langflow-base-nightly 0.5.1.dev0__py3-none-any.whl → 0.5.1.dev2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. langflow/api/v1/endpoints.py +10 -7
  2. langflow/api/v1/schemas.py +5 -2
  3. langflow/base/knowledge_bases/__init__.py +0 -0
  4. langflow/components/agents/agent.py +1 -0
  5. langflow/components/data/__init__.py +0 -4
  6. langflow/components/datastax/__init__.py +2 -2
  7. langflow/components/knowledge_bases/__init__.py +34 -0
  8. langflow/components/{data/kb_ingest.py → knowledge_bases/ingestion.py} +23 -15
  9. langflow/components/{data/kb_retrieval.py → knowledge_bases/retrieval.py} +26 -22
  10. langflow/components/processing/dataframe_operations.py +12 -1
  11. langflow/frontend/assets/{SlackIcon-Cr3Q15Px.js → SlackIcon-Cc7Qnzki.js} +1 -1
  12. langflow/frontend/assets/{Wikipedia-GxM5sPdM.js → Wikipedia-7ulMZY46.js} +1 -1
  13. langflow/frontend/assets/{Wolfram-BN3-VOCA.js → Wolfram-By9PGsHS.js} +1 -1
  14. langflow/frontend/assets/{index-Kwdl-e29.js → index--e0oQqZh.js} +1 -1
  15. langflow/frontend/assets/{index-CD-PqGCY.js → index-3jlSQi5Y.js} +1 -1
  16. langflow/frontend/assets/{index-DQ7VYqQc.js → index-4JIEdyIM.js} +1 -1
  17. langflow/frontend/assets/{index-C9Cxnkl8.js → index-5-CSw2-z.js} +1 -1
  18. langflow/frontend/assets/{index-DUpri6zF.js → index-7yAHPRxv.js} +1 -1
  19. langflow/frontend/assets/{index-Dl5amdBz.js → index-9FL5xjkL.js} +1 -1
  20. langflow/frontend/assets/{index-X0guhYF8.js → index-AALDfCyt.js} +1 -1
  21. langflow/frontend/assets/{index-BLTxEeTi.js → index-AKVkmT4S.js} +1 -1
  22. langflow/frontend/assets/{index-CRcMqCIj.js → index-B3GvPjhD.js} +1 -1
  23. langflow/frontend/assets/{index-D14EWPyZ.js → index-B5LHnuQR.js} +1 -1
  24. langflow/frontend/assets/{index-C3yvArUT.js → index-BAn-AzCS.js} +1 -1
  25. langflow/frontend/assets/{index-CRPKJZw9.js → index-BCXhKCOK.js} +1 -1
  26. langflow/frontend/assets/{index-CuFXdTx4.js → index-BGt6jQ4x.js} +1 -1
  27. langflow/frontend/assets/{index-AWCSdofD.js → index-BH7AyHxp.js} +1 -1
  28. langflow/frontend/assets/{index-CBc8fEAE.js → index-BISPW-f6.js} +1 -1
  29. langflow/frontend/assets/{index-Bf0IYKLd.js → index-BIqEYjNT.js} +1 -1
  30. langflow/frontend/assets/{index-DiGWASY5.js → index-BLEWsL1U.js} +1 -1
  31. langflow/frontend/assets/{index-D-KY3kkq.js → index-BLXN681C.js} +1 -1
  32. langflow/frontend/assets/{index-C-Xfg4cD.js → index-BMpKFGhI.js} +1 -1
  33. langflow/frontend/assets/{index-BVwJDmw-.js → index-BMvp94tO.js} +1 -1
  34. langflow/frontend/assets/{index-3wW7BClE.js → index-BSwBVwyF.js} +1 -1
  35. langflow/frontend/assets/{index-Cewy7JZE.js → index-BWFIrwW1.js} +1 -1
  36. langflow/frontend/assets/{index-CiixOzDG.js → index-BWnKMRFJ.js} +1 -1
  37. langflow/frontend/assets/{index-BZcw4827.js → index-BX_asvRB.js} +1 -1
  38. langflow/frontend/assets/{index-CiR1dxI4.js → index-BZ-A4K98.js} +1 -1
  39. langflow/frontend/assets/{index-CpzXS6md.js → index-BZSa2qz7.js} +1 -1
  40. langflow/frontend/assets/{index-CdIf07Rw.js → index-B_kBTgxV.js} +1 -1
  41. langflow/frontend/assets/{index-ClsuDmR6.js → index-BdjfHsrf.js} +1 -1
  42. langflow/frontend/assets/{index-hbndqB9B.js → index-Bhcv5M0n.js} +1 -1
  43. langflow/frontend/assets/{index-dJWNxIRH.js → index-BhqVw9WQ.js} +1 -1
  44. langflow/frontend/assets/{index-Tw3Os-DN.js → index-Bl7RpmrB.js} +1 -1
  45. langflow/frontend/assets/{index-C-EdnFdA.js → index-BlDsBQ_1.js} +1 -1
  46. langflow/frontend/assets/{index-z3SRY-mX.js → index-Bm9i8F4W.js} +1 -1
  47. langflow/frontend/assets/{index-CMZ79X-Y.js → index-BnCnYnao.js} +1 -1
  48. langflow/frontend/assets/{index-DXRfN4HV.js → index-BrDz-PxE.js} +1 -1
  49. langflow/frontend/assets/{index-CVWQfRYZ.js → index-BsdLyYMY.js} +1 -1
  50. langflow/frontend/assets/{index-BTKOU4xC.js → index-BusCv3bR.js} +1 -1
  51. langflow/frontend/assets/{index-D2N3l-cw.js → index-BvRIG6P5.js} +1 -1
  52. langflow/frontend/assets/{index-DpVWih90.js → index-Bw-TIIC6.js} +1 -1
  53. langflow/frontend/assets/{index-D-1tA8Dt.js → index-ByxGmq5p.js} +1 -1
  54. langflow/frontend/assets/{index-BWYuQ2Sj.js → index-C-2MRYoJ.js} +1 -1
  55. langflow/frontend/assets/{index-CZqRL9DE.js → index-C-bjC2sz.js} +1 -1
  56. langflow/frontend/assets/{index-o0D2S7xW.js → index-C-wnbBBY.js} +1 -1
  57. langflow/frontend/assets/{index-D-_B1a8v.js → index-C51yNvIL.js} +1 -1
  58. langflow/frontend/assets/{index-DJP-ss47.js → index-C676MS3I.js} +1 -1
  59. langflow/frontend/assets/{index-lZX9AvZW.js → index-C6nzdeYx.js} +1 -1
  60. langflow/frontend/assets/{index-6pyH3ZJB.js → index-C8pI0lzi.js} +1 -1
  61. langflow/frontend/assets/{index-ovFJ_0J6.js → index-CDphUsa3.js} +1 -1
  62. langflow/frontend/assets/{index-J38wh62w.js → index-CF4_Og1m.js} +1 -1
  63. langflow/frontend/assets/{index-C1f2wMat.js → index-CJ5A6STv.js} +1 -1
  64. langflow/frontend/assets/{index-C3KequvP.js → index-CKPZpkQk.js} +1 -1
  65. langflow/frontend/assets/{index-BiKKN6FR.js → index-CLcaktde.js} +1 -1
  66. langflow/frontend/assets/{index-28oOcafk.js → index-CNh0rwur.js} +1 -1
  67. langflow/frontend/assets/{index-CGO1CiUr.js → index-COoTCxvs.js} +1 -1
  68. langflow/frontend/assets/{index-BC65VuWx.js → index-CPiM2oyj.js} +1 -1
  69. langflow/frontend/assets/{index-BWdLILDG.js → index-CQQ-4XMS.js} +1 -1
  70. langflow/frontend/assets/{index-pYJJOcma.js → index-CU16NJD7.js} +1 -1
  71. langflow/frontend/assets/{index-h_aSZHf3.js → index-CUzlcce2.js} +1 -1
  72. langflow/frontend/assets/{index-BrJV8psX.js → index-CVkIdc6y.js} +1 -1
  73. langflow/frontend/assets/{index-lTpteg8t.js → index-C_157Mb-.js} +1 -1
  74. langflow/frontend/assets/{index-Cyd2HtHK.js → index-C_MhBX6R.js} +1 -1
  75. langflow/frontend/assets/{index-DrDrcajG.js → index-C_NwzK6j.js} +1 -1
  76. langflow/frontend/assets/{index-DlD4dXlZ.js → index-Ca1b7Iag.js} +1 -1
  77. langflow/frontend/assets/{index-BS8Vo8nc.js → index-Cb5G9Ifd.js} +1 -1
  78. langflow/frontend/assets/{index-CH5UVA9b.js → index-CeswGUz3.js} +1 -1
  79. langflow/frontend/assets/{index-BCDSei1q.js → index-ChsGhZn3.js} +1 -1
  80. langflow/frontend/assets/{index-DiB3CTo8.js → index-CiklyQU3.js} +1 -1
  81. langflow/frontend/assets/{index-dcJ8-agu.js → index-Co__gFM1.js} +1 -1
  82. langflow/frontend/assets/{index-eo2mAtL-.js → index-Coi86oqP.js} +1 -1
  83. langflow/frontend/assets/{index-CBvrGgID.js → index-Cu2Xr6_j.js} +1 -1
  84. langflow/frontend/assets/{index-2wSXqBtB.js → index-Cu7vC48Y.js} +1 -1
  85. langflow/frontend/assets/{index-Bbi87Ve4.js → index-CvSoff-8.js} +1 -1
  86. langflow/frontend/assets/{index-DA6-bvgN.js → index-Cw0UComa.js} +1 -1
  87. langflow/frontend/assets/{index-CWPzZtSx.js → index-D-SnFlhU.js} +1 -1
  88. langflow/frontend/assets/{index-DHgomBdh.js → index-D-WStJI6.js} +1 -1
  89. langflow/frontend/assets/{index-BpxbUiZD.js → index-D234yKNJ.js} +186 -186
  90. langflow/frontend/assets/{index-BkXec1Yf.js → index-D5c2nNvp.js} +1 -1
  91. langflow/frontend/assets/{index-DwQEZe3C.js → index-DFY8YFbC.js} +1 -1
  92. langflow/frontend/assets/{index-Bief6eyJ.js → index-DJ6HD14g.js} +1 -1
  93. langflow/frontend/assets/{index-Bx7dBY26.js → index-DMCerPJM.js} +1 -1
  94. langflow/frontend/assets/{index-DDWBeudF.js → index-DOj_QWqG.js} +1 -1
  95. langflow/frontend/assets/{index-CmEYYRN1.js → index-DP1oE6QB.js} +1 -1
  96. langflow/frontend/assets/{index-C3ZjKdCD.js → index-DTCrijba.js} +1 -1
  97. langflow/frontend/assets/{index-CtVIONP2.js → index-DVLIDc2_.js} +1 -1
  98. langflow/frontend/assets/{index-DyJFTK24.js → index-DX7JcSMz.js} +1 -1
  99. langflow/frontend/assets/{index-DmeiHnfl.js → index-DZVgPCio.js} +1 -1
  100. langflow/frontend/assets/{index-BwLWcUXL.js → index-DbfS_UH-.js} +1 -1
  101. langflow/frontend/assets/{index-DV3utZDZ.js → index-DcApTyZ7.js} +1 -1
  102. langflow/frontend/assets/{index-DDcMAaG4.js → index-Deu8rlaZ.js} +1 -1
  103. langflow/frontend/assets/{index-iJngutFo.js → index-Df6psZEj.js} +1 -1
  104. langflow/frontend/assets/{index-CRPyCfYy.js → index-DiblXWmk.js} +1 -1
  105. langflow/frontend/assets/{index-CMzfJKiW.js → index-DjQElpEg.js} +1 -1
  106. langflow/frontend/assets/{index-Dmu-X5-4.js → index-DmVt5Jlx.js} +1 -1
  107. langflow/frontend/assets/{index-CPHEscq9.js → index-DmYLDQag.js} +1 -1
  108. langflow/frontend/assets/{index-BKseQQ2I.js → index-DnlVWWU8.js} +1 -1
  109. langflow/frontend/assets/{index-D5ETnvJa.js → index-Dp7ZQyL3.js} +1 -1
  110. langflow/frontend/assets/{index-Co20d-eQ.js → index-DpWrk8mA.js} +1 -1
  111. langflow/frontend/assets/{index-CVl6MbaM.js → index-DrXXKzpD.js} +1 -1
  112. langflow/frontend/assets/{index-OwPvCmpW.js → index-Drg8me2a.js} +1 -1
  113. langflow/frontend/assets/{index-CVwWoX99.js → index-DsEZjOcp.js} +1 -1
  114. langflow/frontend/assets/{index-DwPkMTaY.js → index-DznH7Jbq.js} +1 -1
  115. langflow/frontend/assets/{index-CNw1H-Wc.js → index-GzOGB_fo.js} +1 -1
  116. langflow/frontend/assets/{index-C3l0zYn0.js → index-MVW4HTEk.js} +1 -1
  117. langflow/frontend/assets/{index-DhtZ5hx8.js → index-OsUvqIUr.js} +1 -1
  118. langflow/frontend/assets/{index-B2ptVQGM.js → index-RH_I78z_.js} +1 -1
  119. langflow/frontend/assets/{index-DdtMEn6I.js → index-RjeC0kaX.js} +1 -1
  120. langflow/frontend/assets/{index-hG24k5xJ.js → index-S-sc0Cm9.js} +1 -1
  121. langflow/frontend/assets/{index-Bg5nrMRh.js → index-S8uJXTOq.js} +1 -1
  122. langflow/frontend/assets/{index-m8QA6VNM.js → index-SB4rw8D5.js} +1 -1
  123. langflow/frontend/assets/{index-Du-pc0KE.js → index-YJsAl7vm.js} +1 -1
  124. langflow/frontend/assets/{index-DfDhMHgQ.js → index-ZjeocHyu.js} +1 -1
  125. langflow/frontend/assets/{index-Bnl6QHtP.js → index-_szO7sta.js} +1 -1
  126. langflow/frontend/assets/{index-xvFOmxx4.js → index-aAgSKWb3.js} +1 -1
  127. langflow/frontend/assets/{index-Db9dYSzy.js → index-aWnZIwHd.js} +1 -1
  128. langflow/frontend/assets/{index-BJy50PvP.js → index-bMhyLtgS.js} +1 -1
  129. langflow/frontend/assets/{index-Cqpzl1J4.js → index-cYFKmtmg.js} +1 -1
  130. langflow/frontend/assets/{index-CLJeJYjH.js → index-hg2y9OAt.js} +1 -1
  131. langflow/frontend/assets/{index-D7kquVv2.js → index-jwzN3Jd_.js} +1 -1
  132. langflow/frontend/assets/{index-BiC280Nx.js → index-k9jP5chN.js} +1 -1
  133. langflow/frontend/assets/{index-B3TANVes.js → index-lnF9Eqr2.js} +1 -1
  134. langflow/frontend/assets/{index-B4yCvZKV.js → index-mjwtJmkP.js} +1 -1
  135. langflow/frontend/assets/{index-CfwLpbMM.js → index-nw3WF9lY.js} +1 -1
  136. langflow/frontend/assets/{index-CUVDws8F.js → index-qiVTWUuf.js} +1 -1
  137. langflow/frontend/assets/{index-DTqbvGC0.js → index-uybez8MR.js} +1 -1
  138. langflow/frontend/assets/{index-Dfe7qfvf.js → index-v8eXbWlM.js} +1 -1
  139. langflow/frontend/assets/{index-B2Zgv_xv.js → index-xN8ogFdo.js} +1 -1
  140. langflow/frontend/assets/{index-BRg1f4Mu.js → index-xV6ystWy.js} +1 -1
  141. langflow/frontend/assets/{index-sI75DsdM.js → index-yyAaYjLR.js} +1 -1
  142. langflow/frontend/assets/lazyIconImports-Ci-S9xBA.js +2 -0
  143. langflow/frontend/assets/{use-post-add-user-C0MdTpQ5.js → use-post-add-user-JUeLDErC.js} +1 -1
  144. langflow/frontend/index.html +1 -1
  145. langflow/initial_setup/starter_projects/Hybrid Search RAG.json +1280 -1276
  146. langflow/initial_setup/starter_projects/Instagram Copywriter.json +1 -1
  147. langflow/initial_setup/starter_projects/Invoice Summarizer.json +1 -1
  148. langflow/initial_setup/starter_projects/Knowledge Ingestion.json +46 -47
  149. langflow/initial_setup/starter_projects/Knowledge Retrieval.json +73 -56
  150. langflow/initial_setup/starter_projects/Market Research.json +1 -1
  151. langflow/initial_setup/starter_projects/News Aggregator.json +1 -1
  152. langflow/initial_setup/starter_projects/Nvidia Remix.json +1 -1
  153. langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +1 -1
  154. langflow/initial_setup/starter_projects/Price Deal Finder.json +1 -1
  155. langflow/initial_setup/starter_projects/Research Agent.json +1 -1
  156. langflow/initial_setup/starter_projects/SaaS Pricing.json +1 -1
  157. langflow/initial_setup/starter_projects/Search agent.json +1 -1
  158. langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +3 -3
  159. langflow/initial_setup/starter_projects/Simple Agent.json +1 -1
  160. langflow/initial_setup/starter_projects/Social Media Agent.json +1 -1
  161. langflow/initial_setup/starter_projects/Travel Planning Agents.json +3 -3
  162. langflow/initial_setup/starter_projects/Vector Store RAG.json +1093 -1108
  163. langflow/initial_setup/starter_projects/Youtube Analysis.json +1 -1
  164. langflow/services/auth/utils.py +78 -1
  165. langflow/services/settings/auth.py +4 -0
  166. {langflow_base_nightly-0.5.1.dev0.dist-info → langflow_base_nightly-0.5.1.dev2.dist-info}/METADATA +1 -1
  167. {langflow_base_nightly-0.5.1.dev0.dist-info → langflow_base_nightly-0.5.1.dev2.dist-info}/RECORD +171 -169
  168. langflow/frontend/assets/lazyIconImports-D97HEZkE.js +0 -2
  169. /langflow/base/{data/kb_utils.py → knowledge_bases/knowledge_base_utils.py} +0 -0
  170. /langflow/components/datastax/{astradb.py → astradb_vectorstore.py} +0 -0
  171. {langflow_base_nightly-0.5.1.dev0.dist-info → langflow_base_nightly-0.5.1.dev2.dist-info}/WHEEL +0 -0
  172. {langflow_base_nightly-0.5.1.dev0.dist-info → langflow_base_nightly-0.5.1.dev2.dist-info}/entry_points.txt +0 -0
@@ -905,7 +905,7 @@
905
905
  "show": true,
906
906
  "title_case": false,
907
907
  "type": "code",
908
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
908
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
909
909
  },
910
910
  "handle_parsing_errors": {
911
911
  "_input_type": "BoolInput",
@@ -7,7 +7,7 @@ from typing import TYPE_CHECKING, Annotated
7
7
  from uuid import UUID
8
8
 
9
9
  from cryptography.fernet import Fernet
10
- from fastapi import Depends, HTTPException, Security, WebSocketException, status
10
+ from fastapi import Depends, HTTPException, Request, Security, WebSocketException, status
11
11
  from fastapi.security import APIKeyHeader, APIKeyQuery, OAuth2PasswordBearer
12
12
  from jose import JWTError, jwt
13
13
  from sqlalchemy.exc import IntegrityError
@@ -259,6 +259,83 @@ async def get_current_active_superuser(current_user: Annotated[User, Depends(get
259
259
  return current_user
260
260
 
261
261
 
262
+ async def get_webhook_user(flow_id: str, request: Request) -> UserRead:
263
+ """Get the user for webhook execution.
264
+
265
+ When WEBHOOK_AUTH_ENABLE=false, allows execution as the flow owner without API key.
266
+ When WEBHOOK_AUTH_ENABLE=true, requires API key authentication and validates flow ownership.
267
+
268
+ Args:
269
+ flow_id: The ID of the flow being executed
270
+ request: The FastAPI request object
271
+
272
+ Returns:
273
+ UserRead: The user to execute the webhook as
274
+
275
+ Raises:
276
+ HTTPException: If authentication fails or user doesn't have permission
277
+ """
278
+ from langflow.helpers.user import get_user_by_flow_id_or_endpoint_name
279
+
280
+ settings_service = get_settings_service()
281
+
282
+ if not settings_service.auth_settings.WEBHOOK_AUTH_ENABLE:
283
+ # When webhook auth is disabled, run webhook as the flow owner without requiring API key
284
+ try:
285
+ flow_owner = await get_user_by_flow_id_or_endpoint_name(flow_id)
286
+ if flow_owner is None:
287
+ raise HTTPException(status_code=404, detail="Flow not found")
288
+ return flow_owner # noqa: TRY300
289
+ except HTTPException:
290
+ raise
291
+ except Exception as exc:
292
+ raise HTTPException(status_code=404, detail="Flow not found") from exc
293
+
294
+ # When webhook auth is enabled, require API key authentication
295
+ api_key_header_val = request.headers.get("x-api-key")
296
+ api_key_query_val = request.query_params.get("x-api-key")
297
+
298
+ # Check if API key is provided
299
+ if not api_key_header_val and not api_key_query_val:
300
+ raise HTTPException(status_code=403, detail="API key required when webhook authentication is enabled")
301
+
302
+ # Use the provided API key (prefer header over query param)
303
+ api_key = api_key_header_val or api_key_query_val
304
+
305
+ try:
306
+ # Validate API key directly without AUTO_LOGIN fallback
307
+ async with get_db_service().with_session() as db:
308
+ result = await check_key(db, api_key)
309
+ if not result:
310
+ logger.warning("Invalid API key provided for webhook")
311
+ raise HTTPException(status_code=403, detail="Invalid API key")
312
+
313
+ authenticated_user = UserRead.model_validate(result, from_attributes=True)
314
+ logger.info("Webhook API key validated successfully")
315
+ except HTTPException:
316
+ # Re-raise HTTP exceptions as-is
317
+ raise
318
+ except Exception as exc:
319
+ # Handle other exceptions
320
+ logger.error(f"Webhook API key validation error: {exc}")
321
+ raise HTTPException(status_code=403, detail="API key authentication failed") from exc
322
+
323
+ # Get flow owner to check if authenticated user owns this flow
324
+ try:
325
+ flow_owner = await get_user_by_flow_id_or_endpoint_name(flow_id)
326
+ if flow_owner is None:
327
+ raise HTTPException(status_code=404, detail="Flow not found")
328
+ except HTTPException:
329
+ raise
330
+ except Exception as exc:
331
+ raise HTTPException(status_code=404, detail="Flow not found") from exc
332
+
333
+ if flow_owner.id != authenticated_user.id:
334
+ raise HTTPException(status_code=403, detail="Access denied: You can only execute webhooks for flows you own")
335
+
336
+ return authenticated_user
337
+
338
+
262
339
  def verify_password(plain_password, hashed_password):
263
340
  settings_service = get_settings_service()
264
341
  return settings_service.auth_settings.pwd_context.verify(plain_password, hashed_password)
@@ -40,6 +40,10 @@ class AuthSettings(BaseSettings):
40
40
  """If True, the application will skip authentication when AUTO_LOGIN is enabled.
41
41
  This will be removed in v1.6"""
42
42
 
43
+ WEBHOOK_AUTH_ENABLE: bool = False
44
+ """If True, webhook endpoints will require API key authentication.
45
+ If False, webhooks run as flow owner without authentication."""
46
+
43
47
  ENABLE_SUPERUSER_CLI: bool = Field(
44
48
  default=True,
45
49
  description="Allow creation of superusers via CLI. Set to False in production for security.",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langflow-base-nightly
3
- Version: 0.5.1.dev0
3
+ Version: 0.5.1.dev2
4
4
  Summary: A Python package with a built-in web application
5
5
  Project-URL: Repository, https://github.com/langflow-ai/langflow
6
6
  Project-URL: Documentation, https://docs.langflow.org