langflow-base-nightly 0.5.0.dev37__py3-none-any.whl → 0.5.0.dev38__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langflow/__main__.py +1 -1
- langflow/alembic/versions/4e5980a44eaa_fix_date_times_again.py +24 -30
- langflow/alembic/versions/58b28437a398_modify_nullable.py +6 -6
- langflow/alembic/versions/79e675cb6752_change_datetime_type.py +24 -30
- langflow/alembic/versions/b2fa308044b5_add_unique_constraints.py +12 -13
- langflow/api/build.py +21 -26
- langflow/api/health_check_router.py +3 -3
- langflow/api/utils.py +3 -3
- langflow/api/v1/callback.py +2 -2
- langflow/api/v1/chat.py +19 -31
- langflow/api/v1/endpoints.py +10 -10
- langflow/api/v1/flows.py +1 -1
- langflow/api/v1/knowledge_bases.py +3 -3
- langflow/api/v1/mcp.py +12 -12
- langflow/api/v1/mcp_projects.py +45 -81
- langflow/api/v1/mcp_utils.py +8 -8
- langflow/api/v1/schemas.py +1 -5
- langflow/api/v1/store.py +1 -1
- langflow/api/v1/validate.py +2 -2
- langflow/api/v1/voice_mode.py +58 -62
- langflow/api/v2/files.py +2 -2
- langflow/api/v2/mcp.py +10 -9
- langflow/base/composio/composio_base.py +21 -2
- langflow/base/data/docling_utils.py +194 -0
- langflow/base/embeddings/aiml_embeddings.py +1 -1
- langflow/base/flow_processing/utils.py +1 -2
- langflow/base/io/__init__.py +0 -1
- langflow/base/langwatch/utils.py +2 -1
- langflow/base/mcp/util.py +49 -47
- langflow/base/prompts/api_utils.py +1 -1
- langflow/base/tools/flow_tool.py +2 -2
- langflow/base/tools/run_flow.py +2 -6
- langflow/components/Notion/add_content_to_page.py +2 -2
- langflow/components/Notion/list_database_properties.py +2 -2
- langflow/components/Notion/list_pages.py +2 -2
- langflow/components/Notion/page_content_viewer.py +2 -2
- langflow/components/Notion/update_page_property.py +1 -1
- langflow/components/agentql/agentql_api.py +2 -10
- langflow/components/agents/agent.py +3 -3
- langflow/components/agents/mcp_component.py +14 -14
- langflow/components/anthropic/anthropic.py +5 -4
- langflow/components/assemblyai/assemblyai_get_subtitles.py +2 -2
- langflow/components/assemblyai/assemblyai_lemur.py +2 -2
- langflow/components/assemblyai/assemblyai_list_transcripts.py +2 -2
- langflow/components/assemblyai/assemblyai_poll_transcript.py +2 -2
- langflow/components/assemblyai/assemblyai_start_transcript.py +2 -2
- langflow/components/data/file.py +575 -55
- langflow/components/data/url.py +1 -1
- langflow/components/datastax/astra_assistant_manager.py +3 -3
- langflow/components/datastax/create_assistant.py +1 -2
- langflow/components/deactivated/merge_data.py +1 -2
- langflow/components/deactivated/sub_flow.py +6 -7
- langflow/components/deactivated/vectara_self_query.py +3 -3
- langflow/components/docling/__init__.py +0 -198
- langflow/components/docling/docling_inline.py +1 -1
- langflow/components/embeddings/text_embedder.py +3 -3
- langflow/components/firecrawl/firecrawl_extract_api.py +2 -9
- langflow/components/google/gmail.py +1 -1
- langflow/components/google/google_generative_ai.py +5 -11
- langflow/components/groq/groq.py +4 -3
- langflow/components/helpers/current_date.py +2 -3
- langflow/components/helpers/memory.py +1 -1
- langflow/components/ibm/watsonx.py +1 -1
- langflow/components/ibm/watsonx_embeddings.py +1 -1
- langflow/components/langwatch/langwatch.py +3 -3
- langflow/components/logic/flow_tool.py +2 -2
- langflow/components/logic/notify.py +1 -1
- langflow/components/logic/run_flow.py +2 -3
- langflow/components/logic/sub_flow.py +4 -5
- langflow/components/mem0/mem0_chat_memory.py +2 -8
- langflow/components/nvidia/nvidia.py +3 -3
- langflow/components/olivya/olivya.py +7 -7
- langflow/components/ollama/ollama.py +8 -6
- langflow/components/processing/batch_run.py +8 -8
- langflow/components/processing/data_operations.py +2 -2
- langflow/components/processing/merge_data.py +1 -2
- langflow/components/processing/message_to_data.py +2 -3
- langflow/components/processing/parse_json_data.py +1 -1
- langflow/components/prototypes/python_function.py +2 -3
- langflow/components/serpapi/serp.py +1 -1
- langflow/components/tavily/tavily_extract.py +1 -1
- langflow/components/tavily/tavily_search.py +1 -1
- langflow/components/tools/calculator.py +2 -2
- langflow/components/tools/python_code_structured_tool.py +3 -10
- langflow/components/tools/python_repl.py +2 -2
- langflow/components/tools/searxng.py +3 -3
- langflow/components/tools/serp_api.py +2 -2
- langflow/components/tools/tavily_search_tool.py +2 -2
- langflow/components/tools/yahoo_finance.py +1 -1
- langflow/components/twelvelabs/video_embeddings.py +4 -4
- langflow/components/vectorstores/local_db.py +1 -1
- langflow/components/yahoosearch/yahoo.py +1 -1
- langflow/components/youtube/trending.py +3 -4
- langflow/custom/attributes.py +2 -1
- langflow/custom/code_parser/code_parser.py +1 -1
- langflow/custom/custom_component/base_component.py +1 -1
- langflow/custom/custom_component/component.py +16 -2
- langflow/custom/directory_reader/directory_reader.py +7 -7
- langflow/custom/directory_reader/utils.py +1 -2
- langflow/custom/utils.py +30 -30
- langflow/events/event_manager.py +1 -1
- langflow/frontend/assets/{SlackIcon-CnvyOamQ.js → SlackIcon-BhW6H3JR.js} +1 -1
- langflow/frontend/assets/{Wikipedia-nyTEXdr2.js → Wikipedia-Dx5jbiy3.js} +1 -1
- langflow/frontend/assets/{Wolfram-BYMQkNSq.js → Wolfram-CIyonzwo.js} +1 -1
- langflow/frontend/assets/{index-HK3bVMYA.js → index-0XQqYgdG.js} +1 -1
- langflow/frontend/assets/{index-BZgXW854.js → index-1Q3VBqKn.js} +1 -1
- langflow/frontend/assets/{index-BQ6NUdMY.js → index-35sspuLu.js} +1 -1
- langflow/frontend/assets/{index-DPCzHdsC.js → index-7hzXChQz.js} +1 -1
- langflow/frontend/assets/{index-CFDvOtKC.js → index-8cuhogZP.js} +1 -1
- langflow/frontend/assets/{index-CYDAYm-i.js → index-B0m53xKd.js} +1 -1
- langflow/frontend/assets/{index-Q9vDw0Xl.js → index-B1XqWJhG.js} +1 -1
- langflow/frontend/assets/{index-Gkrq-vzm.js → index-B3KCdQ91.js} +1 -1
- langflow/frontend/assets/{index-DytJENYD.js → index-B7uEuOPK.js} +1 -1
- langflow/frontend/assets/{index-DkXy1WFo.js → index-B8UR8v-Q.js} +1 -1
- langflow/frontend/assets/{index-BChjg6Az.js → index-BD7Io1hL.js} +6 -6
- langflow/frontend/assets/{index-CyPvTB63.js → index-BDQrd7Tj.js} +1 -1
- langflow/frontend/assets/{index-BbJjt5m4.js → index-BDuk0d7P.js} +1 -1
- langflow/frontend/assets/{index-BBxAPk1y.js → index-BFQ8KFK0.js} +1 -1
- langflow/frontend/assets/{index-BqPpO6KG.js → index-BFf0HTFI.js} +1 -1
- langflow/frontend/assets/{index-yCHsaqs8.js → index-BHhnpSkW.js} +1 -1
- langflow/frontend/assets/{index-Bd6WtbKA.js → index-BKKrUElc.js} +1 -1
- langflow/frontend/assets/{index-DHq8TQPB.js → index-BKeZt2hQ.js} +1 -1
- langflow/frontend/assets/{index-BCCGvqay.js → index-BKlQbl-6.js} +1 -1
- langflow/frontend/assets/{index-Boso-xEw.js → index-BLYw9MK2.js} +1 -1
- langflow/frontend/assets/{index-DmMDPoi0.js → index-BLsVo9iW.js} +1 -1
- langflow/frontend/assets/{index-Car-zdor.js → index-BNQIbda3.js} +1 -1
- langflow/frontend/assets/{index-Dg-63Si_.js → index-BPR2mEFC.js} +1 -1
- langflow/frontend/assets/{index-CTrt1Q_j.js → index-BPfdqCc_.js} +1 -1
- langflow/frontend/assets/{index-CVQmT7ZL.js → index-BQrVDjR1.js} +1 -1
- langflow/frontend/assets/{index-BB15_iOb.js → index-BRmSeoWR.js} +1 -1
- langflow/frontend/assets/{index-BX5D-USa.js → index-BUse-kxM.js} +1 -1
- langflow/frontend/assets/{index-CaQ_H9ww.js → index-BVFaF7HW.js} +1 -1
- langflow/frontend/assets/{index-C26RqKWL.js → index-BWgIWfv2.js} +1 -1
- langflow/frontend/assets/{index-DbMFlnHE.js → index-BWt5xGeA.js} +1 -1
- langflow/frontend/assets/{index-Db71w3lq.js → index-BYhcGLTV.js} +1 -1
- langflow/frontend/assets/{index-DzW2mfkK.js → index-BYjw7Gk3.js} +1 -1
- langflow/frontend/assets/{index-DJB12jIC.js → index-BZFljdMa.js} +1 -1
- langflow/frontend/assets/{index-nVwHLjuV.js → index-BcAgItH4.js} +1 -1
- langflow/frontend/assets/{index-DkelbYy7.js → index-Bct1s6__.js} +1 -1
- langflow/frontend/assets/{index-ChXJpBz4.js → index-Bhv79Zso.js} +1 -1
- langflow/frontend/assets/{index-BxEuHa76.js → index-Bj3lSwvZ.js} +1 -1
- langflow/frontend/assets/{index-BkPYpfgw.js → index-Bk4mTwnI.js} +1 -1
- langflow/frontend/assets/{index-BvT7L317.js → index-BmIx1cws.js} +1 -1
- langflow/frontend/assets/{index-DIDDfmlJ.js → index-BmYJJ5YS.js} +1 -1
- langflow/frontend/assets/{index-C7QWbnLK.js → index-BnAFhkSN.js} +1 -1
- langflow/frontend/assets/{index-CJo_cyWW.js → index-Bo-ww0Bb.js} +1 -1
- langflow/frontend/assets/{index-DjQETUy8.js → index-BpmqDOeZ.js} +1 -1
- langflow/frontend/assets/{index-ya2uXE8v.js → index-BrVhdPZb.js} +1 -1
- langflow/frontend/assets/{index-DCRk27Tp.js → index-BvGQfVBD.js} +1 -1
- langflow/frontend/assets/{index-BTrsh9LS.js → index-Bwi4flFg.js} +1 -1
- langflow/frontend/assets/{index-BRxvproo.js → index-BzoRPtTY.js} +1 -1
- langflow/frontend/assets/{index-BIQQCMvz.js → index-C--IDAyc.js} +1 -1
- langflow/frontend/assets/{index-DfngcQxO.js → index-C0E3_MIK.js} +1 -1
- langflow/frontend/assets/{index-Bvxg4_ux.js → index-C27Jj_26.js} +1 -1
- langflow/frontend/assets/{index-D8lOi1GI.js → index-C2eQmQsn.js} +1 -1
- langflow/frontend/assets/{index-rXV1G1aB.js → index-C8K0r39B.js} +1 -1
- langflow/frontend/assets/{index-B3Sur4Z3.js → index-CEJNWPhA.js} +1 -1
- langflow/frontend/assets/{index-BR0bkVqX.js → index-CFNTYfFK.js} +1 -1
- langflow/frontend/assets/{index-Bnqod3vk.js → index-CMHpjHZl.js} +1 -1
- langflow/frontend/assets/{index-BLGYN-9b.js → index-CSu8KHOi.js} +1 -1
- langflow/frontend/assets/{index-BOB_zsjl.js → index-CUKmGsI6.js} +1 -1
- langflow/frontend/assets/{index-BzEUlaw_.js → index-CWYiSeWV.js} +1 -1
- langflow/frontend/assets/{index-DVlceYFD.js → index-CY7_TBTC.js} +1 -1
- langflow/frontend/assets/{index-D3DDfngy.js → index-CbnWRlYY.js} +1 -1
- langflow/frontend/assets/{index-cvZdgWHQ.js → index-CfPBgkqg.js} +1 -1
- langflow/frontend/assets/{index-Ui4xUImO.js → index-Cg53lrYh.js} +1 -1
- langflow/frontend/assets/{index-C6jri9Wm.js → index-CgU7KF4I.js} +1 -1
- langflow/frontend/assets/{index-BVEZDXxS.js → index-CgwykVGh.js} +1 -1
- langflow/frontend/assets/{index-BOeo01QB.js → index-Ch5r0oW6.js} +1 -1
- langflow/frontend/assets/{index-D6PSjHxP.js → index-CjsommIr.js} +1 -1
- langflow/frontend/assets/{index-pCQ_yw8m.js → index-CkK25zZO.js} +1 -1
- langflow/frontend/assets/{index-BFp_O-c9.js → index-CkjwSTSM.js} +1 -1
- langflow/frontend/assets/{index-Du_18NCU.js → index-CmSFKgiD.js} +1 -1
- langflow/frontend/assets/{index-BvwZfF2i.js → index-Cr5v2ave.js} +1 -1
- langflow/frontend/assets/{index-FUxmznS-.js → index-CrAF-31Y.js} +1 -1
- langflow/frontend/assets/{index-C-2hghRJ.js → index-CsLQiWNf.js} +1 -1
- langflow/frontend/assets/{index-C_TdzfAn.js → index-CuCM7Wu7.js} +1 -1
- langflow/frontend/assets/{index-D5_DsUJc.js → index-Cxy9sEpy.js} +1 -1
- langflow/frontend/assets/{index-C_veJlEb.js → index-CyP3py8K.js} +1 -1
- langflow/frontend/assets/{index-OazXJdEl.js → index-CzHzeZuA.js} +1 -1
- langflow/frontend/assets/{index-CvcEzq4x.js → index-D1oynC8a.js} +1 -1
- langflow/frontend/assets/{index-CZQ9rXNa.js → index-D4tjMhfY.js} +1 -1
- langflow/frontend/assets/{index-B1YN7oMV.js → index-D6CSIrp1.js} +1 -1
- langflow/frontend/assets/{index-DfxYyS3M.js → index-D9kwEzPB.js} +1 -1
- langflow/frontend/assets/{index-BbRm7beF.js → index-DDXsm8tz.js} +1 -1
- langflow/frontend/assets/{index-xuIrH2Dq.js → index-DDhJVVel.js} +1 -1
- langflow/frontend/assets/{index-CmplyEaa.js → index-DH6o91_s.js} +1 -1
- langflow/frontend/assets/{index-DnEGCgih.js → index-DHngW1k8.js} +1 -1
- langflow/frontend/assets/{index-ajRge-Mg.js → index-DIKUsGLF.js} +1 -1
- langflow/frontend/assets/{index-DpClkXIV.js → index-DJESSNJi.js} +1 -1
- langflow/frontend/assets/{index-8WdfSTTz.js → index-DMCWDJOl.js} +1 -1
- langflow/frontend/assets/{index-DZTC5pdT.js → index-DOEvKC2X.js} +1 -1
- langflow/frontend/assets/{index-DysKpOuj.js → index-DOQDkSoK.js} +1 -1
- langflow/frontend/assets/{index-C82JjCPD.js → index-DXAfIEvs.js} +1 -1
- langflow/frontend/assets/{index-D8GJngXa.js → index-DZP_SaHb.js} +1 -1
- langflow/frontend/assets/{index-DIkNW9Cd.js → index-DZxUIhWh.js} +1 -1
- langflow/frontend/assets/{index-DK1Ptcc4.js → index-Dda2u_yz.js} +1 -1
- langflow/frontend/assets/{index-BWmPX4iQ.js → index-Dg8N3NSO.js} +1 -1
- langflow/frontend/assets/{index-CWdkbVsd.js → index-DkGhPNeA.js} +1 -1
- langflow/frontend/assets/{index-DF5VwgU6.js → index-Dka_Rk4-.js} +1 -1
- langflow/frontend/assets/{index-Bsa0xZyL.js → index-DljpLeCW.js} +1 -1
- langflow/frontend/assets/{index-CLPdN-q6.js → index-DnVYJtVO.js} +1 -1
- langflow/frontend/assets/{index-CxvP91st.js → index-DqbzUcI5.js} +1 -1
- langflow/frontend/assets/{index-BIzTEqFh.js → index-Dr6pVDPI.js} +1 -1
- langflow/frontend/assets/{index-tVYiABdp.js → index-DsoX2o1S.js} +1 -1
- langflow/frontend/assets/{index-CCePCqkT.js → index-DwfHWnX7.js} +1 -1
- langflow/frontend/assets/{index-BEMw2Np8.js → index-Dx-Z87KT.js} +1 -1
- langflow/frontend/assets/{index-BRYjyhAd.js → index-DyqITq51.js} +1 -1
- langflow/frontend/assets/{index-l7bzB8Ex.js → index-DzIv3RyR.js} +1 -1
- langflow/frontend/assets/{index-D-9TI74R.js → index-G4ro0MjT.js} +1 -1
- langflow/frontend/assets/{index-CCxGSSTT.js → index-H7J7w7fa.js} +1 -1
- langflow/frontend/assets/{index-_UcqeEjm.js → index-KWY77KfV.js} +1 -1
- langflow/frontend/assets/{index-Dqd4RjYA.js → index-U9GWm1eH.js} +1 -1
- langflow/frontend/assets/{index-Dq5ilsem.js → index-Un9pWxnP.js} +1 -1
- langflow/frontend/assets/{index-BzL_EoKd.js → index-Xi4TplbI.js} +1 -1
- langflow/frontend/assets/{index-LbYjHKkn.js → index-_cbGmjF4.js} +1 -1
- langflow/frontend/assets/{index-DGRMNe9n.js → index-cEXY6V06.js} +1 -1
- langflow/frontend/assets/{index-8yMsjVV2.js → index-dyXKnkMi.js} +1 -1
- langflow/frontend/assets/{index-DKHNourL.js → index-eUkS6iJM.js} +1 -1
- langflow/frontend/assets/{index-Bv8h2Z-q.js → index-ekfMOqrF.js} +1 -1
- langflow/frontend/assets/{index-B748uLP1.js → index-gdb7XMS8.js} +1 -1
- langflow/frontend/assets/{index-CpvYQ0ug.js → index-hZUcL0MZ.js} +1 -1
- langflow/frontend/assets/{index-BIXaW2aY.js → index-kkA-qHB_.js} +1 -1
- langflow/frontend/assets/{index-BhIOhlCH.js → index-mzl9ULw5.js} +1 -1
- langflow/frontend/assets/{index-CYe8Ipef.js → index-oxHBZk2v.js} +1 -1
- langflow/frontend/assets/{index-WPFivmdQ.js → index-p2kStSPe.js} +1 -1
- langflow/frontend/assets/{index-BmX5CoED.js → index-paQEWYGT.js} +1 -1
- langflow/frontend/assets/{index-CpcbQZIF.js → index-r_8gs4nL.js} +1 -1
- langflow/frontend/assets/{index-dcnYpT9N.js → index-uiKla4UR.js} +1 -1
- langflow/frontend/assets/{index-BTEW9e8P.js → index-vJOO5U8M.js} +1 -1
- langflow/frontend/assets/{index-CQMoqLAu.js → index-w72fDjpG.js} +1 -1
- langflow/frontend/assets/{index-Dsps-jKu.js → index-zV82kQ6k.js} +1 -1
- langflow/frontend/assets/lazyIconImports-DTNgvPE-.js +2 -0
- langflow/frontend/assets/{use-post-add-user-BrBYH9eR.js → use-post-add-user-CvtuazTg.js} +1 -1
- langflow/frontend/index.html +1 -1
- langflow/graph/edge/base.py +2 -3
- langflow/graph/graph/base.py +14 -12
- langflow/graph/graph/constants.py +3 -0
- langflow/graph/utils.py +6 -6
- langflow/graph/vertex/base.py +4 -5
- langflow/graph/vertex/param_handler.py +1 -1
- langflow/graph/vertex/vertex_types.py +2 -2
- langflow/helpers/flow.py +1 -1
- langflow/initial_setup/setup.py +32 -30
- langflow/initial_setup/starter_projects/Blog Writer.json +2 -2
- langflow/initial_setup/starter_projects/Custom Component Generator.json +2 -2
- langflow/initial_setup/starter_projects/Document Q&A.json +1 -1
- langflow/initial_setup/starter_projects/Instagram Copywriter.json +3 -3
- langflow/initial_setup/starter_projects/Invoice Summarizer.json +1 -1
- langflow/initial_setup/starter_projects/Knowledge Ingestion.json +2 -2
- langflow/initial_setup/starter_projects/Market Research.json +3 -3
- langflow/initial_setup/starter_projects/Meeting Summary.json +6 -6
- langflow/initial_setup/starter_projects/Memory Chatbot.json +2 -2
- langflow/initial_setup/starter_projects/News Aggregator.json +3 -3
- langflow/initial_setup/starter_projects/Nvidia Remix.json +3 -3
- langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +1 -1
- langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +1 -1
- langflow/initial_setup/starter_projects/Price Deal Finder.json +5 -5
- langflow/initial_setup/starter_projects/Research Agent.json +3 -3
- langflow/initial_setup/starter_projects/SaaS Pricing.json +1 -1
- langflow/initial_setup/starter_projects/Search agent.json +1 -1
- langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +7 -7
- langflow/initial_setup/starter_projects/Simple Agent.json +3 -3
- langflow/initial_setup/starter_projects/Social Media Agent.json +1 -1
- langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +1 -1
- langflow/initial_setup/starter_projects/Travel Planning Agents.json +3 -3
- langflow/initial_setup/starter_projects/Vector Store RAG.json +1 -1
- langflow/initial_setup/starter_projects/Youtube Analysis.json +3 -3
- langflow/interface/components.py +23 -22
- langflow/interface/initialize/loading.py +5 -5
- langflow/interface/run.py +1 -1
- langflow/interface/utils.py +1 -1
- langflow/io/__init__.py +0 -1
- langflow/langflow_launcher.py +1 -1
- langflow/load/load.py +2 -7
- langflow/logging/__init__.py +0 -1
- langflow/logging/logger.py +191 -115
- langflow/logging/setup.py +1 -1
- langflow/main.py +37 -52
- langflow/memory.py +7 -7
- langflow/middleware.py +1 -1
- langflow/processing/process.py +3 -3
- langflow/schema/artifact.py +2 -2
- langflow/schema/data.py +10 -2
- langflow/schema/dataframe.py +1 -1
- langflow/schema/message.py +1 -1
- langflow/serialization/serialization.py +1 -1
- langflow/services/auth/utils.py +2 -2
- langflow/services/cache/disk.py +1 -1
- langflow/services/cache/service.py +3 -3
- langflow/services/database/models/flow/model.py +2 -7
- langflow/services/database/models/transactions/crud.py +2 -2
- langflow/services/database/models/user/crud.py +2 -2
- langflow/services/database/service.py +8 -8
- langflow/services/database/utils.py +6 -5
- langflow/services/deps.py +2 -3
- langflow/services/factory.py +1 -1
- langflow/services/flow/flow_runner.py +7 -12
- langflow/services/job_queue/service.py +16 -15
- langflow/services/manager.py +3 -4
- langflow/services/settings/auth.py +1 -1
- langflow/services/settings/base.py +3 -8
- langflow/services/settings/manager.py +1 -1
- langflow/services/settings/utils.py +1 -1
- langflow/services/socket/__init__.py +0 -1
- langflow/services/socket/service.py +3 -3
- langflow/services/socket/utils.py +4 -4
- langflow/services/state/service.py +1 -2
- langflow/services/storage/factory.py +1 -1
- langflow/services/storage/local.py +9 -8
- langflow/services/storage/s3.py +11 -10
- langflow/services/store/service.py +3 -3
- langflow/services/store/utils.py +3 -2
- langflow/services/task/temp_flow_cleanup.py +7 -7
- langflow/services/telemetry/service.py +10 -10
- langflow/services/tracing/arize_phoenix.py +2 -2
- langflow/services/tracing/langfuse.py +1 -1
- langflow/services/tracing/langsmith.py +1 -1
- langflow/services/tracing/langwatch.py +1 -1
- langflow/services/tracing/opik.py +1 -1
- langflow/services/tracing/service.py +25 -6
- langflow/services/tracing/traceloop.py +245 -0
- langflow/services/utils.py +7 -7
- langflow/services/variable/kubernetes.py +3 -3
- langflow/services/variable/kubernetes_secrets.py +2 -1
- langflow/services/variable/service.py +5 -5
- langflow/utils/component_utils.py +9 -6
- langflow/utils/util.py +5 -5
- langflow/utils/validate.py +3 -3
- langflow/utils/voice_utils.py +2 -2
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/METADATA +2 -1
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/RECORD +334 -333
- langflow/frontend/assets/lazyIconImports-t6wEndt1.js +0 -2
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/WHEEL +0 -0
- {langflow_base_nightly-0.5.0.dev37.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/entry_points.txt +0 -0
|
@@ -767,7 +767,7 @@
|
|
|
767
767
|
"legacy": false,
|
|
768
768
|
"lf_version": "1.3.2",
|
|
769
769
|
"metadata": {
|
|
770
|
-
"code_hash": "
|
|
770
|
+
"code_hash": "4c76fb76d395",
|
|
771
771
|
"module": "langflow.components.tavily.tavily_search.TavilySearchComponent"
|
|
772
772
|
},
|
|
773
773
|
"minimized": false,
|
|
@@ -845,7 +845,7 @@
|
|
|
845
845
|
"show": true,
|
|
846
846
|
"title_case": false,
|
|
847
847
|
"type": "code",
|
|
848
|
-
"value": "import httpx\
|
|
848
|
+
"value": "import httpx\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.inputs.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput\nfrom langflow.logging.logger import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.template.field.base import Output\n\n\nclass TavilySearchComponent(Component):\n display_name = \"Tavily Search API\"\n description = \"\"\"**Tavily Search** is a search engine optimized for LLMs and RAG, \\\n aimed at efficient, quick, and persistent search results.\"\"\"\n icon = \"TavilyIcon\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Tavily API Key\",\n required=True,\n info=\"Your Tavily API Key.\",\n ),\n MessageTextInput(\n name=\"query\",\n display_name=\"Search Query\",\n info=\"The search query you want to execute with Tavily.\",\n tool_mode=True,\n ),\n DropdownInput(\n name=\"search_depth\",\n display_name=\"Search Depth\",\n info=\"The depth of the search.\",\n options=[\"basic\", \"advanced\"],\n value=\"advanced\",\n advanced=True,\n ),\n IntInput(\n name=\"chunks_per_source\",\n display_name=\"Chunks Per Source\",\n info=(\"The number of content chunks to retrieve from each source (1-3). Only works with advanced search.\"),\n value=3,\n advanced=True,\n ),\n DropdownInput(\n name=\"topic\",\n display_name=\"Search Topic\",\n info=\"The category of the search.\",\n options=[\"general\", \"news\"],\n value=\"general\",\n advanced=True,\n ),\n IntInput(\n name=\"days\",\n display_name=\"Days\",\n info=\"Number of days back from current date to include. Only available with news topic.\",\n value=7,\n advanced=True,\n ),\n IntInput(\n name=\"max_results\",\n display_name=\"Max Results\",\n info=\"The maximum number of search results to return.\",\n value=5,\n advanced=True,\n ),\n BoolInput(\n name=\"include_answer\",\n display_name=\"Include Answer\",\n info=\"Include a short answer to original query.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"time_range\",\n display_name=\"Time Range\",\n info=\"The time range back from the current date to filter results.\",\n options=[\"day\", \"week\", \"month\", \"year\"],\n value=None, # Default to None to make it optional\n advanced=True,\n ),\n BoolInput(\n name=\"include_images\",\n display_name=\"Include Images\",\n info=\"Include a list of query-related images in the response.\",\n value=True,\n advanced=True,\n ),\n MessageTextInput(\n name=\"include_domains\",\n display_name=\"Include Domains\",\n info=\"Comma-separated list of domains to include in the search results.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"exclude_domains\",\n display_name=\"Exclude Domains\",\n info=\"Comma-separated list of domains to exclude from the search results.\",\n advanced=True,\n ),\n BoolInput(\n name=\"include_raw_content\",\n display_name=\"Include Raw Content\",\n info=\"Include the cleaned and parsed HTML content of each search result.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"DataFrame\", name=\"dataframe\", method=\"fetch_content_dataframe\"),\n ]\n\n def fetch_content(self) -> list[Data]:\n try:\n # Only process domains if they're provided\n include_domains = None\n exclude_domains = None\n\n if self.include_domains:\n include_domains = [domain.strip() for domain in self.include_domains.split(\",\") if domain.strip()]\n\n if self.exclude_domains:\n exclude_domains = [domain.strip() for domain in self.exclude_domains.split(\",\") if domain.strip()]\n\n url = \"https://api.tavily.com/search\"\n headers = {\n \"content-type\": \"application/json\",\n \"accept\": \"application/json\",\n }\n\n payload = {\n \"api_key\": self.api_key,\n \"query\": self.query,\n \"search_depth\": self.search_depth,\n \"topic\": self.topic,\n \"max_results\": self.max_results,\n \"include_images\": self.include_images,\n \"include_answer\": self.include_answer,\n \"include_raw_content\": self.include_raw_content,\n \"days\": self.days,\n \"time_range\": self.time_range,\n }\n\n # Only add domains to payload if they exist and have values\n if include_domains:\n payload[\"include_domains\"] = include_domains\n if exclude_domains:\n payload[\"exclude_domains\"] = exclude_domains\n\n # Add conditional parameters only if they should be included\n if self.search_depth == \"advanced\" and self.chunks_per_source:\n payload[\"chunks_per_source\"] = self.chunks_per_source\n\n if self.topic == \"news\" and self.days:\n payload[\"days\"] = int(self.days) # Ensure days is an integer\n\n # Add time_range if it's set\n if hasattr(self, \"time_range\") and self.time_range:\n payload[\"time_range\"] = self.time_range\n\n # Add timeout handling\n with httpx.Client(timeout=90.0) as client:\n response = client.post(url, json=payload, headers=headers)\n\n response.raise_for_status()\n search_results = response.json()\n\n data_results = []\n\n if self.include_answer and search_results.get(\"answer\"):\n data_results.append(Data(text=search_results[\"answer\"]))\n\n for result in search_results.get(\"results\", []):\n content = result.get(\"content\", \"\")\n result_data = {\n \"title\": result.get(\"title\"),\n \"url\": result.get(\"url\"),\n \"content\": content,\n \"score\": result.get(\"score\"),\n }\n if self.include_raw_content:\n result_data[\"raw_content\"] = result.get(\"raw_content\")\n\n data_results.append(Data(text=content, data=result_data))\n\n if self.include_images and search_results.get(\"images\"):\n data_results.append(Data(text=\"Images found\", data={\"images\": search_results[\"images\"]}))\n\n except httpx.TimeoutException:\n error_message = \"Request timed out (90s). Please try again or adjust parameters.\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except httpx.HTTPStatusError as exc:\n error_message = f\"HTTP error occurred: {exc.response.status_code} - {exc.response.text}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except httpx.RequestError as exc:\n error_message = f\"Request error occurred: {exc}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except ValueError as exc:\n error_message = f\"Invalid response format: {exc}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n else:\n self.status = data_results\n return data_results\n\n def fetch_content_dataframe(self) -> DataFrame:\n data = self.fetch_content()\n return DataFrame(data)\n"
|
|
849
849
|
},
|
|
850
850
|
"days": {
|
|
851
851
|
"_input_type": "IntInput",
|
|
@@ -1168,7 +1168,7 @@
|
|
|
1168
1168
|
"legacy": false,
|
|
1169
1169
|
"lf_version": "1.3.2",
|
|
1170
1170
|
"metadata": {
|
|
1171
|
-
"code_hash": "
|
|
1171
|
+
"code_hash": "ab828f4cdff2",
|
|
1172
1172
|
"module": "langflow.components.agentql.agentql_api.AgentQL"
|
|
1173
1173
|
},
|
|
1174
1174
|
"minimized": false,
|
|
@@ -1228,7 +1228,7 @@
|
|
|
1228
1228
|
"show": true,
|
|
1229
1229
|
"title_case": false,
|
|
1230
1230
|
"type": "code",
|
|
1231
|
-
"value": "import httpx\
|
|
1231
|
+
"value": "import httpx\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MessageTextInput, MultilineInput, Output, SecretStrInput\nfrom langflow.logging.logger import logger\nfrom langflow.schema.data import Data\n\n\nclass AgentQL(Component):\n display_name = \"Extract Web Data\"\n description = \"Extracts structured data from a web page using an AgentQL query or a Natural Language description.\"\n documentation: str = \"https://docs.agentql.com/rest-api/api-reference\"\n icon = \"AgentQL\"\n name = \"AgentQL\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"API Key\",\n required=True,\n password=True,\n info=\"Your AgentQL API key from dev.agentql.com\",\n ),\n MessageTextInput(\n name=\"url\",\n display_name=\"URL\",\n required=True,\n info=\"The URL of the public web page you want to extract data from.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"query\",\n display_name=\"AgentQL Query\",\n required=False,\n info=\"The AgentQL query to execute. Learn more at https://docs.agentql.com/agentql-query or use a prompt.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"prompt\",\n display_name=\"Prompt\",\n required=False,\n info=\"A Natural Language description of the data to extract from the page. Alternative to AgentQL query.\",\n tool_mode=True,\n ),\n BoolInput(\n name=\"is_stealth_mode_enabled\",\n display_name=\"Enable Stealth Mode (Beta)\",\n info=\"Enable experimental anti-bot evasion strategies. May not work for all websites at all times.\",\n value=False,\n advanced=True,\n ),\n IntInput(\n name=\"timeout\",\n display_name=\"Timeout\",\n info=\"Seconds to wait for a request.\",\n value=900,\n advanced=True,\n ),\n DropdownInput(\n name=\"mode\",\n display_name=\"Request Mode\",\n info=\"'standard' uses deep data analysis, while 'fast' trades some depth of analysis for speed.\",\n options=[\"fast\", \"standard\"],\n value=\"fast\",\n advanced=True,\n ),\n IntInput(\n name=\"wait_for\",\n display_name=\"Wait For\",\n info=\"Seconds to wait for the page to load before extracting data.\",\n value=0,\n range_spec=RangeSpec(min=0, max=10, step_type=\"int\"),\n advanced=True,\n ),\n BoolInput(\n name=\"is_scroll_to_bottom_enabled\",\n display_name=\"Enable scroll to bottom\",\n info=\"Scroll to bottom of the page before extracting data.\",\n value=False,\n advanced=True,\n ),\n BoolInput(\n name=\"is_screenshot_enabled\",\n display_name=\"Enable screenshot\",\n info=\"Take a screenshot before extracting data. Returned in 'metadata' as a Base64 string.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Data\", name=\"data\", method=\"build_output\"),\n ]\n\n def build_output(self) -> Data:\n endpoint = \"https://api.agentql.com/v1/query-data\"\n headers = {\n \"X-API-Key\": self.api_key,\n \"Content-Type\": \"application/json\",\n \"X-TF-Request-Origin\": \"langflow\",\n }\n\n payload = {\n \"url\": self.url,\n \"query\": self.query,\n \"prompt\": self.prompt,\n \"params\": {\n \"mode\": self.mode,\n \"wait_for\": self.wait_for,\n \"is_scroll_to_bottom_enabled\": self.is_scroll_to_bottom_enabled,\n \"is_screenshot_enabled\": self.is_screenshot_enabled,\n },\n \"metadata\": {\n \"experimental_stealth_mode_enabled\": self.is_stealth_mode_enabled,\n },\n }\n\n if not self.prompt and not self.query:\n self.status = \"Either Query or Prompt must be provided.\"\n raise ValueError(self.status)\n if self.prompt and self.query:\n self.status = \"Both Query and Prompt can't be provided at the same time.\"\n raise ValueError(self.status)\n\n try:\n response = httpx.post(endpoint, headers=headers, json=payload, timeout=self.timeout)\n response.raise_for_status()\n\n json = response.json()\n data = Data(result=json[\"data\"], metadata=json[\"metadata\"])\n\n except httpx.HTTPStatusError as e:\n response = e.response\n if response.status_code == httpx.codes.UNAUTHORIZED:\n self.status = \"Please, provide a valid API Key. You can create one at https://dev.agentql.com.\"\n else:\n try:\n error_json = response.json()\n logger.error(\n f\"Failure response: '{response.status_code} {response.reason_phrase}' with body: {error_json}\"\n )\n msg = error_json[\"error_info\"] if \"error_info\" in error_json else error_json[\"detail\"]\n except (ValueError, TypeError):\n msg = f\"HTTP {e}.\"\n self.status = msg\n raise ValueError(self.status) from e\n\n else:\n self.status = data\n return data\n"
|
|
1232
1232
|
},
|
|
1233
1233
|
"is_screenshot_enabled": {
|
|
1234
1234
|
"_input_type": "BoolInput",
|
|
@@ -1789,7 +1789,7 @@
|
|
|
1789
1789
|
"show": true,
|
|
1790
1790
|
"title_case": false,
|
|
1791
1791
|
"type": "code",
|
|
1792
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1792
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1793
1793
|
},
|
|
1794
1794
|
"handle_parsing_errors": {
|
|
1795
1795
|
"_input_type": "BoolInput",
|
|
@@ -1258,7 +1258,7 @@
|
|
|
1258
1258
|
"legacy": false,
|
|
1259
1259
|
"lf_version": "1.4.3",
|
|
1260
1260
|
"metadata": {
|
|
1261
|
-
"code_hash": "
|
|
1261
|
+
"code_hash": "4c76fb76d395",
|
|
1262
1262
|
"module": "langflow.components.tavily.tavily_search.TavilySearchComponent"
|
|
1263
1263
|
},
|
|
1264
1264
|
"minimized": false,
|
|
@@ -1336,7 +1336,7 @@
|
|
|
1336
1336
|
"show": true,
|
|
1337
1337
|
"title_case": false,
|
|
1338
1338
|
"type": "code",
|
|
1339
|
-
"value": "import httpx\
|
|
1339
|
+
"value": "import httpx\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.inputs.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput\nfrom langflow.logging.logger import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.template.field.base import Output\n\n\nclass TavilySearchComponent(Component):\n display_name = \"Tavily Search API\"\n description = \"\"\"**Tavily Search** is a search engine optimized for LLMs and RAG, \\\n aimed at efficient, quick, and persistent search results.\"\"\"\n icon = \"TavilyIcon\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Tavily API Key\",\n required=True,\n info=\"Your Tavily API Key.\",\n ),\n MessageTextInput(\n name=\"query\",\n display_name=\"Search Query\",\n info=\"The search query you want to execute with Tavily.\",\n tool_mode=True,\n ),\n DropdownInput(\n name=\"search_depth\",\n display_name=\"Search Depth\",\n info=\"The depth of the search.\",\n options=[\"basic\", \"advanced\"],\n value=\"advanced\",\n advanced=True,\n ),\n IntInput(\n name=\"chunks_per_source\",\n display_name=\"Chunks Per Source\",\n info=(\"The number of content chunks to retrieve from each source (1-3). Only works with advanced search.\"),\n value=3,\n advanced=True,\n ),\n DropdownInput(\n name=\"topic\",\n display_name=\"Search Topic\",\n info=\"The category of the search.\",\n options=[\"general\", \"news\"],\n value=\"general\",\n advanced=True,\n ),\n IntInput(\n name=\"days\",\n display_name=\"Days\",\n info=\"Number of days back from current date to include. Only available with news topic.\",\n value=7,\n advanced=True,\n ),\n IntInput(\n name=\"max_results\",\n display_name=\"Max Results\",\n info=\"The maximum number of search results to return.\",\n value=5,\n advanced=True,\n ),\n BoolInput(\n name=\"include_answer\",\n display_name=\"Include Answer\",\n info=\"Include a short answer to original query.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"time_range\",\n display_name=\"Time Range\",\n info=\"The time range back from the current date to filter results.\",\n options=[\"day\", \"week\", \"month\", \"year\"],\n value=None, # Default to None to make it optional\n advanced=True,\n ),\n BoolInput(\n name=\"include_images\",\n display_name=\"Include Images\",\n info=\"Include a list of query-related images in the response.\",\n value=True,\n advanced=True,\n ),\n MessageTextInput(\n name=\"include_domains\",\n display_name=\"Include Domains\",\n info=\"Comma-separated list of domains to include in the search results.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"exclude_domains\",\n display_name=\"Exclude Domains\",\n info=\"Comma-separated list of domains to exclude from the search results.\",\n advanced=True,\n ),\n BoolInput(\n name=\"include_raw_content\",\n display_name=\"Include Raw Content\",\n info=\"Include the cleaned and parsed HTML content of each search result.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"DataFrame\", name=\"dataframe\", method=\"fetch_content_dataframe\"),\n ]\n\n def fetch_content(self) -> list[Data]:\n try:\n # Only process domains if they're provided\n include_domains = None\n exclude_domains = None\n\n if self.include_domains:\n include_domains = [domain.strip() for domain in self.include_domains.split(\",\") if domain.strip()]\n\n if self.exclude_domains:\n exclude_domains = [domain.strip() for domain in self.exclude_domains.split(\",\") if domain.strip()]\n\n url = \"https://api.tavily.com/search\"\n headers = {\n \"content-type\": \"application/json\",\n \"accept\": \"application/json\",\n }\n\n payload = {\n \"api_key\": self.api_key,\n \"query\": self.query,\n \"search_depth\": self.search_depth,\n \"topic\": self.topic,\n \"max_results\": self.max_results,\n \"include_images\": self.include_images,\n \"include_answer\": self.include_answer,\n \"include_raw_content\": self.include_raw_content,\n \"days\": self.days,\n \"time_range\": self.time_range,\n }\n\n # Only add domains to payload if they exist and have values\n if include_domains:\n payload[\"include_domains\"] = include_domains\n if exclude_domains:\n payload[\"exclude_domains\"] = exclude_domains\n\n # Add conditional parameters only if they should be included\n if self.search_depth == \"advanced\" and self.chunks_per_source:\n payload[\"chunks_per_source\"] = self.chunks_per_source\n\n if self.topic == \"news\" and self.days:\n payload[\"days\"] = int(self.days) # Ensure days is an integer\n\n # Add time_range if it's set\n if hasattr(self, \"time_range\") and self.time_range:\n payload[\"time_range\"] = self.time_range\n\n # Add timeout handling\n with httpx.Client(timeout=90.0) as client:\n response = client.post(url, json=payload, headers=headers)\n\n response.raise_for_status()\n search_results = response.json()\n\n data_results = []\n\n if self.include_answer and search_results.get(\"answer\"):\n data_results.append(Data(text=search_results[\"answer\"]))\n\n for result in search_results.get(\"results\", []):\n content = result.get(\"content\", \"\")\n result_data = {\n \"title\": result.get(\"title\"),\n \"url\": result.get(\"url\"),\n \"content\": content,\n \"score\": result.get(\"score\"),\n }\n if self.include_raw_content:\n result_data[\"raw_content\"] = result.get(\"raw_content\")\n\n data_results.append(Data(text=content, data=result_data))\n\n if self.include_images and search_results.get(\"images\"):\n data_results.append(Data(text=\"Images found\", data={\"images\": search_results[\"images\"]}))\n\n except httpx.TimeoutException:\n error_message = \"Request timed out (90s). Please try again or adjust parameters.\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except httpx.HTTPStatusError as exc:\n error_message = f\"HTTP error occurred: {exc.response.status_code} - {exc.response.text}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except httpx.RequestError as exc:\n error_message = f\"Request error occurred: {exc}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n except ValueError as exc:\n error_message = f\"Invalid response format: {exc}\"\n logger.error(error_message)\n return [Data(text=error_message, data={\"error\": error_message})]\n else:\n self.status = data_results\n return data_results\n\n def fetch_content_dataframe(self) -> DataFrame:\n data = self.fetch_content()\n return DataFrame(data)\n"
|
|
1340
1340
|
},
|
|
1341
1341
|
"days": {
|
|
1342
1342
|
"_input_type": "IntInput",
|
|
@@ -2713,7 +2713,7 @@
|
|
|
2713
2713
|
"show": true,
|
|
2714
2714
|
"title_case": false,
|
|
2715
2715
|
"type": "code",
|
|
2716
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
2716
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
2717
2717
|
},
|
|
2718
2718
|
"handle_parsing_errors": {
|
|
2719
2719
|
"_input_type": "BoolInput",
|
|
@@ -1031,7 +1031,7 @@
|
|
|
1031
1031
|
"show": true,
|
|
1032
1032
|
"title_case": false,
|
|
1033
1033
|
"type": "code",
|
|
1034
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1034
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1035
1035
|
},
|
|
1036
1036
|
"handle_parsing_errors": {
|
|
1037
1037
|
"_input_type": "BoolInput",
|
|
@@ -1141,7 +1141,7 @@
|
|
|
1141
1141
|
"show": true,
|
|
1142
1142
|
"title_case": false,
|
|
1143
1143
|
"type": "code",
|
|
1144
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1144
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1145
1145
|
},
|
|
1146
1146
|
"handle_parsing_errors": {
|
|
1147
1147
|
"_input_type": "BoolInput",
|