langflow-base-nightly 0.5.0.dev37__py3-none-any.whl → 0.5.0.dev39__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langflow/__main__.py +1 -1
- langflow/alembic/versions/0882f9657f22_encrypt_existing_mcp_auth_settings_.py +122 -0
- langflow/alembic/versions/4e5980a44eaa_fix_date_times_again.py +24 -30
- langflow/alembic/versions/58b28437a398_modify_nullable.py +6 -6
- langflow/alembic/versions/79e675cb6752_change_datetime_type.py +24 -30
- langflow/alembic/versions/b2fa308044b5_add_unique_constraints.py +12 -13
- langflow/api/build.py +21 -26
- langflow/api/health_check_router.py +3 -3
- langflow/api/utils.py +3 -3
- langflow/api/v1/callback.py +2 -2
- langflow/api/v1/chat.py +19 -31
- langflow/api/v1/endpoints.py +10 -10
- langflow/api/v1/flows.py +1 -1
- langflow/api/v1/knowledge_bases.py +3 -3
- langflow/api/v1/mcp.py +12 -12
- langflow/api/v1/mcp_projects.py +405 -120
- langflow/api/v1/mcp_utils.py +8 -8
- langflow/api/v1/schemas.py +2 -7
- langflow/api/v1/store.py +1 -1
- langflow/api/v1/validate.py +2 -2
- langflow/api/v1/voice_mode.py +58 -62
- langflow/api/v2/files.py +2 -2
- langflow/api/v2/mcp.py +10 -9
- langflow/base/composio/composio_base.py +21 -2
- langflow/base/data/docling_utils.py +194 -0
- langflow/base/embeddings/aiml_embeddings.py +1 -1
- langflow/base/flow_processing/utils.py +1 -2
- langflow/base/io/__init__.py +0 -1
- langflow/base/langwatch/utils.py +2 -1
- langflow/base/mcp/util.py +49 -47
- langflow/base/prompts/api_utils.py +1 -1
- langflow/base/tools/flow_tool.py +2 -2
- langflow/base/tools/run_flow.py +2 -6
- langflow/components/FAISS/__init__.py +34 -0
- langflow/components/Notion/add_content_to_page.py +2 -2
- langflow/components/Notion/list_database_properties.py +2 -2
- langflow/components/Notion/list_pages.py +2 -2
- langflow/components/Notion/page_content_viewer.py +2 -2
- langflow/components/Notion/update_page_property.py +1 -1
- langflow/components/agentql/agentql_api.py +2 -10
- langflow/components/agents/agent.py +249 -55
- langflow/components/agents/mcp_component.py +14 -14
- langflow/components/anthropic/anthropic.py +5 -4
- langflow/components/assemblyai/assemblyai_get_subtitles.py +2 -2
- langflow/components/assemblyai/assemblyai_lemur.py +2 -2
- langflow/components/assemblyai/assemblyai_list_transcripts.py +2 -2
- langflow/components/assemblyai/assemblyai_poll_transcript.py +2 -2
- langflow/components/assemblyai/assemblyai_start_transcript.py +2 -2
- langflow/components/cassandra/__init__.py +40 -0
- langflow/components/chroma/__init__.py +34 -0
- langflow/components/clickhouse/__init__.py +34 -0
- langflow/components/couchbase/__init__.py +34 -0
- langflow/components/data/file.py +575 -55
- langflow/components/data/url.py +1 -1
- langflow/components/datastax/__init__.py +3 -3
- langflow/components/datastax/astra_assistant_manager.py +3 -3
- langflow/components/datastax/create_assistant.py +1 -2
- langflow/components/deactivated/merge_data.py +1 -2
- langflow/components/deactivated/sub_flow.py +6 -7
- langflow/components/deactivated/vectara_self_query.py +3 -3
- langflow/components/docling/__init__.py +0 -198
- langflow/components/docling/docling_inline.py +1 -1
- langflow/components/elastic/__init__.py +37 -0
- langflow/components/embeddings/text_embedder.py +3 -3
- langflow/components/firecrawl/firecrawl_extract_api.py +2 -9
- langflow/components/google/gmail.py +1 -1
- langflow/components/google/google_generative_ai.py +5 -11
- langflow/components/groq/groq.py +4 -3
- langflow/components/helpers/current_date.py +2 -3
- langflow/components/helpers/memory.py +1 -1
- langflow/components/ibm/watsonx.py +1 -1
- langflow/components/ibm/watsonx_embeddings.py +1 -1
- langflow/components/langwatch/langwatch.py +3 -3
- langflow/components/logic/flow_tool.py +2 -2
- langflow/components/logic/notify.py +1 -1
- langflow/components/logic/run_flow.py +2 -3
- langflow/components/logic/sub_flow.py +4 -5
- langflow/components/mem0/mem0_chat_memory.py +2 -8
- langflow/components/milvus/__init__.py +34 -0
- langflow/components/mongodb/__init__.py +34 -0
- langflow/components/nvidia/nvidia.py +3 -3
- langflow/components/olivya/olivya.py +7 -7
- langflow/components/ollama/ollama.py +9 -6
- langflow/components/perplexity/perplexity.py +3 -13
- langflow/components/pgvector/__init__.py +34 -0
- langflow/components/pinecone/__init__.py +34 -0
- langflow/components/processing/batch_run.py +8 -8
- langflow/components/processing/data_operations.py +2 -2
- langflow/components/processing/merge_data.py +1 -2
- langflow/components/processing/message_to_data.py +2 -3
- langflow/components/processing/parse_json_data.py +1 -1
- langflow/components/prototypes/python_function.py +2 -3
- langflow/components/qdrant/__init__.py +34 -0
- langflow/components/redis/__init__.py +36 -2
- langflow/components/redis/redis.py +75 -29
- langflow/components/redis/redis_chat.py +43 -0
- langflow/components/serpapi/serp.py +1 -1
- langflow/components/supabase/__init__.py +37 -0
- langflow/components/tavily/tavily_extract.py +1 -1
- langflow/components/tavily/tavily_search.py +1 -1
- langflow/components/tools/calculator.py +2 -2
- langflow/components/tools/python_code_structured_tool.py +3 -10
- langflow/components/tools/python_repl.py +2 -2
- langflow/components/tools/searxng.py +3 -3
- langflow/components/tools/serp_api.py +2 -2
- langflow/components/tools/tavily_search_tool.py +2 -2
- langflow/components/tools/yahoo_finance.py +1 -1
- langflow/components/twelvelabs/video_embeddings.py +4 -4
- langflow/components/upstash/__init__.py +34 -0
- langflow/components/vectara/__init__.py +37 -0
- langflow/components/vectorstores/__init__.py +0 -69
- langflow/components/vectorstores/local_db.py +2 -1
- langflow/components/weaviate/__init__.py +34 -0
- langflow/components/yahoosearch/yahoo.py +1 -1
- langflow/components/youtube/trending.py +3 -4
- langflow/custom/attributes.py +2 -1
- langflow/custom/code_parser/code_parser.py +1 -1
- langflow/custom/custom_component/base_component.py +1 -1
- langflow/custom/custom_component/component.py +16 -2
- langflow/custom/dependency_analyzer.py +165 -0
- langflow/custom/directory_reader/directory_reader.py +7 -7
- langflow/custom/directory_reader/utils.py +1 -2
- langflow/custom/utils.py +63 -45
- langflow/events/event_manager.py +1 -1
- langflow/frontend/assets/{SlackIcon-CnvyOamQ.js → SlackIcon-Cr3Q15Px.js} +1 -1
- langflow/frontend/assets/{Wikipedia-nyTEXdr2.js → Wikipedia-GxM5sPdM.js} +1 -1
- langflow/frontend/assets/{Wolfram-BYMQkNSq.js → Wolfram-BN3-VOCA.js} +1 -1
- langflow/frontend/assets/{index-DZTC5pdT.js → index-28oOcafk.js} +1 -1
- langflow/frontend/assets/{index-ChXJpBz4.js → index-2wSXqBtB.js} +1 -1
- langflow/frontend/assets/{index-BB15_iOb.js → index-3wW7BClE.js} +1 -1
- langflow/frontend/assets/{index-DKHNourL.js → index-6pyH3ZJB.js} +1 -1
- langflow/frontend/assets/{index-BvwZfF2i.js → index-AWCSdofD.js} +1 -1
- langflow/frontend/assets/{index-Bvxg4_ux.js → index-B2Zgv_xv.js} +1 -1
- langflow/frontend/assets/{index-Bd6WtbKA.js → index-B2ptVQGM.js} +1 -1
- langflow/frontend/assets/{index-C7QWbnLK.js → index-B3TANVes.js} +1 -1
- langflow/frontend/assets/{index-CpvYQ0ug.js → index-B4yCvZKV.js} +1 -1
- langflow/frontend/assets/{index-Dg-63Si_.js → index-BC65VuWx.js} +1 -1
- langflow/frontend/assets/{index-C6jri9Wm.js → index-BCDSei1q.js} +1 -1
- langflow/frontend/assets/{index-OazXJdEl.js → index-BJy50PvP.js} +1 -1
- langflow/frontend/assets/{index-CWdkbVsd.js → index-BKseQQ2I.js} +1 -1
- langflow/frontend/assets/{index-CaQ_H9ww.js → index-BLTxEeTi.js} +1 -1
- langflow/frontend/assets/{index-DGRMNe9n.js → index-BRg1f4Mu.js} +1 -1
- langflow/frontend/assets/{index-D8lOi1GI.js → index-BS8Vo8nc.js} +1 -1
- langflow/frontend/assets/{index-B748uLP1.js → index-BTKOU4xC.js} +1 -1
- langflow/frontend/assets/{index-Dqd4RjYA.js → index-BVwJDmw-.js} +1 -1
- langflow/frontend/assets/{index-DbMFlnHE.js → index-BWYuQ2Sj.js} +1 -1
- langflow/frontend/assets/{index-BEMw2Np8.js → index-BWdLILDG.js} +1 -1
- langflow/frontend/assets/{index-BmX5CoED.js → index-BZcw4827.js} +1 -1
- langflow/frontend/assets/{index-CyPvTB63.js → index-Bbi87Ve4.js} +1 -1
- langflow/frontend/assets/{index-BTEW9e8P.js → index-Bf0IYKLd.js} +1 -1
- langflow/frontend/assets/{index-BZgXW854.js → index-Bg5nrMRh.js} +1 -1
- langflow/frontend/assets/{index-BBxAPk1y.js → index-BiC280Nx.js} +1 -1
- langflow/frontend/assets/{index-BR0bkVqX.js → index-BiKKN6FR.js} +1 -1
- langflow/frontend/assets/{index-CTrt1Q_j.js → index-Bief6eyJ.js} +1 -1
- langflow/frontend/assets/{index-D5_DsUJc.js → index-BkXec1Yf.js} +1 -1
- langflow/frontend/assets/{index-CZQ9rXNa.js → index-Bnl6QHtP.js} +1 -1
- langflow/frontend/assets/{index-BChjg6Az.js → index-BpxbUiZD.js} +1979 -1979
- langflow/frontend/assets/{index-BOeo01QB.js → index-BrJV8psX.js} +1 -1
- langflow/frontend/assets/{index-DysKpOuj.js → index-BwLWcUXL.js} +1 -1
- langflow/frontend/assets/{index-Bnqod3vk.js → index-Bx7dBY26.js} +1 -1
- langflow/frontend/assets/{index-D3DDfngy.js → index-C-EdnFdA.js} +1 -1
- langflow/frontend/assets/{index-Bsa0xZyL.js → index-C-Xfg4cD.js} +1 -1
- langflow/frontend/assets/{index-BTrsh9LS.js → index-C1f2wMat.js} +1 -1
- langflow/frontend/assets/index-C1xroOlH.css +1 -0
- langflow/frontend/assets/{index-B1YN7oMV.js → index-C3KequvP.js} +1 -1
- langflow/frontend/assets/{index-DzW2mfkK.js → index-C3ZjKdCD.js} +1 -1
- langflow/frontend/assets/{index-ajRge-Mg.js → index-C3l0zYn0.js} +1 -1
- langflow/frontend/assets/{index-cvZdgWHQ.js → index-C3yvArUT.js} +1 -1
- langflow/frontend/assets/{index-C-2hghRJ.js → index-C9Cxnkl8.js} +1 -1
- langflow/frontend/assets/{index-BhIOhlCH.js → index-CBc8fEAE.js} +1 -1
- langflow/frontend/assets/{index-B3Sur4Z3.js → index-CBvrGgID.js} +1 -1
- langflow/frontend/assets/{index-CCePCqkT.js → index-CD-PqGCY.js} +1 -1
- langflow/frontend/assets/{index-8yMsjVV2.js → index-CGO1CiUr.js} +1 -1
- langflow/frontend/assets/{index-DF5VwgU6.js → index-CH5UVA9b.js} +1 -1
- langflow/frontend/assets/{index-dcnYpT9N.js → index-CLJeJYjH.js} +1 -1
- langflow/frontend/assets/{index-DfxYyS3M.js → index-CMZ79X-Y.js} +1 -1
- langflow/frontend/assets/{index-ya2uXE8v.js → index-CMzfJKiW.js} +1 -1
- langflow/frontend/assets/{index-DkelbYy7.js → index-CNw1H-Wc.js} +1 -1
- langflow/frontend/assets/{index-DytJENYD.js → index-CPHEscq9.js} +1 -1
- langflow/frontend/assets/{index-Bv8h2Z-q.js → index-CRPKJZw9.js} +1 -1
- langflow/frontend/assets/{index-D-9TI74R.js → index-CRPyCfYy.js} +1 -1
- langflow/frontend/assets/{index-BLGYN-9b.js → index-CRcMqCIj.js} +1 -1
- langflow/frontend/assets/{index-tVYiABdp.js → index-CUVDws8F.js} +1 -1
- langflow/frontend/assets/{index-CpcbQZIF.js → index-CVWQfRYZ.js} +1 -1
- langflow/frontend/assets/{index-DPCzHdsC.js → index-CVl6MbaM.js} +1 -1
- langflow/frontend/assets/{index-DkXy1WFo.js → index-CVwWoX99.js} +1 -1
- langflow/frontend/assets/{index-DK1Ptcc4.js → index-CWPzZtSx.js} +1 -1
- langflow/frontend/assets/{index-DHq8TQPB.js → index-CZqRL9DE.js} +1 -1
- langflow/frontend/assets/{index-DnEGCgih.js → index-CdIf07Rw.js} +1 -1
- langflow/frontend/assets/{index-BIQQCMvz.js → index-Cewy7JZE.js} +1 -1
- langflow/frontend/assets/{index-D8GJngXa.js → index-CfwLpbMM.js} +1 -1
- langflow/frontend/assets/{index-C_TdzfAn.js → index-CiR1dxI4.js} +1 -1
- langflow/frontend/assets/{index-BzL_EoKd.js → index-CiixOzDG.js} +1 -1
- langflow/frontend/assets/{index-Boso-xEw.js → index-ClsuDmR6.js} +1 -1
- langflow/frontend/assets/{index-8WdfSTTz.js → index-CmEYYRN1.js} +1 -1
- langflow/frontend/assets/{index-FUxmznS-.js → index-Co20d-eQ.js} +1 -1
- langflow/frontend/assets/{index-C82JjCPD.js → index-CpzXS6md.js} +1 -1
- langflow/frontend/assets/{index-DIDDfmlJ.js → index-Cqpzl1J4.js} +1 -1
- langflow/frontend/assets/{index-_UcqeEjm.js → index-CtVIONP2.js} +1 -1
- langflow/frontend/assets/{index-Gkrq-vzm.js → index-CuFXdTx4.js} +1 -1
- langflow/frontend/assets/{index-WPFivmdQ.js → index-Cyd2HtHK.js} +1 -1
- langflow/frontend/assets/{index-BFp_O-c9.js → index-D-1tA8Dt.js} +1 -1
- langflow/frontend/assets/{index-BqPpO6KG.js → index-D-KY3kkq.js} +1 -1
- langflow/frontend/assets/{index-Db71w3lq.js → index-D-_B1a8v.js} +1 -1
- langflow/frontend/assets/{index-BIzTEqFh.js → index-D14EWPyZ.js} +1 -1
- langflow/frontend/assets/{index-BbJjt5m4.js → index-D2N3l-cw.js} +1 -1
- langflow/frontend/assets/{index-DCRk27Tp.js → index-D5ETnvJa.js} +1 -1
- langflow/frontend/assets/{index-CvcEzq4x.js → index-D7kquVv2.js} +1 -1
- langflow/frontend/assets/{index-Q9vDw0Xl.js → index-DA6-bvgN.js} +1 -1
- langflow/frontend/assets/{index-l7bzB8Ex.js → index-DDWBeudF.js} +1 -1
- langflow/frontend/assets/{index-BCCGvqay.js → index-DDcMAaG4.js} +1 -1
- langflow/frontend/assets/{index-pCQ_yw8m.js → index-DHgomBdh.js} +1 -1
- langflow/frontend/assets/{index-BxEuHa76.js → index-DJP-ss47.js} +1 -1
- langflow/frontend/assets/{index-BbRm7beF.js → index-DQ7VYqQc.js} +1 -1
- langflow/frontend/assets/{index-Car-zdor.js → index-DTqbvGC0.js} +1 -1
- langflow/frontend/assets/{index-BRxvproo.js → index-DUpri6zF.js} +1 -1
- langflow/frontend/assets/{index-BQ6NUdMY.js → index-DV3utZDZ.js} +1 -1
- langflow/frontend/assets/{index-DjQETUy8.js → index-DXRfN4HV.js} +1 -1
- langflow/frontend/assets/{index-DfngcQxO.js → index-Db9dYSzy.js} +1 -1
- langflow/frontend/assets/{index-rXV1G1aB.js → index-DdtMEn6I.js} +1 -1
- langflow/frontend/assets/{index-DmMDPoi0.js → index-DfDhMHgQ.js} +1 -1
- langflow/frontend/assets/{index-DJB12jIC.js → index-Dfe7qfvf.js} +1 -1
- langflow/frontend/assets/{index-C_veJlEb.js → index-DhtZ5hx8.js} +1 -1
- langflow/frontend/assets/{index-CQMoqLAu.js → index-DiB3CTo8.js} +1 -1
- langflow/frontend/assets/{index-DVlceYFD.js → index-DiGWASY5.js} +1 -1
- langflow/frontend/assets/{index-Du_18NCU.js → index-Dl5amdBz.js} +1 -1
- langflow/frontend/assets/{index-CYDAYm-i.js → index-DlD4dXlZ.js} +1 -1
- langflow/frontend/assets/{index-CLPdN-q6.js → index-DmeiHnfl.js} +1 -1
- langflow/frontend/assets/index-Dmu-X5-4.js +1 -0
- langflow/frontend/assets/{index-BzEUlaw_.js → index-DpVWih90.js} +1 -1
- langflow/frontend/assets/{index-D6PSjHxP.js → index-DrDrcajG.js} +1 -1
- langflow/frontend/assets/{index-Dq5ilsem.js → index-Du-pc0KE.js} +1 -1
- langflow/frontend/assets/{index-CYe8Ipef.js → index-DwPkMTaY.js} +1 -1
- langflow/frontend/assets/{index-BVEZDXxS.js → index-DwQEZe3C.js} +1 -1
- langflow/frontend/assets/{index-BvT7L317.js → index-DyJFTK24.js} +1 -1
- langflow/frontend/assets/{index-HK3bVMYA.js → index-J38wh62w.js} +1 -1
- langflow/frontend/assets/{index-CCxGSSTT.js → index-Kwdl-e29.js} +1 -1
- langflow/frontend/assets/{index-BOB_zsjl.js → index-OwPvCmpW.js} +1 -1
- langflow/frontend/assets/{index-Dsps-jKu.js → index-Tw3Os-DN.js} +1 -1
- langflow/frontend/assets/{index-CFDvOtKC.js → index-X0guhYF8.js} +1 -1
- langflow/frontend/assets/{index-BX5D-USa.js → index-dJWNxIRH.js} +1 -1
- langflow/frontend/assets/{index-BRYjyhAd.js → index-dcJ8-agu.js} +1 -1
- langflow/frontend/assets/{index-Ui4xUImO.js → index-eo2mAtL-.js} +1 -1
- langflow/frontend/assets/{index-CxvP91st.js → index-hG24k5xJ.js} +1 -1
- langflow/frontend/assets/{index-CVQmT7ZL.js → index-h_aSZHf3.js} +1 -1
- langflow/frontend/assets/{index-BIXaW2aY.js → index-hbndqB9B.js} +1 -1
- langflow/frontend/assets/{index-DIkNW9Cd.js → index-iJngutFo.js} +1 -1
- langflow/frontend/assets/{index-BWmPX4iQ.js → index-lTpteg8t.js} +1 -1
- langflow/frontend/assets/{index-xuIrH2Dq.js → index-lZX9AvZW.js} +1 -1
- langflow/frontend/assets/{index-yCHsaqs8.js → index-m8QA6VNM.js} +1 -1
- langflow/frontend/assets/{index-BkPYpfgw.js → index-o0D2S7xW.js} +1 -1
- langflow/frontend/assets/{index-DpClkXIV.js → index-ovFJ_0J6.js} +1 -1
- langflow/frontend/assets/{index-CmplyEaa.js → index-pYJJOcma.js} +1 -1
- langflow/frontend/assets/{index-CJo_cyWW.js → index-sI75DsdM.js} +1 -1
- langflow/frontend/assets/{index-nVwHLjuV.js → index-xvFOmxx4.js} +1 -1
- langflow/frontend/assets/{index-LbYjHKkn.js → index-z3SRY-mX.js} +1 -1
- langflow/frontend/assets/lazyIconImports-D97HEZkE.js +2 -0
- langflow/frontend/assets/{use-post-add-user-BrBYH9eR.js → use-post-add-user-C0MdTpQ5.js} +1 -1
- langflow/frontend/index.html +2 -2
- langflow/graph/edge/base.py +2 -3
- langflow/graph/graph/base.py +15 -13
- langflow/graph/graph/constants.py +3 -0
- langflow/graph/utils.py +6 -6
- langflow/graph/vertex/base.py +4 -5
- langflow/graph/vertex/param_handler.py +1 -1
- langflow/graph/vertex/vertex_types.py +2 -2
- langflow/helpers/flow.py +1 -1
- langflow/initial_setup/setup.py +32 -30
- langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +26 -0
- langflow/initial_setup/starter_projects/Basic Prompting.json +26 -0
- langflow/initial_setup/starter_projects/Blog Writer.json +58 -2
- langflow/initial_setup/starter_projects/Custom Component Generator.json +37 -2
- langflow/initial_setup/starter_projects/Document Q&A.json +27 -1
- langflow/initial_setup/starter_projects/Financial Report Parser.json +43 -0
- langflow/initial_setup/starter_projects/Hybrid Search RAG.json +83 -1
- langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +43 -0
- langflow/initial_setup/starter_projects/Instagram Copywriter.json +51 -3
- langflow/initial_setup/starter_projects/Invoice Summarizer.json +40 -1
- langflow/initial_setup/starter_projects/Knowledge Ingestion.json +73 -2
- langflow/initial_setup/starter_projects/Knowledge Retrieval.json +63 -0
- langflow/initial_setup/starter_projects/Market Research.json +59 -3
- langflow/initial_setup/starter_projects/Meeting Summary.json +101 -6
- langflow/initial_setup/starter_projects/Memory Chatbot.json +37 -2
- langflow/initial_setup/starter_projects/News Aggregator.json +63 -3
- langflow/initial_setup/starter_projects/Nvidia Remix.json +69 -4
- langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +48 -1
- langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +44 -1
- langflow/initial_setup/starter_projects/Price Deal Finder.json +57 -5
- langflow/initial_setup/starter_projects/Research Agent.json +42 -3
- langflow/initial_setup/starter_projects/Research Translation Loop.json +66 -0
- langflow/initial_setup/starter_projects/SEO Keyword Generator.json +17 -0
- langflow/initial_setup/starter_projects/SaaS Pricing.json +27 -1
- langflow/initial_setup/starter_projects/Search agent.json +40 -1
- langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +76 -7
- langflow/initial_setup/starter_projects/Simple Agent.json +59 -3
- langflow/initial_setup/starter_projects/Social Media Agent.json +77 -1
- langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +35 -1
- langflow/initial_setup/starter_projects/Travel Planning Agents.json +51 -3
- langflow/initial_setup/starter_projects/Twitter Thread Generator.json +80 -0
- langflow/initial_setup/starter_projects/Vector Store RAG.json +110 -3
- langflow/initial_setup/starter_projects/Youtube Analysis.json +84 -3
- langflow/initial_setup/starter_projects/vector_store_rag.py +1 -1
- langflow/interface/components.py +23 -22
- langflow/interface/initialize/loading.py +5 -5
- langflow/interface/run.py +1 -1
- langflow/interface/utils.py +1 -1
- langflow/io/__init__.py +0 -1
- langflow/langflow_launcher.py +1 -1
- langflow/load/load.py +2 -7
- langflow/logging/__init__.py +0 -1
- langflow/logging/logger.py +191 -115
- langflow/logging/setup.py +1 -1
- langflow/main.py +37 -52
- langflow/memory.py +7 -7
- langflow/middleware.py +1 -1
- langflow/processing/process.py +6 -3
- langflow/schema/artifact.py +2 -2
- langflow/schema/data.py +10 -2
- langflow/schema/dataframe.py +1 -1
- langflow/schema/message.py +1 -1
- langflow/serialization/serialization.py +1 -1
- langflow/services/auth/mcp_encryption.py +104 -0
- langflow/services/auth/utils.py +2 -2
- langflow/services/cache/disk.py +1 -1
- langflow/services/cache/service.py +3 -3
- langflow/services/database/models/flow/model.py +2 -7
- langflow/services/database/models/transactions/crud.py +2 -2
- langflow/services/database/models/user/crud.py +2 -2
- langflow/services/database/service.py +8 -8
- langflow/services/database/utils.py +6 -5
- langflow/services/deps.py +2 -3
- langflow/services/factory.py +1 -1
- langflow/services/flow/flow_runner.py +7 -12
- langflow/services/job_queue/service.py +16 -15
- langflow/services/manager.py +3 -4
- langflow/services/settings/auth.py +1 -1
- langflow/services/settings/base.py +3 -8
- langflow/services/settings/feature_flags.py +1 -1
- langflow/services/settings/manager.py +1 -1
- langflow/services/settings/utils.py +1 -1
- langflow/services/socket/__init__.py +0 -1
- langflow/services/socket/service.py +3 -3
- langflow/services/socket/utils.py +4 -4
- langflow/services/state/service.py +1 -2
- langflow/services/storage/factory.py +1 -1
- langflow/services/storage/local.py +9 -8
- langflow/services/storage/s3.py +11 -10
- langflow/services/store/service.py +3 -3
- langflow/services/store/utils.py +3 -2
- langflow/services/task/temp_flow_cleanup.py +7 -7
- langflow/services/telemetry/service.py +10 -10
- langflow/services/tracing/arize_phoenix.py +2 -2
- langflow/services/tracing/langfuse.py +1 -1
- langflow/services/tracing/langsmith.py +1 -1
- langflow/services/tracing/langwatch.py +1 -1
- langflow/services/tracing/opik.py +1 -1
- langflow/services/tracing/service.py +25 -6
- langflow/services/tracing/traceloop.py +245 -0
- langflow/services/utils.py +7 -7
- langflow/services/variable/kubernetes.py +3 -3
- langflow/services/variable/kubernetes_secrets.py +2 -1
- langflow/services/variable/service.py +5 -5
- langflow/utils/component_utils.py +9 -6
- langflow/utils/util.py +5 -5
- langflow/utils/validate.py +3 -3
- langflow/utils/voice_utils.py +2 -2
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/METADATA +2 -1
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/RECORD +393 -374
- langflow/components/vectorstores/redis.py +0 -89
- langflow/frontend/assets/index-C26RqKWL.js +0 -1
- langflow/frontend/assets/index-CqS7zir1.css +0 -1
- langflow/frontend/assets/lazyIconImports-t6wEndt1.js +0 -2
- /langflow/components/{vectorstores → FAISS}/faiss.py +0 -0
- /langflow/components/{vectorstores → cassandra}/cassandra.py +0 -0
- /langflow/components/{datastax/cassandra.py → cassandra/cassandra_chat.py} +0 -0
- /langflow/components/{vectorstores → cassandra}/cassandra_graph.py +0 -0
- /langflow/components/{vectorstores → chroma}/chroma.py +0 -0
- /langflow/components/{vectorstores → clickhouse}/clickhouse.py +0 -0
- /langflow/components/{vectorstores → couchbase}/couchbase.py +0 -0
- /langflow/components/{vectorstores → datastax}/astradb.py +0 -0
- /langflow/components/{vectorstores → datastax}/astradb_graph.py +0 -0
- /langflow/components/{vectorstores → datastax}/graph_rag.py +0 -0
- /langflow/components/{vectorstores → datastax}/hcd.py +0 -0
- /langflow/components/{vectorstores → elastic}/elasticsearch.py +0 -0
- /langflow/components/{vectorstores → elastic}/opensearch.py +0 -0
- /langflow/components/{vectorstores → milvus}/milvus.py +0 -0
- /langflow/components/{vectorstores → mongodb}/mongodb_atlas.py +0 -0
- /langflow/components/{vectorstores → pgvector}/pgvector.py +0 -0
- /langflow/components/{vectorstores → pinecone}/pinecone.py +0 -0
- /langflow/components/{vectorstores → qdrant}/qdrant.py +0 -0
- /langflow/components/{vectorstores → supabase}/supabase.py +0 -0
- /langflow/components/{vectorstores → upstash}/upstash.py +0 -0
- /langflow/components/{vectorstores → vectara}/vectara.py +0 -0
- /langflow/components/{vectorstores → vectara}/vectara_rag.py +0 -0
- /langflow/components/{vectorstores → weaviate}/weaviate.py +0 -0
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/WHEEL +0 -0
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/entry_points.txt +0 -0
|
@@ -149,6 +149,15 @@
|
|
|
149
149
|
"lf_version": "1.4.3",
|
|
150
150
|
"metadata": {
|
|
151
151
|
"code_hash": "192913db3453",
|
|
152
|
+
"dependencies": {
|
|
153
|
+
"dependencies": [
|
|
154
|
+
{
|
|
155
|
+
"name": "langflow",
|
|
156
|
+
"version": null
|
|
157
|
+
}
|
|
158
|
+
],
|
|
159
|
+
"total_dependencies": 1
|
|
160
|
+
},
|
|
152
161
|
"module": "langflow.components.input_output.chat.ChatInput"
|
|
153
162
|
},
|
|
154
163
|
"output_types": [],
|
|
@@ -458,6 +467,23 @@
|
|
|
458
467
|
"lf_version": "1.4.3",
|
|
459
468
|
"metadata": {
|
|
460
469
|
"code_hash": "6f74e04e39d5",
|
|
470
|
+
"dependencies": {
|
|
471
|
+
"dependencies": [
|
|
472
|
+
{
|
|
473
|
+
"name": "orjson",
|
|
474
|
+
"version": "3.10.15"
|
|
475
|
+
},
|
|
476
|
+
{
|
|
477
|
+
"name": "fastapi",
|
|
478
|
+
"version": "0.115.13"
|
|
479
|
+
},
|
|
480
|
+
{
|
|
481
|
+
"name": "langflow",
|
|
482
|
+
"version": null
|
|
483
|
+
}
|
|
484
|
+
],
|
|
485
|
+
"total_dependencies": 3
|
|
486
|
+
},
|
|
461
487
|
"module": "langflow.components.input_output.chat_output.ChatOutput"
|
|
462
488
|
},
|
|
463
489
|
"output_types": [],
|
|
@@ -959,7 +985,16 @@
|
|
|
959
985
|
"legacy": false,
|
|
960
986
|
"lf_version": "1.4.3",
|
|
961
987
|
"metadata": {
|
|
962
|
-
"code_hash": "
|
|
988
|
+
"code_hash": "464cc8b8fdd2",
|
|
989
|
+
"dependencies": {
|
|
990
|
+
"dependencies": [
|
|
991
|
+
{
|
|
992
|
+
"name": "langflow",
|
|
993
|
+
"version": null
|
|
994
|
+
}
|
|
995
|
+
],
|
|
996
|
+
"total_dependencies": 1
|
|
997
|
+
},
|
|
963
998
|
"module": "langflow.components.helpers.memory.MemoryComponent"
|
|
964
999
|
},
|
|
965
1000
|
"minimized": false,
|
|
@@ -1014,7 +1049,7 @@
|
|
|
1014
1049
|
"show": true,
|
|
1015
1050
|
"title_case": false,
|
|
1016
1051
|
"type": "code",
|
|
1017
|
-
"value": "from typing import Any, cast\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.helpers.data import data_to_text\nfrom langflow.inputs.inputs import DropdownInput, HandleInput, IntInput, MessageTextInput, MultilineInput, TabInput\nfrom langflow.memory import aget_messages, astore_message\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.template.field.base import Output\nfrom langflow.utils.component_utils import set_current_fields, set_field_display\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass MemoryComponent(Component):\n display_name = \"Message History\"\n description = \"Stores or retrieves stored chat messages from Langflow tables or an external memory.\"\n documentation: str = \"https://docs.langflow.org/components-helpers#message-history\"\n icon = \"message-square-more\"\n name = \"Memory\"\n default_keys = [\"mode\", \"memory\"]\n mode_config = {\n \"Store\": [\"message\", \"memory\", \"sender\", \"sender_name\", \"session_id\"],\n \"Retrieve\": [\"n_messages\", \"order\", \"template\", \"memory\"],\n }\n\n inputs = [\n TabInput(\n name=\"mode\",\n display_name=\"Mode\",\n options=[\"Retrieve\", \"Store\"],\n value=\"Retrieve\",\n info=\"Operation mode: Store messages or Retrieve messages.\",\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"message\",\n display_name=\"Message\",\n info=\"The chat message to be stored.\",\n tool_mode=True,\n dynamic=True,\n show=False,\n ),\n HandleInput(\n name=\"memory\",\n display_name=\"External Memory\",\n input_types=[\"Memory\"],\n info=\"Retrieve messages from an external memory. If empty, it will use the Langflow tables.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"sender_type\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER, \"Machine and User\"],\n value=\"Machine and User\",\n info=\"Filter by sender type.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender\",\n display_name=\"Sender\",\n info=\"The sender of the message. Might be Machine or User. \"\n \"If empty, the current sender parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Filter by sender name.\",\n advanced=True,\n show=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Messages\",\n value=100,\n info=\"Number of messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n value=\"\",\n advanced=True,\n ),\n DropdownInput(\n name=\"order\",\n display_name=\"Order\",\n options=[\"Ascending\", \"Descending\"],\n value=\"Ascending\",\n info=\"Order of the messages.\",\n advanced=True,\n tool_mode=True,\n required=True,\n ),\n MultilineInput(\n name=\"template\",\n display_name=\"Template\",\n info=\"The template to use for formatting the data. \"\n \"It can contain the keys {text}, {sender} or any other key in the message data.\",\n value=\"{sender_name}: {text}\",\n advanced=True,\n show=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Message\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True),\n Output(display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True),\n ]\n\n def update_outputs(self, frontend_node: dict, field_name: str, field_value: Any) -> dict:\n \"\"\"Dynamically show only the relevant output based on the selected output type.\"\"\"\n if field_name == \"mode\":\n # Start with empty outputs\n frontend_node[\"outputs\"] = []\n if field_value == \"Store\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Stored Messages\",\n name=\"stored_messages\",\n method=\"store_message\",\n hidden=True,\n dynamic=True,\n )\n ]\n if field_value == \"Retrieve\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Messages\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True\n ),\n Output(\n display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True\n ),\n ]\n return frontend_node\n\n async def store_message(self) -> Message:\n message = Message(text=self.message) if isinstance(self.message, str) else self.message\n\n message.session_id = self.session_id or message.session_id\n message.sender = self.sender or message.sender or MESSAGE_SENDER_AI\n message.sender_name = self.sender_name or message.sender_name or MESSAGE_SENDER_NAME_AI\n\n stored_messages: list[Message] = []\n\n if self.memory:\n self.memory.session_id = message.session_id\n lc_message = message.to_lc_message()\n await self.memory.aadd_messages([lc_message])\n\n stored_messages = await self.memory.aget_messages() or []\n\n stored_messages = [Message.from_lc_message(m) for m in stored_messages] if stored_messages else []\n\n if message.sender:\n stored_messages = [m for m in stored_messages if m.sender == message.sender]\n else:\n await astore_message(message, flow_id=self.graph.flow_id)\n stored_messages = (\n await aget_messages(\n session_id=message.session_id, sender_name=message.sender_name, sender=message.sender\n )\n or []\n )\n\n if not stored_messages:\n msg = \"No messages were stored. Please ensure that the session ID and sender are properly set.\"\n raise ValueError(msg)\n\n stored_message = stored_messages[0]\n self.status = stored_message\n return stored_message\n\n async def retrieve_messages(self) -> Data:\n sender_type = self.sender_type\n sender_name = self.sender_name\n session_id = self.session_id\n n_messages = self.n_messages\n order = \"DESC\" if self.order == \"Descending\" else \"ASC\"\n\n if sender_type == \"Machine and User\":\n sender_type = None\n\n if self.memory and not hasattr(self.memory, \"aget_messages\"):\n memory_name = type(self.memory).__name__\n err_msg = f\"External Memory object ({memory_name}) must have 'aget_messages' method.\"\n raise AttributeError(err_msg)\n # Check if n_messages is None or 0\n if n_messages == 0:\n stored = []\n elif self.memory:\n # override session_id\n self.memory.session_id = session_id\n\n stored = await self.memory.aget_messages()\n # langchain memories are supposed to return messages in ascending order\n\n if order == \"DESC\":\n stored = stored[::-1]\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n stored = [Message.from_lc_message(m) for m in stored]\n if sender_type:\n expected_type = MESSAGE_SENDER_AI if sender_type == MESSAGE_SENDER_AI else MESSAGE_SENDER_USER\n stored = [m for m in stored if m.type == expected_type]\n else:\n # For internal memory, we always fetch the last N messages by ordering by DESC\n stored = await aget_messages(\n sender=sender_type,\n sender_name=sender_name,\n session_id=session_id,\n limit=10000,\n order=order,\n )\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n\n # self.status = stored\n return cast(Data, stored)\n\n async def retrieve_messages_as_text(self) -> Message:\n stored_text = data_to_text(self.template, await self.retrieve_messages())\n # self.status = stored_text\n return Message(text=stored_text)\n\n async def retrieve_messages_dataframe(self) -> DataFrame:\n \"\"\"Convert the retrieved messages into a DataFrame.\n\n Returns:\n DataFrame: A DataFrame containing the message data.\n \"\"\"\n messages = await self.retrieve_messages()\n return DataFrame(messages)\n\n def update_build_config(\n self,\n build_config: dotdict,\n field_value: Any, # noqa: ARG002\n field_name: str | None = None, # noqa: ARG002\n ) -> dotdict:\n return set_current_fields(\n build_config=build_config,\n action_fields=self.mode_config,\n selected_action=build_config[\"mode\"][\"value\"],\n default_fields=self.default_keys,\n func=set_field_display,\n )\n"
|
|
1052
|
+
"value": "from typing import Any, cast\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.helpers.data import data_to_text\nfrom langflow.inputs.inputs import DropdownInput, HandleInput, IntInput, MessageTextInput, MultilineInput, TabInput\nfrom langflow.memory import aget_messages, astore_message\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.template.field.base import Output\nfrom langflow.utils.component_utils import set_current_fields, set_field_display\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass MemoryComponent(Component):\n display_name = \"Message History\"\n description = \"Stores or retrieves stored chat messages from Langflow tables or an external memory.\"\n documentation: str = \"https://docs.langflow.org/components-helpers#message-history\"\n icon = \"message-square-more\"\n name = \"Memory\"\n default_keys = [\"mode\", \"memory\"]\n mode_config = {\n \"Store\": [\"message\", \"memory\", \"sender\", \"sender_name\", \"session_id\"],\n \"Retrieve\": [\"n_messages\", \"order\", \"template\", \"memory\"],\n }\n\n inputs = [\n TabInput(\n name=\"mode\",\n display_name=\"Mode\",\n options=[\"Retrieve\", \"Store\"],\n value=\"Retrieve\",\n info=\"Operation mode: Store messages or Retrieve messages.\",\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"message\",\n display_name=\"Message\",\n info=\"The chat message to be stored.\",\n tool_mode=True,\n dynamic=True,\n show=False,\n ),\n HandleInput(\n name=\"memory\",\n display_name=\"External Memory\",\n input_types=[\"Memory\"],\n info=\"Retrieve messages from an external memory. If empty, it will use the Langflow tables.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"sender_type\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER, \"Machine and User\"],\n value=\"Machine and User\",\n info=\"Filter by sender type.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender\",\n display_name=\"Sender\",\n info=\"The sender of the message. Might be Machine or User. \"\n \"If empty, the current sender parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Filter by sender name.\",\n advanced=True,\n show=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Messages\",\n value=100,\n info=\"Number of messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n value=\"\",\n advanced=True,\n ),\n DropdownInput(\n name=\"order\",\n display_name=\"Order\",\n options=[\"Ascending\", \"Descending\"],\n value=\"Ascending\",\n info=\"Order of the messages.\",\n advanced=True,\n tool_mode=True,\n required=True,\n ),\n MultilineInput(\n name=\"template\",\n display_name=\"Template\",\n info=\"The template to use for formatting the data. \"\n \"It can contain the keys {text}, {sender} or any other key in the message data.\",\n value=\"{sender_name}: {text}\",\n advanced=True,\n show=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Message\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True),\n Output(display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True),\n ]\n\n def update_outputs(self, frontend_node: dict, field_name: str, field_value: Any) -> dict:\n \"\"\"Dynamically show only the relevant output based on the selected output type.\"\"\"\n if field_name == \"mode\":\n # Start with empty outputs\n frontend_node[\"outputs\"] = []\n if field_value == \"Store\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Stored Messages\",\n name=\"stored_messages\",\n method=\"store_message\",\n hidden=True,\n dynamic=True,\n )\n ]\n if field_value == \"Retrieve\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Messages\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True\n ),\n Output(\n display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True\n ),\n ]\n return frontend_node\n\n async def store_message(self) -> Message:\n message = Message(text=self.message) if isinstance(self.message, str) else self.message\n\n message.session_id = self.session_id or message.session_id\n message.sender = self.sender or message.sender or MESSAGE_SENDER_AI\n message.sender_name = self.sender_name or message.sender_name or MESSAGE_SENDER_NAME_AI\n\n stored_messages: list[Message] = []\n\n if self.memory:\n self.memory.session_id = message.session_id\n lc_message = message.to_lc_message()\n await self.memory.aadd_messages([lc_message])\n\n stored_messages = await self.memory.aget_messages() or []\n\n stored_messages = [Message.from_lc_message(m) for m in stored_messages] if stored_messages else []\n\n if message.sender:\n stored_messages = [m for m in stored_messages if m.sender == message.sender]\n else:\n await astore_message(message, flow_id=self.graph.flow_id)\n stored_messages = (\n await aget_messages(\n session_id=message.session_id, sender_name=message.sender_name, sender=message.sender\n )\n or []\n )\n\n if not stored_messages:\n msg = \"No messages were stored. Please ensure that the session ID and sender are properly set.\"\n raise ValueError(msg)\n\n stored_message = stored_messages[0]\n self.status = stored_message\n return stored_message\n\n async def retrieve_messages(self) -> Data:\n sender_type = self.sender_type\n sender_name = self.sender_name\n session_id = self.session_id\n n_messages = self.n_messages\n order = \"DESC\" if self.order == \"Descending\" else \"ASC\"\n\n if sender_type == \"Machine and User\":\n sender_type = None\n\n if self.memory and not hasattr(self.memory, \"aget_messages\"):\n memory_name = type(self.memory).__name__\n err_msg = f\"External Memory object ({memory_name}) must have 'aget_messages' method.\"\n raise AttributeError(err_msg)\n # Check if n_messages is None or 0\n if n_messages == 0:\n stored = []\n elif self.memory:\n # override session_id\n self.memory.session_id = session_id\n\n stored = await self.memory.aget_messages()\n # langchain memories are supposed to return messages in ascending order\n\n if order == \"DESC\":\n stored = stored[::-1]\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n stored = [Message.from_lc_message(m) for m in stored]\n if sender_type:\n expected_type = MESSAGE_SENDER_AI if sender_type == MESSAGE_SENDER_AI else MESSAGE_SENDER_USER\n stored = [m for m in stored if m.type == expected_type]\n else:\n # For internal memory, we always fetch the last N messages by ordering by DESC\n stored = await aget_messages(\n sender=sender_type,\n sender_name=sender_name,\n session_id=session_id,\n limit=10000,\n order=order,\n )\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n\n # self.status = stored\n return cast(\"Data\", stored)\n\n async def retrieve_messages_as_text(self) -> Message:\n stored_text = data_to_text(self.template, await self.retrieve_messages())\n # self.status = stored_text\n return Message(text=stored_text)\n\n async def retrieve_messages_dataframe(self) -> DataFrame:\n \"\"\"Convert the retrieved messages into a DataFrame.\n\n Returns:\n DataFrame: A DataFrame containing the message data.\n \"\"\"\n messages = await self.retrieve_messages()\n return DataFrame(messages)\n\n def update_build_config(\n self,\n build_config: dotdict,\n field_value: Any, # noqa: ARG002\n field_name: str | None = None, # noqa: ARG002\n ) -> dotdict:\n return set_current_fields(\n build_config=build_config,\n action_fields=self.mode_config,\n selected_action=build_config[\"mode\"][\"value\"],\n default_fields=self.default_keys,\n func=set_field_display,\n )\n"
|
|
1018
1053
|
},
|
|
1019
1054
|
"memory": {
|
|
1020
1055
|
"_input_type": "HandleInput",
|
|
@@ -205,7 +205,20 @@
|
|
|
205
205
|
"legacy": false,
|
|
206
206
|
"lf_version": "1.4.3",
|
|
207
207
|
"metadata": {
|
|
208
|
-
"code_hash": "
|
|
208
|
+
"code_hash": "ab828f4cdff2",
|
|
209
|
+
"dependencies": {
|
|
210
|
+
"dependencies": [
|
|
211
|
+
{
|
|
212
|
+
"name": "httpx",
|
|
213
|
+
"version": "0.27.2"
|
|
214
|
+
},
|
|
215
|
+
{
|
|
216
|
+
"name": "langflow",
|
|
217
|
+
"version": null
|
|
218
|
+
}
|
|
219
|
+
],
|
|
220
|
+
"total_dependencies": 2
|
|
221
|
+
},
|
|
209
222
|
"module": "langflow.components.agentql.agentql_api.AgentQL"
|
|
210
223
|
},
|
|
211
224
|
"minimized": false,
|
|
@@ -265,7 +278,7 @@
|
|
|
265
278
|
"show": true,
|
|
266
279
|
"title_case": false,
|
|
267
280
|
"type": "code",
|
|
268
|
-
"value": "import httpx\
|
|
281
|
+
"value": "import httpx\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MessageTextInput, MultilineInput, Output, SecretStrInput\nfrom langflow.logging.logger import logger\nfrom langflow.schema.data import Data\n\n\nclass AgentQL(Component):\n display_name = \"Extract Web Data\"\n description = \"Extracts structured data from a web page using an AgentQL query or a Natural Language description.\"\n documentation: str = \"https://docs.agentql.com/rest-api/api-reference\"\n icon = \"AgentQL\"\n name = \"AgentQL\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"API Key\",\n required=True,\n password=True,\n info=\"Your AgentQL API key from dev.agentql.com\",\n ),\n MessageTextInput(\n name=\"url\",\n display_name=\"URL\",\n required=True,\n info=\"The URL of the public web page you want to extract data from.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"query\",\n display_name=\"AgentQL Query\",\n required=False,\n info=\"The AgentQL query to execute. Learn more at https://docs.agentql.com/agentql-query or use a prompt.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"prompt\",\n display_name=\"Prompt\",\n required=False,\n info=\"A Natural Language description of the data to extract from the page. Alternative to AgentQL query.\",\n tool_mode=True,\n ),\n BoolInput(\n name=\"is_stealth_mode_enabled\",\n display_name=\"Enable Stealth Mode (Beta)\",\n info=\"Enable experimental anti-bot evasion strategies. May not work for all websites at all times.\",\n value=False,\n advanced=True,\n ),\n IntInput(\n name=\"timeout\",\n display_name=\"Timeout\",\n info=\"Seconds to wait for a request.\",\n value=900,\n advanced=True,\n ),\n DropdownInput(\n name=\"mode\",\n display_name=\"Request Mode\",\n info=\"'standard' uses deep data analysis, while 'fast' trades some depth of analysis for speed.\",\n options=[\"fast\", \"standard\"],\n value=\"fast\",\n advanced=True,\n ),\n IntInput(\n name=\"wait_for\",\n display_name=\"Wait For\",\n info=\"Seconds to wait for the page to load before extracting data.\",\n value=0,\n range_spec=RangeSpec(min=0, max=10, step_type=\"int\"),\n advanced=True,\n ),\n BoolInput(\n name=\"is_scroll_to_bottom_enabled\",\n display_name=\"Enable scroll to bottom\",\n info=\"Scroll to bottom of the page before extracting data.\",\n value=False,\n advanced=True,\n ),\n BoolInput(\n name=\"is_screenshot_enabled\",\n display_name=\"Enable screenshot\",\n info=\"Take a screenshot before extracting data. Returned in 'metadata' as a Base64 string.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Data\", name=\"data\", method=\"build_output\"),\n ]\n\n def build_output(self) -> Data:\n endpoint = \"https://api.agentql.com/v1/query-data\"\n headers = {\n \"X-API-Key\": self.api_key,\n \"Content-Type\": \"application/json\",\n \"X-TF-Request-Origin\": \"langflow\",\n }\n\n payload = {\n \"url\": self.url,\n \"query\": self.query,\n \"prompt\": self.prompt,\n \"params\": {\n \"mode\": self.mode,\n \"wait_for\": self.wait_for,\n \"is_scroll_to_bottom_enabled\": self.is_scroll_to_bottom_enabled,\n \"is_screenshot_enabled\": self.is_screenshot_enabled,\n },\n \"metadata\": {\n \"experimental_stealth_mode_enabled\": self.is_stealth_mode_enabled,\n },\n }\n\n if not self.prompt and not self.query:\n self.status = \"Either Query or Prompt must be provided.\"\n raise ValueError(self.status)\n if self.prompt and self.query:\n self.status = \"Both Query and Prompt can't be provided at the same time.\"\n raise ValueError(self.status)\n\n try:\n response = httpx.post(endpoint, headers=headers, json=payload, timeout=self.timeout)\n response.raise_for_status()\n\n json = response.json()\n data = Data(result=json[\"data\"], metadata=json[\"metadata\"])\n\n except httpx.HTTPStatusError as e:\n response = e.response\n if response.status_code == httpx.codes.UNAUTHORIZED:\n self.status = \"Please, provide a valid API Key. You can create one at https://dev.agentql.com.\"\n else:\n try:\n error_json = response.json()\n logger.error(\n f\"Failure response: '{response.status_code} {response.reason_phrase}' with body: {error_json}\"\n )\n msg = error_json[\"error_info\"] if \"error_info\" in error_json else error_json[\"detail\"]\n except (ValueError, TypeError):\n msg = f\"HTTP {e}.\"\n self.status = msg\n raise ValueError(self.status) from e\n\n else:\n self.status = data\n return data\n"
|
|
269
282
|
},
|
|
270
283
|
"is_screenshot_enabled": {
|
|
271
284
|
"_input_type": "BoolInput",
|
|
@@ -562,6 +575,15 @@
|
|
|
562
575
|
"lf_version": "1.4.3",
|
|
563
576
|
"metadata": {
|
|
564
577
|
"code_hash": "192913db3453",
|
|
578
|
+
"dependencies": {
|
|
579
|
+
"dependencies": [
|
|
580
|
+
{
|
|
581
|
+
"name": "langflow",
|
|
582
|
+
"version": null
|
|
583
|
+
}
|
|
584
|
+
],
|
|
585
|
+
"total_dependencies": 1
|
|
586
|
+
},
|
|
565
587
|
"module": "langflow.components.input_output.chat.ChatInput"
|
|
566
588
|
},
|
|
567
589
|
"minimized": true,
|
|
@@ -904,6 +926,23 @@
|
|
|
904
926
|
"lf_version": "1.4.3",
|
|
905
927
|
"metadata": {
|
|
906
928
|
"code_hash": "6f74e04e39d5",
|
|
929
|
+
"dependencies": {
|
|
930
|
+
"dependencies": [
|
|
931
|
+
{
|
|
932
|
+
"name": "orjson",
|
|
933
|
+
"version": "3.10.15"
|
|
934
|
+
},
|
|
935
|
+
{
|
|
936
|
+
"name": "fastapi",
|
|
937
|
+
"version": "0.115.13"
|
|
938
|
+
},
|
|
939
|
+
{
|
|
940
|
+
"name": "langflow",
|
|
941
|
+
"version": null
|
|
942
|
+
}
|
|
943
|
+
],
|
|
944
|
+
"total_dependencies": 3
|
|
945
|
+
},
|
|
907
946
|
"module": "langflow.components.input_output.chat_output.ChatOutput"
|
|
908
947
|
},
|
|
909
948
|
"minimized": true,
|
|
@@ -1209,6 +1248,27 @@
|
|
|
1209
1248
|
"lf_version": "1.4.3",
|
|
1210
1249
|
"metadata": {
|
|
1211
1250
|
"code_hash": "1bcc6faaaa62",
|
|
1251
|
+
"dependencies": {
|
|
1252
|
+
"dependencies": [
|
|
1253
|
+
{
|
|
1254
|
+
"name": "orjson",
|
|
1255
|
+
"version": "3.10.15"
|
|
1256
|
+
},
|
|
1257
|
+
{
|
|
1258
|
+
"name": "pandas",
|
|
1259
|
+
"version": "2.2.3"
|
|
1260
|
+
},
|
|
1261
|
+
{
|
|
1262
|
+
"name": "fastapi",
|
|
1263
|
+
"version": "0.115.13"
|
|
1264
|
+
},
|
|
1265
|
+
{
|
|
1266
|
+
"name": "langflow",
|
|
1267
|
+
"version": null
|
|
1268
|
+
}
|
|
1269
|
+
],
|
|
1270
|
+
"total_dependencies": 4
|
|
1271
|
+
},
|
|
1212
1272
|
"module": "langflow.components.processing.save_file.SaveToFileComponent"
|
|
1213
1273
|
},
|
|
1214
1274
|
"minimized": false,
|
|
@@ -1525,7 +1585,7 @@
|
|
|
1525
1585
|
"show": true,
|
|
1526
1586
|
"title_case": false,
|
|
1527
1587
|
"type": "code",
|
|
1528
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1588
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1529
1589
|
},
|
|
1530
1590
|
"handle_parsing_errors": {
|
|
1531
1591
|
"_input_type": "BoolInput",
|