
|
"minimized": false,
|
|
3060
3384
|
"output_types": [],
|
|
@@ -3097,7 +3421,7 @@
|
|
|
3097
3421
|
"show": true,
|
|
3098
3422
|
"title_case": false,
|
|
3099
3423
|
"type": "code",
|
|
3100
|
-
"value": "import ast\nimport operator\nfrom collections.abc import Callable\n\nfrom
|
|
3424
|
+
"value": "import ast\nimport operator\nfrom collections.abc import Callable\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import MessageTextInput\nfrom lfx.io import Output\nfrom lfx.schema.data import Data\n\n\nclass CalculatorComponent(Component):\n display_name = \"Calculator\"\n description = \"Perform basic arithmetic operations on a given expression.\"\n documentation: str = \"https://docs.langflow.org/components-helpers#calculator\"\n icon = \"calculator\"\n\n # Cache operators dictionary as a class variable\n OPERATORS: dict[type[ast.operator], Callable] = {\n ast.Add: operator.add,\n ast.Sub: operator.sub,\n ast.Mult: operator.mul,\n ast.Div: operator.truediv,\n ast.Pow: operator.pow,\n }\n\n inputs = [\n MessageTextInput(\n name=\"expression\",\n display_name=\"Expression\",\n info=\"The arithmetic expression to evaluate (e.g., '4*4*(33/22)+12-20').\",\n tool_mode=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Data\", name=\"result\", type_=Data, method=\"evaluate_expression\"),\n ]\n\n def _eval_expr(self, node: ast.AST) -> float:\n \"\"\"Evaluate an AST node recursively.\"\"\"\n if isinstance(node, ast.Constant):\n if isinstance(node.value, int | float):\n return float(node.value)\n error_msg = f\"Unsupported constant type: {type(node.value).__name__}\"\n raise TypeError(error_msg)\n if isinstance(node, ast.Num): # For backwards compatibility\n if isinstance(node.n, int | float):\n return float(node.n)\n error_msg = f\"Unsupported number type: {type(node.n).__name__}\"\n raise TypeError(error_msg)\n\n if isinstance(node, ast.BinOp):\n op_type = type(node.op)\n if op_type not in self.OPERATORS:\n error_msg = f\"Unsupported binary operator: {op_type.__name__}\"\n raise TypeError(error_msg)\n\n left = self._eval_expr(node.left)\n right = self._eval_expr(node.right)\n return self.OPERATORS[op_type](left, right)\n\n error_msg = f\"Unsupported operation or expression type: {type(node).__name__}\"\n raise TypeError(error_msg)\n\n def evaluate_expression(self) -> Data:\n \"\"\"Evaluate the mathematical expression and return the result.\"\"\"\n try:\n tree = ast.parse(self.expression, mode=\"eval\")\n result = self._eval_expr(tree.body)\n\n formatted_result = f\"{float(result):.6f}\".rstrip(\"0\").rstrip(\".\")\n self.log(f\"Calculation result: {formatted_result}\")\n\n self.status = formatted_result\n return Data(data={\"result\": formatted_result})\n\n except ZeroDivisionError:\n error_message = \"Error: Division by zero\"\n self.status = error_message\n return Data(data={\"error\": error_message, \"input\": self.expression})\n\n except (SyntaxError, TypeError, KeyError, ValueError, AttributeError, OverflowError) as e:\n error_message = f\"Invalid expression: {e!s}\"\n self.status = error_message\n return Data(data={\"error\": error_message, \"input\": self.expression})\n\n def build(self):\n \"\"\"Return the main evaluation function.\"\"\"\n return self.evaluate_expression\n"
|
|
3101
3425
|
},
|
|
3102
3426
|
"expression": {
|
|
3103
3427
|
"_input_type": "MessageTextInput",
|
|
@@ -3210,7 +3534,7 @@
|
|
|
3210
3534
|
"icon": "TavilyIcon",
|
|
3211
3535
|
"legacy": false,
|
|
3212
3536
|
"metadata": {
|
|
3213
|
-
"code_hash": "
|
|
3537
|
+
"code_hash": "e602eaec8316",
|
|
3214
3538
|
"dependencies": {
|
|
3215
3539
|
"dependencies": [
|
|
3216
3540
|
{
|
|
@@ -3218,13 +3542,13 @@
|
|
|
3218
3542
|
"version": "0.28.1"
|
|
3219
3543
|
},
|
|
3220
3544
|
{
|
|
3221
|
-
"name": "
|
|
3545
|
+
"name": "lfx",
|
|
3222
3546
|
"version": null
|
|
3223
3547
|
}
|
|
3224
3548
|
],
|
|
3225
3549
|
"total_dependencies": 2
|
|
3226
3550
|
},
|
|
3227
|
-
"module": "
|
|
3551
|
+
"module": "lfx.components.tavily.tavily_search.TavilySearchComponent"
|
|
3228
3552
|
},
|
|
3229
3553
|
"minimized": false,
|
|
3230
3554
|
"output_types": [],
|
|
@@ -3301,7 +3625,7 @@
|
|
|
3301
3625
|
"show": true,
|
|
3302
3626
|
"title_case": false,
|
|
3303
3627
|
"type": "code",
|
|
3304
|
-
"value": "import httpx\n\nfrom
|
|
3628
|
+
"value": "import httpx\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.template.field.base import Output\n\n\nclass TavilySearchComponent(Component):\n display_name = \"Tavily Search API\"\n description = \"\"\"**Tavily Search** is a search engine optimized for LLMs and RAG, \\\n aimed at efficient, quick, and persistent search results.\"\"\"\n icon = \"TavilyIcon\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Tavily API Key\",\n required=True,\n info=\"Your Tavily API Key.\",\n ),\n MessageTextInput(\n name=\"query\",\n display_name=\"Search Query\",\n info=\"The search query you want to execute with Tavily.\",\n tool_mode=True,\n ),\n DropdownInput(\n name=\"search_depth\",\n display_name=\"Search Depth\",\n info=\"The depth of the search.\",\n options=[\"basic\", \"advanced\"],\n value=\"advanced\",\n advanced=True,\n ),\n IntInput(\n name=\"chunks_per_source\",\n display_name=\"Chunks Per Source\",\n info=(\"The number of content chunks to retrieve from each source (1-3). Only works with advanced search.\"),\n value=3,\n advanced=True,\n ),\n DropdownInput(\n name=\"topic\",\n display_name=\"Search Topic\",\n info=\"The category of the search.\",\n options=[\"general\", \"news\"],\n value=\"general\",\n advanced=True,\n ),\n IntInput(\n name=\"days\",\n display_name=\"Days\",\n info=\"Number of days back from current date to include. Only available with news topic.\",\n value=7,\n advanced=True,\n ),\n IntInput(\n name=\"max_results\",\n display_name=\"Max Results\",\n info=\"The maximum number of search results to return.\",\n value=5,\n advanced=True,\n ),\n BoolInput(\n name=\"include_answer\",\n display_name=\"Include Answer\",\n info=\"Include a short answer to original query.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"time_range\",\n display_name=\"Time Range\",\n info=\"The time range back from the current date to filter results.\",\n options=[\"day\", \"week\", \"month\", \"year\"],\n value=None, # Default to None to make it optional\n advanced=True,\n ),\n BoolInput(\n name=\"include_images\",\n display_name=\"Include Images\",\n info=\"Include a list of query-related images in the response.\",\n value=True,\n advanced=True,\n ),\n MessageTextInput(\n name=\"include_domains\",\n display_name=\"Include Domains\",\n info=\"Comma-separated list of domains to include in the search results.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"exclude_domains\",\n display_name=\"Exclude Domains\",\n info=\"Comma-separated list of domains to exclude from the search results.\",\n advanced=True,\n ),\n BoolInput(\n name=\"include_raw_content\",\n display_name=\"Include Raw Content\",\n info=\"Include the cleaned and parsed HTML content of each search result.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"DataFrame\", name=\"dataframe\", method=\"fetch_content_dataframe\"),\n ]\n\n def fetch_content(self) -> list[Data]:\n try:\n # Only process domains if they're provided\n include_domains = None\n exclude_domains = None\n\n if self.include_domains:\n include_domains = [domain.strip() for domain in self.include_domains.split(\",\") if domain.strip()]\n\n if self.exclude_domains:\n exclude_domains = [domain.strip() for domain in self.exclude_domains.split(\",\") if domain.strip()]\n\n url = \"https://api.tavily.com/search\"\n headers = {\n \"content-type\": \"application/json\",\n \"accept\": \"application/json\",\n }\n\n payload = {\n \"api_key\": self.api_key,\n \"query\": self.query,\n \"search_depth\": self.search_depth,\n \"topic\": self.topic,\n \"max_results\": self.max_results,\n \"include_images\": self.include_images,\n \"include_answer\": self.include_answer,\n \"include_raw_content\": self.include_raw_content,\n \"days\": self.days,\n \"time_range\": self.time_range,\n }\n\n # Only add domains to payload if they exist and have values\n if include_domains:\n payload[\"include_domains\"] = include_domains\n if exclude_domains:\n payload[\"exclude_domains\"] = exclude_domains\n\n # Add conditional parameters only if they should be included\n if self.search_depth == \"advanced\" and self.chunks_per_source:\n payload[\"chunks_per_source\"] = self.chunks_per_source\n\n if self.topic == \"news\" and self.days:\n payload[\"days\"] = int(self.days) # Ensure days is an integer\n\n # Add time_range if it's set\n if hasattr(self, \"time_range\") and self.time_range:\n payload[\"time_range\"] = self.time_range\n\n # Add timeout handling\n with httpx.Client(timeout=90.0) as client:\n response = client.post(url, json=payload, headers=headers)\n\n response.raise_for_status()\n search_results = response.json()\n\n data_results = []\n\n if self.include_answer and search_results.get(\"answer\"):\n data_results.append(Data(text=search_results[\"answer\"]))\n\n for result in search_results.get(\"results\", []):\n content = result.get(\"content\", \"\")\n result_data = {\n \"title\": result.get(\"title\"),\n \"url\": result.get(\"url\"),\n \"content\": content,\n \"score\": result.get(\"score\"),\n }\n if self.include_raw_content:\n result_data[\"raw_content\"] = result.get(\"raw_content\")\n\n data_results.append(Data(text=content, data=result_data))\n\n if self.include_images and search_results.get(\"images\"):\n data_results.append(Data(text=\"Images found\", data={\"images\": search_results[\"images\"]}))\n\n except httpx.TimeoutException:\n error_message = \"Request timed out (90s). Please try again or adjust parameters.\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except httpx.HTTPStatusError as exc:\n error_message = f\"HTTP error occurred: {exc.response.status_code} - {exc.response.text}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except httpx.RequestError as exc:\n error_message = f\"Request error occurred: {exc}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except ValueError as exc:\n error_message = f\"Invalid response format: {exc}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n else:\n self.status = data_results\n return data_results\n\n def fetch_content_dataframe(self) -> DataFrame:\n data = self.fetch_content()\n return DataFrame(data)\n"
|
|
3305
3629
|
},
|
|
3306
3630
|
"days": {
|
|
3307
3631
|
"_input_type": "IntInput",
|
|
@@ -3623,7 +3947,7 @@
|
|
|
3623
3947
|
"key": "ChatOutput",
|
|
3624
3948
|
"legacy": false,
|
|
3625
3949
|
"metadata": {
|
|
3626
|
-
"code_hash": "
|
|
3950
|
+
"code_hash": "9619107fecd1",
|
|
3627
3951
|
"dependencies": {
|
|
3628
3952
|
"dependencies": [
|
|
3629
3953
|
{
|
|
@@ -3635,13 +3959,13 @@
|
|
|
3635
3959
|
"version": "0.116.1"
|
|
3636
3960
|
},
|
|
3637
3961
|
{
|
|
3638
|
-
"name": "
|
|
3962
|
+
"name": "lfx",
|
|
3639
3963
|
"version": null
|
|
3640
3964
|
}
|
|
3641
3965
|
],
|
|
3642
3966
|
"total_dependencies": 3
|
|
3643
3967
|
},
|
|
3644
|
-
"module": "
|
|
3968
|
+
"module": "lfx.components.input_output.chat_output.ChatOutput"
|
|
3645
3969
|
},
|
|
3646
3970
|
"minimized": true,
|
|
3647
3971
|
"output_types": [],
|
|
@@ -3745,7 +4069,7 @@
|
|
|
3745
4069
|
"show": true,
|
|
3746
4070
|
"title_case": false,
|
|
3747
4071
|
"type": "code",
|
|
3748
|
-
"value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom
|
|
4072
|
+
"value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n info=\"Whether to clean the data\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, icon, display_name, source_id = self.get_properties_from_source_component()\n background_color = self.background_color\n text_color = self.text_color\n if self.chat_icon:\n icon = self.chat_icon\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n message.properties.icon = icon\n message.properties.background_color = background_color\n message.properties.text_color = text_color\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n return \"\\n\".join([safe_convert(item, clean_data=self.clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
|
|
3749
4073
|
},
|
|
3750
4074
|
"data_template": {
|
|
3751
4075
|
"_input_type": "MessageTextInput",
|