langflow-base-nightly 0.5.0.dev36__py3-none-any.whl → 0.5.0.dev38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (343) hide show
  1. langflow/__main__.py +1 -1
  2. langflow/alembic/versions/4e5980a44eaa_fix_date_times_again.py +24 -30
  3. langflow/alembic/versions/58b28437a398_modify_nullable.py +6 -6
  4. langflow/alembic/versions/79e675cb6752_change_datetime_type.py +24 -30
  5. langflow/alembic/versions/b2fa308044b5_add_unique_constraints.py +12 -13
  6. langflow/api/build.py +21 -26
  7. langflow/api/health_check_router.py +3 -3
  8. langflow/api/utils.py +3 -3
  9. langflow/api/v1/callback.py +2 -2
  10. langflow/api/v1/chat.py +19 -31
  11. langflow/api/v1/endpoints.py +10 -10
  12. langflow/api/v1/flows.py +1 -1
  13. langflow/api/v1/knowledge_bases.py +19 -12
  14. langflow/api/v1/mcp.py +12 -12
  15. langflow/api/v1/mcp_projects.py +45 -81
  16. langflow/api/v1/mcp_utils.py +8 -8
  17. langflow/api/v1/schemas.py +1 -5
  18. langflow/api/v1/store.py +1 -1
  19. langflow/api/v1/validate.py +2 -2
  20. langflow/api/v1/voice_mode.py +58 -62
  21. langflow/api/v2/files.py +5 -3
  22. langflow/api/v2/mcp.py +10 -9
  23. langflow/base/composio/composio_base.py +21 -2
  24. langflow/base/data/docling_utils.py +194 -0
  25. langflow/base/data/kb_utils.py +33 -0
  26. langflow/base/embeddings/aiml_embeddings.py +1 -1
  27. langflow/base/flow_processing/utils.py +1 -2
  28. langflow/base/io/__init__.py +0 -1
  29. langflow/base/langwatch/utils.py +2 -1
  30. langflow/base/mcp/util.py +49 -47
  31. langflow/base/models/model.py +3 -3
  32. langflow/base/prompts/api_utils.py +1 -1
  33. langflow/base/tools/flow_tool.py +2 -2
  34. langflow/base/tools/run_flow.py +2 -6
  35. langflow/components/Notion/add_content_to_page.py +2 -2
  36. langflow/components/Notion/list_database_properties.py +2 -2
  37. langflow/components/Notion/list_pages.py +2 -2
  38. langflow/components/Notion/page_content_viewer.py +2 -2
  39. langflow/components/Notion/update_page_property.py +1 -1
  40. langflow/components/agentql/agentql_api.py +2 -10
  41. langflow/components/agents/agent.py +3 -3
  42. langflow/components/agents/mcp_component.py +54 -69
  43. langflow/components/anthropic/anthropic.py +5 -4
  44. langflow/components/assemblyai/assemblyai_get_subtitles.py +2 -2
  45. langflow/components/assemblyai/assemblyai_lemur.py +2 -2
  46. langflow/components/assemblyai/assemblyai_list_transcripts.py +2 -2
  47. langflow/components/assemblyai/assemblyai_poll_transcript.py +2 -2
  48. langflow/components/assemblyai/assemblyai_start_transcript.py +2 -2
  49. langflow/components/data/file.py +575 -55
  50. langflow/components/data/kb_ingest.py +116 -43
  51. langflow/components/data/kb_retrieval.py +24 -26
  52. langflow/components/data/url.py +1 -1
  53. langflow/components/datastax/astra_assistant_manager.py +3 -3
  54. langflow/components/datastax/create_assistant.py +1 -2
  55. langflow/components/deactivated/merge_data.py +1 -2
  56. langflow/components/deactivated/sub_flow.py +6 -7
  57. langflow/components/deactivated/vectara_self_query.py +3 -3
  58. langflow/components/docling/__init__.py +0 -198
  59. langflow/components/docling/docling_inline.py +1 -1
  60. langflow/components/embeddings/text_embedder.py +3 -3
  61. langflow/components/firecrawl/firecrawl_extract_api.py +2 -9
  62. langflow/components/google/gmail.py +1 -1
  63. langflow/components/google/google_generative_ai.py +5 -11
  64. langflow/components/groq/groq.py +4 -3
  65. langflow/components/helpers/current_date.py +2 -3
  66. langflow/components/helpers/memory.py +1 -1
  67. langflow/components/ibm/watsonx.py +1 -1
  68. langflow/components/ibm/watsonx_embeddings.py +1 -1
  69. langflow/components/langwatch/langwatch.py +3 -3
  70. langflow/components/logic/flow_tool.py +2 -2
  71. langflow/components/logic/notify.py +1 -1
  72. langflow/components/logic/run_flow.py +2 -3
  73. langflow/components/logic/sub_flow.py +4 -5
  74. langflow/components/mem0/mem0_chat_memory.py +2 -8
  75. langflow/components/nvidia/nvidia.py +3 -3
  76. langflow/components/olivya/olivya.py +7 -7
  77. langflow/components/ollama/ollama.py +8 -6
  78. langflow/components/processing/batch_run.py +8 -8
  79. langflow/components/processing/data_operations.py +2 -2
  80. langflow/components/processing/merge_data.py +1 -2
  81. langflow/components/processing/message_to_data.py +2 -3
  82. langflow/components/processing/parse_json_data.py +1 -1
  83. langflow/components/processing/save_file.py +6 -32
  84. langflow/components/prototypes/python_function.py +2 -3
  85. langflow/components/serpapi/serp.py +1 -1
  86. langflow/components/tavily/tavily_extract.py +1 -1
  87. langflow/components/tavily/tavily_search.py +1 -1
  88. langflow/components/tools/calculator.py +2 -2
  89. langflow/components/tools/python_code_structured_tool.py +3 -10
  90. langflow/components/tools/python_repl.py +2 -2
  91. langflow/components/tools/searxng.py +3 -3
  92. langflow/components/tools/serp_api.py +2 -2
  93. langflow/components/tools/tavily_search_tool.py +2 -2
  94. langflow/components/tools/yahoo_finance.py +1 -1
  95. langflow/components/twelvelabs/video_embeddings.py +4 -4
  96. langflow/components/vectorstores/astradb.py +30 -19
  97. langflow/components/vectorstores/local_db.py +1 -1
  98. langflow/components/yahoosearch/yahoo.py +1 -1
  99. langflow/components/youtube/trending.py +3 -4
  100. langflow/custom/attributes.py +2 -1
  101. langflow/custom/code_parser/code_parser.py +1 -1
  102. langflow/custom/custom_component/base_component.py +1 -1
  103. langflow/custom/custom_component/component.py +16 -2
  104. langflow/custom/directory_reader/directory_reader.py +7 -7
  105. langflow/custom/directory_reader/utils.py +1 -2
  106. langflow/custom/utils.py +30 -30
  107. langflow/events/event_manager.py +1 -1
  108. langflow/frontend/assets/{SlackIcon-B260Qg_R.js → SlackIcon-BhW6H3JR.js} +1 -1
  109. langflow/frontend/assets/{Wikipedia-BB2mbgyd.js → Wikipedia-Dx5jbiy3.js} +1 -1
  110. langflow/frontend/assets/{Wolfram-DytXC9hF.js → Wolfram-CIyonzwo.js} +1 -1
  111. langflow/frontend/assets/{index-DPX6X_bw.js → index-0XQqYgdG.js} +1 -1
  112. langflow/frontend/assets/{index-DtJyCbzF.js → index-1Q3VBqKn.js} +1 -1
  113. langflow/frontend/assets/{index-DztLFiip.js → index-35sspuLu.js} +1 -1
  114. langflow/frontend/assets/{index-BeNby7qF.js → index-7hzXChQz.js} +1 -1
  115. langflow/frontend/assets/{index-BOEf7-ty.js → index-8cuhogZP.js} +1 -1
  116. langflow/frontend/assets/{index-D0s9f6Re.js → index-B0m53xKd.js} +1 -1
  117. langflow/frontend/assets/{index-DpJiH-Rk.js → index-B1XqWJhG.js} +1 -1
  118. langflow/frontend/assets/{index-DuAeoC-H.js → index-B3KCdQ91.js} +1 -1
  119. langflow/frontend/assets/{index-Bxml6wXu.js → index-B7uEuOPK.js} +1 -1
  120. langflow/frontend/assets/{index-CDFLVFB4.js → index-B8UR8v-Q.js} +1 -1
  121. langflow/frontend/assets/{index-ci4XHjbJ.js → index-BD7Io1hL.js} +6 -6
  122. langflow/frontend/assets/{index-DasrI03Y.js → index-BDQrd7Tj.js} +1 -1
  123. langflow/frontend/assets/{index-CkQ-bJ4G.js → index-BDuk0d7P.js} +1 -1
  124. langflow/frontend/assets/{index-C_1RBTul.js → index-BFQ8KFK0.js} +1 -1
  125. langflow/frontend/assets/{index-DqSH4x-R.js → index-BFf0HTFI.js} +1 -1
  126. langflow/frontend/assets/{index-BXMhmvTj.js → index-BHhnpSkW.js} +1 -1
  127. langflow/frontend/assets/{index-Uq2ij_SS.js → index-BKKrUElc.js} +1 -1
  128. langflow/frontend/assets/{index-3TJWUdmx.js → index-BKeZt2hQ.js} +1 -1
  129. langflow/frontend/assets/{index-DHlEwAxb.js → index-BKlQbl-6.js} +1 -1
  130. langflow/frontend/assets/{index-Bisa4IQF.js → index-BLYw9MK2.js} +1 -1
  131. langflow/frontend/assets/{index-GODbXlHC.js → index-BLsVo9iW.js} +1 -1
  132. langflow/frontend/assets/{index-CHFO5O4g.js → index-BNQIbda3.js} +1 -1
  133. langflow/frontend/assets/{index-3uOAA_XX.js → index-BPR2mEFC.js} +1 -1
  134. langflow/frontend/assets/{index-3qMh9x6K.js → index-BPfdqCc_.js} +1 -1
  135. langflow/frontend/assets/{index-rcdQpNcU.js → index-BQrVDjR1.js} +1 -1
  136. langflow/frontend/assets/{index-4eRtaV45.js → index-BRmSeoWR.js} +1 -1
  137. langflow/frontend/assets/{index-Ct9_T9ox.js → index-BUse-kxM.js} +1 -1
  138. langflow/frontend/assets/{index-BdYgKk1d.js → index-BVFaF7HW.js} +1 -1
  139. langflow/frontend/assets/{index-CWWo2zOA.js → index-BWgIWfv2.js} +1 -1
  140. langflow/frontend/assets/{index-Du9aJK7m.js → index-BWt5xGeA.js} +1 -1
  141. langflow/frontend/assets/{index-Baka5dKE.js → index-BYhcGLTV.js} +1 -1
  142. langflow/frontend/assets/{index-BWq9GTzt.js → index-BYjw7Gk3.js} +1 -1
  143. langflow/frontend/assets/{index-r1LZg-PY.js → index-BZFljdMa.js} +1 -1
  144. langflow/frontend/assets/index-BcAgItH4.js +1 -0
  145. langflow/frontend/assets/{index-B8TlNgn-.js → index-Bct1s6__.js} +1 -1
  146. langflow/frontend/assets/{index-DZzbmg3J.js → index-Bhv79Zso.js} +1 -1
  147. langflow/frontend/assets/{index-CqDUqHfd.js → index-Bj3lSwvZ.js} +1 -1
  148. langflow/frontend/assets/{index-dkS0ek2S.js → index-Bk4mTwnI.js} +1 -1
  149. langflow/frontend/assets/{index-tOy_uloT.js → index-BmIx1cws.js} +1 -1
  150. langflow/frontend/assets/{index-BVtf6m9S.js → index-BmYJJ5YS.js} +1 -1
  151. langflow/frontend/assets/{index-mBjJYD9q.js → index-BnAFhkSN.js} +1 -1
  152. langflow/frontend/assets/{index-Ba3RTMXI.js → index-Bo-ww0Bb.js} +1 -1
  153. langflow/frontend/assets/{index-BsBWP-Dh.js → index-BpmqDOeZ.js} +1 -1
  154. langflow/frontend/assets/{index-BqUeOc7Y.js → index-BrVhdPZb.js} +1 -1
  155. langflow/frontend/assets/{index-DWkMJnbd.js → index-BvGQfVBD.js} +1 -1
  156. langflow/frontend/assets/{index-DdzVmJHE.js → index-Bwi4flFg.js} +1 -1
  157. langflow/frontend/assets/{index-Ccb5B8zG.js → index-BzoRPtTY.js} +1 -1
  158. langflow/frontend/assets/{index-Ym6gz0T6.js → index-C--IDAyc.js} +1 -1
  159. langflow/frontend/assets/{index-CvQ0w8Pj.js → index-C0E3_MIK.js} +1 -1
  160. langflow/frontend/assets/{index-DxIs8VSp.js → index-C27Jj_26.js} +1 -1
  161. langflow/frontend/assets/{index-BxWXWRmZ.js → index-C2eQmQsn.js} +1 -1
  162. langflow/frontend/assets/{index-B536IPXH.js → index-C8K0r39B.js} +1 -1
  163. langflow/frontend/assets/{index-BEDxAk3N.js → index-CEJNWPhA.js} +1 -1
  164. langflow/frontend/assets/{index-G_U_kPAd.js → index-CFNTYfFK.js} +1 -1
  165. langflow/frontend/assets/{index-CMGZGIx_.js → index-CMHpjHZl.js} +1 -1
  166. langflow/frontend/assets/{index-C76aBV_h.js → index-CSu8KHOi.js} +1 -1
  167. langflow/frontend/assets/{index-B-c82Fnu.js → index-CUKmGsI6.js} +1 -1
  168. langflow/frontend/assets/{index-DX7XsAcx.js → index-CWYiSeWV.js} +1 -1
  169. langflow/frontend/assets/{index-COL0eiWI.js → index-CY7_TBTC.js} +1 -1
  170. langflow/frontend/assets/{index-BlBl2tvQ.js → index-CbnWRlYY.js} +1 -1
  171. langflow/frontend/assets/{index-BQB-iDYl.js → index-CfPBgkqg.js} +1 -1
  172. langflow/frontend/assets/{index-DWr_zPkx.js → index-Cg53lrYh.js} +1 -1
  173. langflow/frontend/assets/{index-BcgB3rXH.js → index-CgU7KF4I.js} +1 -1
  174. langflow/frontend/assets/{index-CkSzjCqM.js → index-CgwykVGh.js} +1 -1
  175. langflow/frontend/assets/{index-BbsND1Qg.js → index-Ch5r0oW6.js} +1 -1
  176. langflow/frontend/assets/{index-AY5Dm2mG.js → index-CjsommIr.js} +1 -1
  177. langflow/frontend/assets/{index-BtJ2o21k.js → index-CkK25zZO.js} +1 -1
  178. langflow/frontend/assets/{index-BKvKC-12.js → index-CkjwSTSM.js} +1 -1
  179. langflow/frontend/assets/{index-BVHvIhT5.js → index-CmSFKgiD.js} +1 -1
  180. langflow/frontend/assets/{index-D-zkHcob.js → index-Cr5v2ave.js} +1 -1
  181. langflow/frontend/assets/{index-js8ceOaP.js → index-CrAF-31Y.js} +1 -1
  182. langflow/frontend/assets/{index-BNbWMmAV.js → index-CsLQiWNf.js} +1 -1
  183. langflow/frontend/assets/{index-VcXZzovW.js → index-CuCM7Wu7.js} +1 -1
  184. langflow/frontend/assets/{index-DzeIsaBm.js → index-Cxy9sEpy.js} +1 -1
  185. langflow/frontend/assets/{index-LrMzDsq9.js → index-CyP3py8K.js} +1 -1
  186. langflow/frontend/assets/{index-C8KD3LPb.js → index-CzHzeZuA.js} +1 -1
  187. langflow/frontend/assets/{index-DS1EgA10.js → index-D1oynC8a.js} +1 -1
  188. langflow/frontend/assets/{index-ByFXr9Iq.js → index-D4tjMhfY.js} +1 -1
  189. langflow/frontend/assets/{index-DyJDHm2D.js → index-D6CSIrp1.js} +1 -1
  190. langflow/frontend/assets/{index-DIqSyDVO.js → index-D9kwEzPB.js} +1 -1
  191. langflow/frontend/assets/{index-D5PeCofu.js → index-DDXsm8tz.js} +1 -1
  192. langflow/frontend/assets/{index-CJwYfDBz.js → index-DDhJVVel.js} +1 -1
  193. langflow/frontend/assets/{index-C7x9R_Yo.js → index-DH6o91_s.js} +1 -1
  194. langflow/frontend/assets/{index-DpQKtcXu.js → index-DHngW1k8.js} +1 -1
  195. langflow/frontend/assets/{index-VZnN0P6C.js → index-DIKUsGLF.js} +1 -1
  196. langflow/frontend/assets/{index-VHmUHUUU.js → index-DJESSNJi.js} +1 -1
  197. langflow/frontend/assets/{index-BdIWbCEL.js → index-DMCWDJOl.js} +1 -1
  198. langflow/frontend/assets/{index-DK8vNpXK.js → index-DOEvKC2X.js} +1 -1
  199. langflow/frontend/assets/{index-C7V5U9yH.js → index-DOQDkSoK.js} +1 -1
  200. langflow/frontend/assets/{index-D0HmkH0H.js → index-DXAfIEvs.js} +1 -1
  201. langflow/frontend/assets/{index-C9N80hP8.js → index-DZP_SaHb.js} +1 -1
  202. langflow/frontend/assets/{index-B2ggrBuR.js → index-DZxUIhWh.js} +1 -1
  203. langflow/frontend/assets/{index-DS9I4y48.js → index-Dda2u_yz.js} +1 -1
  204. langflow/frontend/assets/{index-BLROcaSz.js → index-Dg8N3NSO.js} +1 -1
  205. langflow/frontend/assets/{index-Dpz3oBf5.js → index-DkGhPNeA.js} +1 -1
  206. langflow/frontend/assets/{index-BnLT29qW.js → index-Dka_Rk4-.js} +1 -1
  207. langflow/frontend/assets/{index-B5ed-sAv.js → index-DljpLeCW.js} +1 -1
  208. langflow/frontend/assets/{index-Cx__T92e.js → index-DnVYJtVO.js} +1 -1
  209. langflow/frontend/assets/{index-hOkEW3JP.js → index-DqbzUcI5.js} +1 -1
  210. langflow/frontend/assets/{index-BxkZkBgQ.js → index-Dr6pVDPI.js} +1 -1
  211. langflow/frontend/assets/{index-BIkqesA-.js → index-DsoX2o1S.js} +1 -1
  212. langflow/frontend/assets/{index-Cpgkb0Q3.js → index-DwfHWnX7.js} +1 -1
  213. langflow/frontend/assets/{index-B9Mo3ndZ.js → index-Dx-Z87KT.js} +1 -1
  214. langflow/frontend/assets/{index-R7q8cAek.js → index-DyqITq51.js} +1 -1
  215. langflow/frontend/assets/{index-DKEXZFUO.js → index-DzIv3RyR.js} +1 -1
  216. langflow/frontend/assets/{index-BJrY2Fiu.js → index-G4ro0MjT.js} +1 -1
  217. langflow/frontend/assets/{index-IFGgPiye.js → index-H7J7w7fa.js} +1 -1
  218. langflow/frontend/assets/{index-lKEJpUsF.js → index-KWY77KfV.js} +1 -1
  219. langflow/frontend/assets/{index-DDNNv4C0.js → index-U9GWm1eH.js} +1 -1
  220. langflow/frontend/assets/{index-BRWNIt9F.js → index-Un9pWxnP.js} +1 -1
  221. langflow/frontend/assets/{index-BCK-ZyIh.js → index-Xi4TplbI.js} +1 -1
  222. langflow/frontend/assets/{index-BEKoRwsX.js → index-_cbGmjF4.js} +1 -1
  223. langflow/frontend/assets/{index-7xXgqu09.js → index-cEXY6V06.js} +1 -1
  224. langflow/frontend/assets/{index-D87Zw62M.js → index-dyXKnkMi.js} +1 -1
  225. langflow/frontend/assets/{index-CG7cp0nD.js → index-eUkS6iJM.js} +1 -1
  226. langflow/frontend/assets/{index-CoUlHbtg.js → index-ekfMOqrF.js} +1 -1
  227. langflow/frontend/assets/{index-DhzEUXfr.js → index-gdb7XMS8.js} +1 -1
  228. langflow/frontend/assets/{index-D9eflZfP.js → index-hZUcL0MZ.js} +1 -1
  229. langflow/frontend/assets/{index-CwIxqYlT.js → index-kkA-qHB_.js} +1 -1
  230. langflow/frontend/assets/{index-sS6XLk3j.js → index-mzl9ULw5.js} +1 -1
  231. langflow/frontend/assets/{index-BjENqyKe.js → index-oxHBZk2v.js} +1 -1
  232. langflow/frontend/assets/{index-BejHxU5W.js → index-p2kStSPe.js} +1 -1
  233. langflow/frontend/assets/{index-BOYTBrh9.js → index-paQEWYGT.js} +1 -1
  234. langflow/frontend/assets/{index-Cd5zuUUK.js → index-r_8gs4nL.js} +1 -1
  235. langflow/frontend/assets/{index-AlJ7td-D.js → index-uiKla4UR.js} +1 -1
  236. langflow/frontend/assets/{index-B8y58M9b.js → index-vJOO5U8M.js} +1 -1
  237. langflow/frontend/assets/{index-CF4dtI6S.js → index-w72fDjpG.js} +1 -1
  238. langflow/frontend/assets/{index-C2Xd7UkR.js → index-zV82kQ6k.js} +1 -1
  239. langflow/frontend/assets/lazyIconImports-DTNgvPE-.js +2 -0
  240. langflow/frontend/assets/{use-post-add-user-HN0rRnhv.js → use-post-add-user-CvtuazTg.js} +1 -1
  241. langflow/frontend/index.html +1 -1
  242. langflow/graph/edge/base.py +2 -3
  243. langflow/graph/graph/base.py +14 -12
  244. langflow/graph/graph/constants.py +3 -0
  245. langflow/graph/utils.py +6 -6
  246. langflow/graph/vertex/base.py +4 -5
  247. langflow/graph/vertex/param_handler.py +1 -1
  248. langflow/graph/vertex/vertex_types.py +2 -2
  249. langflow/helpers/flow.py +1 -1
  250. langflow/initial_setup/setup.py +32 -30
  251. langflow/initial_setup/starter_projects/Blog Writer.json +2 -2
  252. langflow/initial_setup/starter_projects/Custom Component Generator.json +2 -2
  253. langflow/initial_setup/starter_projects/Document Q&A.json +1 -1
  254. langflow/initial_setup/starter_projects/Hybrid Search RAG.json +2 -2
  255. langflow/initial_setup/starter_projects/Instagram Copywriter.json +3 -3
  256. langflow/initial_setup/starter_projects/Invoice Summarizer.json +1 -1
  257. langflow/initial_setup/starter_projects/Knowledge Ingestion.json +4 -4
  258. langflow/initial_setup/starter_projects/Knowledge Retrieval.json +2 -2
  259. langflow/initial_setup/starter_projects/Market Research.json +3 -3
  260. langflow/initial_setup/starter_projects/Meeting Summary.json +6 -6
  261. langflow/initial_setup/starter_projects/Memory Chatbot.json +2 -2
  262. langflow/initial_setup/starter_projects/News Aggregator.json +5 -22
  263. langflow/initial_setup/starter_projects/Nvidia Remix.json +3 -20
  264. langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +1 -1
  265. langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +1 -1
  266. langflow/initial_setup/starter_projects/Price Deal Finder.json +5 -5
  267. langflow/initial_setup/starter_projects/Research Agent.json +3 -3
  268. langflow/initial_setup/starter_projects/SaaS Pricing.json +1 -1
  269. langflow/initial_setup/starter_projects/Search agent.json +1 -1
  270. langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +7 -7
  271. langflow/initial_setup/starter_projects/Simple Agent.json +3 -3
  272. langflow/initial_setup/starter_projects/Social Media Agent.json +1 -1
  273. langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +1 -1
  274. langflow/initial_setup/starter_projects/Travel Planning Agents.json +3 -3
  275. langflow/initial_setup/starter_projects/Vector Store RAG.json +5 -5
  276. langflow/initial_setup/starter_projects/Youtube Analysis.json +3 -3
  277. langflow/interface/components.py +23 -22
  278. langflow/interface/initialize/loading.py +5 -5
  279. langflow/interface/run.py +1 -1
  280. langflow/interface/utils.py +1 -1
  281. langflow/io/__init__.py +0 -1
  282. langflow/langflow_launcher.py +1 -1
  283. langflow/load/load.py +2 -7
  284. langflow/logging/__init__.py +0 -1
  285. langflow/logging/logger.py +191 -115
  286. langflow/logging/setup.py +1 -1
  287. langflow/main.py +37 -52
  288. langflow/memory.py +7 -7
  289. langflow/middleware.py +1 -1
  290. langflow/processing/process.py +4 -4
  291. langflow/schema/artifact.py +2 -2
  292. langflow/schema/data.py +10 -2
  293. langflow/schema/dataframe.py +1 -1
  294. langflow/schema/message.py +1 -1
  295. langflow/serialization/serialization.py +1 -1
  296. langflow/services/auth/utils.py +2 -2
  297. langflow/services/cache/disk.py +1 -1
  298. langflow/services/cache/service.py +3 -3
  299. langflow/services/database/models/flow/model.py +2 -7
  300. langflow/services/database/models/transactions/crud.py +2 -2
  301. langflow/services/database/models/user/crud.py +2 -2
  302. langflow/services/database/service.py +8 -8
  303. langflow/services/database/utils.py +6 -5
  304. langflow/services/deps.py +2 -3
  305. langflow/services/factory.py +1 -1
  306. langflow/services/flow/flow_runner.py +7 -12
  307. langflow/services/job_queue/service.py +16 -15
  308. langflow/services/manager.py +3 -4
  309. langflow/services/settings/auth.py +1 -1
  310. langflow/services/settings/base.py +3 -8
  311. langflow/services/settings/manager.py +1 -1
  312. langflow/services/settings/utils.py +1 -1
  313. langflow/services/socket/__init__.py +0 -1
  314. langflow/services/socket/service.py +3 -3
  315. langflow/services/socket/utils.py +4 -4
  316. langflow/services/state/service.py +1 -2
  317. langflow/services/storage/factory.py +1 -1
  318. langflow/services/storage/local.py +9 -8
  319. langflow/services/storage/s3.py +11 -10
  320. langflow/services/store/service.py +3 -3
  321. langflow/services/store/utils.py +3 -2
  322. langflow/services/task/temp_flow_cleanup.py +7 -7
  323. langflow/services/telemetry/service.py +10 -10
  324. langflow/services/tracing/arize_phoenix.py +2 -2
  325. langflow/services/tracing/langfuse.py +1 -1
  326. langflow/services/tracing/langsmith.py +1 -1
  327. langflow/services/tracing/langwatch.py +1 -1
  328. langflow/services/tracing/opik.py +1 -1
  329. langflow/services/tracing/service.py +25 -6
  330. langflow/services/tracing/traceloop.py +245 -0
  331. langflow/services/utils.py +7 -7
  332. langflow/services/variable/kubernetes.py +3 -3
  333. langflow/services/variable/kubernetes_secrets.py +2 -1
  334. langflow/services/variable/service.py +5 -5
  335. langflow/utils/component_utils.py +9 -6
  336. langflow/utils/util.py +5 -5
  337. langflow/utils/validate.py +3 -3
  338. langflow/utils/voice_utils.py +2 -2
  339. {langflow_base_nightly-0.5.0.dev36.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/METADATA +2 -1
  340. {langflow_base_nightly-0.5.0.dev36.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/RECORD +342 -340
  341. langflow/frontend/assets/lazyIconImports-Bh1TFfvH.js +0 -2
  342. {langflow_base_nightly-0.5.0.dev36.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/WHEEL +0 -0
  343. {langflow_base_nightly-0.5.0.dev36.dist-info → langflow_base_nightly-0.5.0.dev38.dist-info}/entry_points.txt +0 -0
@@ -959,7 +959,7 @@
959
959
  "legacy": false,
960
960
  "lf_version": "1.4.3",
961
961
  "metadata": {
962
- "code_hash": "5ca89b168f3f",
962
+ "code_hash": "464cc8b8fdd2",
963
963
  "module": "langflow.components.helpers.memory.MemoryComponent"
964
964
  },
965
965
  "minimized": false,
@@ -1014,7 +1014,7 @@
1014
1014
  "show": true,
1015
1015
  "title_case": false,
1016
1016
  "type": "code",
1017
- "value": "from typing import Any, cast\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.helpers.data import data_to_text\nfrom langflow.inputs.inputs import DropdownInput, HandleInput, IntInput, MessageTextInput, MultilineInput, TabInput\nfrom langflow.memory import aget_messages, astore_message\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.template.field.base import Output\nfrom langflow.utils.component_utils import set_current_fields, set_field_display\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass MemoryComponent(Component):\n display_name = \"Message History\"\n description = \"Stores or retrieves stored chat messages from Langflow tables or an external memory.\"\n documentation: str = \"https://docs.langflow.org/components-helpers#message-history\"\n icon = \"message-square-more\"\n name = \"Memory\"\n default_keys = [\"mode\", \"memory\"]\n mode_config = {\n \"Store\": [\"message\", \"memory\", \"sender\", \"sender_name\", \"session_id\"],\n \"Retrieve\": [\"n_messages\", \"order\", \"template\", \"memory\"],\n }\n\n inputs = [\n TabInput(\n name=\"mode\",\n display_name=\"Mode\",\n options=[\"Retrieve\", \"Store\"],\n value=\"Retrieve\",\n info=\"Operation mode: Store messages or Retrieve messages.\",\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"message\",\n display_name=\"Message\",\n info=\"The chat message to be stored.\",\n tool_mode=True,\n dynamic=True,\n show=False,\n ),\n HandleInput(\n name=\"memory\",\n display_name=\"External Memory\",\n input_types=[\"Memory\"],\n info=\"Retrieve messages from an external memory. If empty, it will use the Langflow tables.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"sender_type\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER, \"Machine and User\"],\n value=\"Machine and User\",\n info=\"Filter by sender type.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender\",\n display_name=\"Sender\",\n info=\"The sender of the message. Might be Machine or User. \"\n \"If empty, the current sender parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Filter by sender name.\",\n advanced=True,\n show=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Messages\",\n value=100,\n info=\"Number of messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n value=\"\",\n advanced=True,\n ),\n DropdownInput(\n name=\"order\",\n display_name=\"Order\",\n options=[\"Ascending\", \"Descending\"],\n value=\"Ascending\",\n info=\"Order of the messages.\",\n advanced=True,\n tool_mode=True,\n required=True,\n ),\n MultilineInput(\n name=\"template\",\n display_name=\"Template\",\n info=\"The template to use for formatting the data. \"\n \"It can contain the keys {text}, {sender} or any other key in the message data.\",\n value=\"{sender_name}: {text}\",\n advanced=True,\n show=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Message\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True),\n Output(display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True),\n ]\n\n def update_outputs(self, frontend_node: dict, field_name: str, field_value: Any) -> dict:\n \"\"\"Dynamically show only the relevant output based on the selected output type.\"\"\"\n if field_name == \"mode\":\n # Start with empty outputs\n frontend_node[\"outputs\"] = []\n if field_value == \"Store\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Stored Messages\",\n name=\"stored_messages\",\n method=\"store_message\",\n hidden=True,\n dynamic=True,\n )\n ]\n if field_value == \"Retrieve\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Messages\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True\n ),\n Output(\n display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True\n ),\n ]\n return frontend_node\n\n async def store_message(self) -> Message:\n message = Message(text=self.message) if isinstance(self.message, str) else self.message\n\n message.session_id = self.session_id or message.session_id\n message.sender = self.sender or message.sender or MESSAGE_SENDER_AI\n message.sender_name = self.sender_name or message.sender_name or MESSAGE_SENDER_NAME_AI\n\n stored_messages: list[Message] = []\n\n if self.memory:\n self.memory.session_id = message.session_id\n lc_message = message.to_lc_message()\n await self.memory.aadd_messages([lc_message])\n\n stored_messages = await self.memory.aget_messages() or []\n\n stored_messages = [Message.from_lc_message(m) for m in stored_messages] if stored_messages else []\n\n if message.sender:\n stored_messages = [m for m in stored_messages if m.sender == message.sender]\n else:\n await astore_message(message, flow_id=self.graph.flow_id)\n stored_messages = (\n await aget_messages(\n session_id=message.session_id, sender_name=message.sender_name, sender=message.sender\n )\n or []\n )\n\n if not stored_messages:\n msg = \"No messages were stored. Please ensure that the session ID and sender are properly set.\"\n raise ValueError(msg)\n\n stored_message = stored_messages[0]\n self.status = stored_message\n return stored_message\n\n async def retrieve_messages(self) -> Data:\n sender_type = self.sender_type\n sender_name = self.sender_name\n session_id = self.session_id\n n_messages = self.n_messages\n order = \"DESC\" if self.order == \"Descending\" else \"ASC\"\n\n if sender_type == \"Machine and User\":\n sender_type = None\n\n if self.memory and not hasattr(self.memory, \"aget_messages\"):\n memory_name = type(self.memory).__name__\n err_msg = f\"External Memory object ({memory_name}) must have 'aget_messages' method.\"\n raise AttributeError(err_msg)\n # Check if n_messages is None or 0\n if n_messages == 0:\n stored = []\n elif self.memory:\n # override session_id\n self.memory.session_id = session_id\n\n stored = await self.memory.aget_messages()\n # langchain memories are supposed to return messages in ascending order\n\n if order == \"DESC\":\n stored = stored[::-1]\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n stored = [Message.from_lc_message(m) for m in stored]\n if sender_type:\n expected_type = MESSAGE_SENDER_AI if sender_type == MESSAGE_SENDER_AI else MESSAGE_SENDER_USER\n stored = [m for m in stored if m.type == expected_type]\n else:\n # For internal memory, we always fetch the last N messages by ordering by DESC\n stored = await aget_messages(\n sender=sender_type,\n sender_name=sender_name,\n session_id=session_id,\n limit=10000,\n order=order,\n )\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n\n # self.status = stored\n return cast(Data, stored)\n\n async def retrieve_messages_as_text(self) -> Message:\n stored_text = data_to_text(self.template, await self.retrieve_messages())\n # self.status = stored_text\n return Message(text=stored_text)\n\n async def retrieve_messages_dataframe(self) -> DataFrame:\n \"\"\"Convert the retrieved messages into a DataFrame.\n\n Returns:\n DataFrame: A DataFrame containing the message data.\n \"\"\"\n messages = await self.retrieve_messages()\n return DataFrame(messages)\n\n def update_build_config(\n self,\n build_config: dotdict,\n field_value: Any, # noqa: ARG002\n field_name: str | None = None, # noqa: ARG002\n ) -> dotdict:\n return set_current_fields(\n build_config=build_config,\n action_fields=self.mode_config,\n selected_action=build_config[\"mode\"][\"value\"],\n default_fields=self.default_keys,\n func=set_field_display,\n )\n"
1017
+ "value": "from typing import Any, cast\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.helpers.data import data_to_text\nfrom langflow.inputs.inputs import DropdownInput, HandleInput, IntInput, MessageTextInput, MultilineInput, TabInput\nfrom langflow.memory import aget_messages, astore_message\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.template.field.base import Output\nfrom langflow.utils.component_utils import set_current_fields, set_field_display\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass MemoryComponent(Component):\n display_name = \"Message History\"\n description = \"Stores or retrieves stored chat messages from Langflow tables or an external memory.\"\n documentation: str = \"https://docs.langflow.org/components-helpers#message-history\"\n icon = \"message-square-more\"\n name = \"Memory\"\n default_keys = [\"mode\", \"memory\"]\n mode_config = {\n \"Store\": [\"message\", \"memory\", \"sender\", \"sender_name\", \"session_id\"],\n \"Retrieve\": [\"n_messages\", \"order\", \"template\", \"memory\"],\n }\n\n inputs = [\n TabInput(\n name=\"mode\",\n display_name=\"Mode\",\n options=[\"Retrieve\", \"Store\"],\n value=\"Retrieve\",\n info=\"Operation mode: Store messages or Retrieve messages.\",\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"message\",\n display_name=\"Message\",\n info=\"The chat message to be stored.\",\n tool_mode=True,\n dynamic=True,\n show=False,\n ),\n HandleInput(\n name=\"memory\",\n display_name=\"External Memory\",\n input_types=[\"Memory\"],\n info=\"Retrieve messages from an external memory. If empty, it will use the Langflow tables.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"sender_type\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER, \"Machine and User\"],\n value=\"Machine and User\",\n info=\"Filter by sender type.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender\",\n display_name=\"Sender\",\n info=\"The sender of the message. Might be Machine or User. \"\n \"If empty, the current sender parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Filter by sender name.\",\n advanced=True,\n show=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Messages\",\n value=100,\n info=\"Number of messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n value=\"\",\n advanced=True,\n ),\n DropdownInput(\n name=\"order\",\n display_name=\"Order\",\n options=[\"Ascending\", \"Descending\"],\n value=\"Ascending\",\n info=\"Order of the messages.\",\n advanced=True,\n tool_mode=True,\n required=True,\n ),\n MultilineInput(\n name=\"template\",\n display_name=\"Template\",\n info=\"The template to use for formatting the data. \"\n \"It can contain the keys {text}, {sender} or any other key in the message data.\",\n value=\"{sender_name}: {text}\",\n advanced=True,\n show=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Message\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True),\n Output(display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True),\n ]\n\n def update_outputs(self, frontend_node: dict, field_name: str, field_value: Any) -> dict:\n \"\"\"Dynamically show only the relevant output based on the selected output type.\"\"\"\n if field_name == \"mode\":\n # Start with empty outputs\n frontend_node[\"outputs\"] = []\n if field_value == \"Store\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Stored Messages\",\n name=\"stored_messages\",\n method=\"store_message\",\n hidden=True,\n dynamic=True,\n )\n ]\n if field_value == \"Retrieve\":\n frontend_node[\"outputs\"] = [\n Output(\n display_name=\"Messages\", name=\"messages_text\", method=\"retrieve_messages_as_text\", dynamic=True\n ),\n Output(\n display_name=\"Dataframe\", name=\"dataframe\", method=\"retrieve_messages_dataframe\", dynamic=True\n ),\n ]\n return frontend_node\n\n async def store_message(self) -> Message:\n message = Message(text=self.message) if isinstance(self.message, str) else self.message\n\n message.session_id = self.session_id or message.session_id\n message.sender = self.sender or message.sender or MESSAGE_SENDER_AI\n message.sender_name = self.sender_name or message.sender_name or MESSAGE_SENDER_NAME_AI\n\n stored_messages: list[Message] = []\n\n if self.memory:\n self.memory.session_id = message.session_id\n lc_message = message.to_lc_message()\n await self.memory.aadd_messages([lc_message])\n\n stored_messages = await self.memory.aget_messages() or []\n\n stored_messages = [Message.from_lc_message(m) for m in stored_messages] if stored_messages else []\n\n if message.sender:\n stored_messages = [m for m in stored_messages if m.sender == message.sender]\n else:\n await astore_message(message, flow_id=self.graph.flow_id)\n stored_messages = (\n await aget_messages(\n session_id=message.session_id, sender_name=message.sender_name, sender=message.sender\n )\n or []\n )\n\n if not stored_messages:\n msg = \"No messages were stored. Please ensure that the session ID and sender are properly set.\"\n raise ValueError(msg)\n\n stored_message = stored_messages[0]\n self.status = stored_message\n return stored_message\n\n async def retrieve_messages(self) -> Data:\n sender_type = self.sender_type\n sender_name = self.sender_name\n session_id = self.session_id\n n_messages = self.n_messages\n order = \"DESC\" if self.order == \"Descending\" else \"ASC\"\n\n if sender_type == \"Machine and User\":\n sender_type = None\n\n if self.memory and not hasattr(self.memory, \"aget_messages\"):\n memory_name = type(self.memory).__name__\n err_msg = f\"External Memory object ({memory_name}) must have 'aget_messages' method.\"\n raise AttributeError(err_msg)\n # Check if n_messages is None or 0\n if n_messages == 0:\n stored = []\n elif self.memory:\n # override session_id\n self.memory.session_id = session_id\n\n stored = await self.memory.aget_messages()\n # langchain memories are supposed to return messages in ascending order\n\n if order == \"DESC\":\n stored = stored[::-1]\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n stored = [Message.from_lc_message(m) for m in stored]\n if sender_type:\n expected_type = MESSAGE_SENDER_AI if sender_type == MESSAGE_SENDER_AI else MESSAGE_SENDER_USER\n stored = [m for m in stored if m.type == expected_type]\n else:\n # For internal memory, we always fetch the last N messages by ordering by DESC\n stored = await aget_messages(\n sender=sender_type,\n sender_name=sender_name,\n session_id=session_id,\n limit=10000,\n order=order,\n )\n if n_messages:\n stored = stored[-n_messages:] if order == \"ASC\" else stored[:n_messages]\n\n # self.status = stored\n return cast(\"Data\", stored)\n\n async def retrieve_messages_as_text(self) -> Message:\n stored_text = data_to_text(self.template, await self.retrieve_messages())\n # self.status = stored_text\n return Message(text=stored_text)\n\n async def retrieve_messages_dataframe(self) -> DataFrame:\n \"\"\"Convert the retrieved messages into a DataFrame.\n\n Returns:\n DataFrame: A DataFrame containing the message data.\n \"\"\"\n messages = await self.retrieve_messages()\n return DataFrame(messages)\n\n def update_build_config(\n self,\n build_config: dotdict,\n field_value: Any, # noqa: ARG002\n field_name: str | None = None, # noqa: ARG002\n ) -> dotdict:\n return set_current_fields(\n build_config=build_config,\n action_fields=self.mode_config,\n selected_action=build_config[\"mode\"][\"value\"],\n default_fields=self.default_keys,\n func=set_field_display,\n )\n"
1018
1018
  },
1019
1019
  "memory": {
1020
1020
  "_input_type": "HandleInput",
@@ -205,7 +205,7 @@
205
205
  "legacy": false,
206
206
  "lf_version": "1.4.3",
207
207
  "metadata": {
208
- "code_hash": "ce845cc47ae8",
208
+ "code_hash": "ab828f4cdff2",
209
209
  "module": "langflow.components.agentql.agentql_api.AgentQL"
210
210
  },
211
211
  "minimized": false,
@@ -265,7 +265,7 @@
265
265
  "show": true,
266
266
  "title_case": false,
267
267
  "type": "code",
268
- "value": "import httpx\nfrom loguru import logger\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.io import (\n BoolInput,\n DropdownInput,\n IntInput,\n MessageTextInput,\n MultilineInput,\n Output,\n SecretStrInput,\n)\nfrom langflow.schema.data import Data\n\n\nclass AgentQL(Component):\n display_name = \"Extract Web Data\"\n description = \"Extracts structured data from a web page using an AgentQL query or a Natural Language description.\"\n documentation: str = \"https://docs.agentql.com/rest-api/api-reference\"\n icon = \"AgentQL\"\n name = \"AgentQL\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"API Key\",\n required=True,\n password=True,\n info=\"Your AgentQL API key from dev.agentql.com\",\n ),\n MessageTextInput(\n name=\"url\",\n display_name=\"URL\",\n required=True,\n info=\"The URL of the public web page you want to extract data from.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"query\",\n display_name=\"AgentQL Query\",\n required=False,\n info=\"The AgentQL query to execute. Learn more at https://docs.agentql.com/agentql-query or use a prompt.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"prompt\",\n display_name=\"Prompt\",\n required=False,\n info=\"A Natural Language description of the data to extract from the page. Alternative to AgentQL query.\",\n tool_mode=True,\n ),\n BoolInput(\n name=\"is_stealth_mode_enabled\",\n display_name=\"Enable Stealth Mode (Beta)\",\n info=\"Enable experimental anti-bot evasion strategies. May not work for all websites at all times.\",\n value=False,\n advanced=True,\n ),\n IntInput(\n name=\"timeout\",\n display_name=\"Timeout\",\n info=\"Seconds to wait for a request.\",\n value=900,\n advanced=True,\n ),\n DropdownInput(\n name=\"mode\",\n display_name=\"Request Mode\",\n info=\"'standard' uses deep data analysis, while 'fast' trades some depth of analysis for speed.\",\n options=[\"fast\", \"standard\"],\n value=\"fast\",\n advanced=True,\n ),\n IntInput(\n name=\"wait_for\",\n display_name=\"Wait For\",\n info=\"Seconds to wait for the page to load before extracting data.\",\n value=0,\n range_spec=RangeSpec(min=0, max=10, step_type=\"int\"),\n advanced=True,\n ),\n BoolInput(\n name=\"is_scroll_to_bottom_enabled\",\n display_name=\"Enable scroll to bottom\",\n info=\"Scroll to bottom of the page before extracting data.\",\n value=False,\n advanced=True,\n ),\n BoolInput(\n name=\"is_screenshot_enabled\",\n display_name=\"Enable screenshot\",\n info=\"Take a screenshot before extracting data. Returned in 'metadata' as a Base64 string.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Data\", name=\"data\", method=\"build_output\"),\n ]\n\n def build_output(self) -> Data:\n endpoint = \"https://api.agentql.com/v1/query-data\"\n headers = {\n \"X-API-Key\": self.api_key,\n \"Content-Type\": \"application/json\",\n \"X-TF-Request-Origin\": \"langflow\",\n }\n\n payload = {\n \"url\": self.url,\n \"query\": self.query,\n \"prompt\": self.prompt,\n \"params\": {\n \"mode\": self.mode,\n \"wait_for\": self.wait_for,\n \"is_scroll_to_bottom_enabled\": self.is_scroll_to_bottom_enabled,\n \"is_screenshot_enabled\": self.is_screenshot_enabled,\n },\n \"metadata\": {\n \"experimental_stealth_mode_enabled\": self.is_stealth_mode_enabled,\n },\n }\n\n if not self.prompt and not self.query:\n self.status = \"Either Query or Prompt must be provided.\"\n raise ValueError(self.status)\n if self.prompt and self.query:\n self.status = \"Both Query and Prompt can't be provided at the same time.\"\n raise ValueError(self.status)\n\n try:\n response = httpx.post(endpoint, headers=headers, json=payload, timeout=self.timeout)\n response.raise_for_status()\n\n json = response.json()\n data = Data(result=json[\"data\"], metadata=json[\"metadata\"])\n\n except httpx.HTTPStatusError as e:\n response = e.response\n if response.status_code == httpx.codes.UNAUTHORIZED:\n self.status = \"Please, provide a valid API Key. You can create one at https://dev.agentql.com.\"\n else:\n try:\n error_json = response.json()\n logger.error(\n f\"Failure response: '{response.status_code} {response.reason_phrase}' with body: {error_json}\"\n )\n msg = error_json[\"error_info\"] if \"error_info\" in error_json else error_json[\"detail\"]\n except (ValueError, TypeError):\n msg = f\"HTTP {e}.\"\n self.status = msg\n raise ValueError(self.status) from e\n\n else:\n self.status = data\n return data\n"
268
+ "value": "import httpx\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MessageTextInput, MultilineInput, Output, SecretStrInput\nfrom langflow.logging.logger import logger\nfrom langflow.schema.data import Data\n\n\nclass AgentQL(Component):\n display_name = \"Extract Web Data\"\n description = \"Extracts structured data from a web page using an AgentQL query or a Natural Language description.\"\n documentation: str = \"https://docs.agentql.com/rest-api/api-reference\"\n icon = \"AgentQL\"\n name = \"AgentQL\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"API Key\",\n required=True,\n password=True,\n info=\"Your AgentQL API key from dev.agentql.com\",\n ),\n MessageTextInput(\n name=\"url\",\n display_name=\"URL\",\n required=True,\n info=\"The URL of the public web page you want to extract data from.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"query\",\n display_name=\"AgentQL Query\",\n required=False,\n info=\"The AgentQL query to execute. Learn more at https://docs.agentql.com/agentql-query or use a prompt.\",\n tool_mode=True,\n ),\n MultilineInput(\n name=\"prompt\",\n display_name=\"Prompt\",\n required=False,\n info=\"A Natural Language description of the data to extract from the page. Alternative to AgentQL query.\",\n tool_mode=True,\n ),\n BoolInput(\n name=\"is_stealth_mode_enabled\",\n display_name=\"Enable Stealth Mode (Beta)\",\n info=\"Enable experimental anti-bot evasion strategies. May not work for all websites at all times.\",\n value=False,\n advanced=True,\n ),\n IntInput(\n name=\"timeout\",\n display_name=\"Timeout\",\n info=\"Seconds to wait for a request.\",\n value=900,\n advanced=True,\n ),\n DropdownInput(\n name=\"mode\",\n display_name=\"Request Mode\",\n info=\"'standard' uses deep data analysis, while 'fast' trades some depth of analysis for speed.\",\n options=[\"fast\", \"standard\"],\n value=\"fast\",\n advanced=True,\n ),\n IntInput(\n name=\"wait_for\",\n display_name=\"Wait For\",\n info=\"Seconds to wait for the page to load before extracting data.\",\n value=0,\n range_spec=RangeSpec(min=0, max=10, step_type=\"int\"),\n advanced=True,\n ),\n BoolInput(\n name=\"is_scroll_to_bottom_enabled\",\n display_name=\"Enable scroll to bottom\",\n info=\"Scroll to bottom of the page before extracting data.\",\n value=False,\n advanced=True,\n ),\n BoolInput(\n name=\"is_screenshot_enabled\",\n display_name=\"Enable screenshot\",\n info=\"Take a screenshot before extracting data. Returned in 'metadata' as a Base64 string.\",\n value=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Data\", name=\"data\", method=\"build_output\"),\n ]\n\n def build_output(self) -> Data:\n endpoint = \"https://api.agentql.com/v1/query-data\"\n headers = {\n \"X-API-Key\": self.api_key,\n \"Content-Type\": \"application/json\",\n \"X-TF-Request-Origin\": \"langflow\",\n }\n\n payload = {\n \"url\": self.url,\n \"query\": self.query,\n \"prompt\": self.prompt,\n \"params\": {\n \"mode\": self.mode,\n \"wait_for\": self.wait_for,\n \"is_scroll_to_bottom_enabled\": self.is_scroll_to_bottom_enabled,\n \"is_screenshot_enabled\": self.is_screenshot_enabled,\n },\n \"metadata\": {\n \"experimental_stealth_mode_enabled\": self.is_stealth_mode_enabled,\n },\n }\n\n if not self.prompt and not self.query:\n self.status = \"Either Query or Prompt must be provided.\"\n raise ValueError(self.status)\n if self.prompt and self.query:\n self.status = \"Both Query and Prompt can't be provided at the same time.\"\n raise ValueError(self.status)\n\n try:\n response = httpx.post(endpoint, headers=headers, json=payload, timeout=self.timeout)\n response.raise_for_status()\n\n json = response.json()\n data = Data(result=json[\"data\"], metadata=json[\"metadata\"])\n\n except httpx.HTTPStatusError as e:\n response = e.response\n if response.status_code == httpx.codes.UNAUTHORIZED:\n self.status = \"Please, provide a valid API Key. You can create one at https://dev.agentql.com.\"\n else:\n try:\n error_json = response.json()\n logger.error(\n f\"Failure response: '{response.status_code} {response.reason_phrase}' with body: {error_json}\"\n )\n msg = error_json[\"error_info\"] if \"error_info\" in error_json else error_json[\"detail\"]\n except (ValueError, TypeError):\n msg = f\"HTTP {e}.\"\n self.status = msg\n raise ValueError(self.status) from e\n\n else:\n self.status = data\n return data\n"
269
269
  },
270
270
  "is_screenshot_enabled": {
271
271
  "_input_type": "BoolInput",
@@ -1208,7 +1208,7 @@
1208
1208
  "legacy": false,
1209
1209
  "lf_version": "1.4.3",
1210
1210
  "metadata": {
1211
- "code_hash": "d9af728ce02a",
1211
+ "code_hash": "1bcc6faaaa62",
1212
1212
  "module": "langflow.components.processing.save_file.SaveToFileComponent"
1213
1213
  },
1214
1214
  "minimized": false,
@@ -1232,23 +1232,6 @@
1232
1232
  "pinned": false,
1233
1233
  "template": {
1234
1234
  "_type": "Component",
1235
- "api_key": {
1236
- "_input_type": "SecretStrInput",
1237
- "advanced": true,
1238
- "display_name": "Langflow API Key",
1239
- "dynamic": false,
1240
- "info": "Langflow API key for authentication when saving the file.",
1241
- "input_types": [],
1242
- "load_from_db": true,
1243
- "name": "api_key",
1244
- "password": true,
1245
- "placeholder": "",
1246
- "required": false,
1247
- "show": true,
1248
- "title_case": false,
1249
- "type": "str",
1250
- "value": ""
1251
- },
1252
1235
  "code": {
1253
1236
  "advanced": true,
1254
1237
  "dynamic": true,
@@ -1265,7 +1248,7 @@
1265
1248
  "show": true,
1266
1249
  "title_case": false,
1267
1250
  "type": "code",
1268
- "value": "import json\nfrom collections.abc import AsyncIterator, Iterator\nfrom pathlib import Path\nfrom typing import TYPE_CHECKING\n\nimport orjson\nimport pandas as pd\nfrom fastapi import UploadFile\nfrom fastapi.encoders import jsonable_encoder\n\nfrom langflow.api.v2.files import upload_user_file\nfrom langflow.custom import Component\nfrom langflow.io import DropdownInput, HandleInput, SecretStrInput, StrInput\nfrom langflow.schema import Data, DataFrame, Message\nfrom langflow.services.auth.utils import create_user_longterm_token, get_current_user\nfrom langflow.services.database.models.user.crud import get_user_by_id\nfrom langflow.services.deps import get_session, get_settings_service, get_storage_service\nfrom langflow.template.field.base import Output\n\nif TYPE_CHECKING:\n from langflow.services.database.models.user.model import User\n\n\nclass SaveToFileComponent(Component):\n display_name = \"Save File\"\n description = \"Save data to a local file in the selected format.\"\n documentation: str = \"https://docs.langflow.org/components-processing#save-file\"\n icon = \"save\"\n name = \"SaveToFile\"\n\n # File format options for different types\n DATA_FORMAT_CHOICES = [\"csv\", \"excel\", \"json\", \"markdown\"]\n MESSAGE_FORMAT_CHOICES = [\"txt\", \"json\", \"markdown\"]\n\n inputs = [\n HandleInput(\n name=\"input\",\n display_name=\"Input\",\n info=\"The input to save.\",\n dynamic=True,\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n StrInput(\n name=\"file_name\",\n display_name=\"File Name\",\n info=\"Name file will be saved as (without extension).\",\n required=True,\n ),\n DropdownInput(\n name=\"file_format\",\n display_name=\"File Format\",\n options=list(dict.fromkeys(DATA_FORMAT_CHOICES + MESSAGE_FORMAT_CHOICES)),\n info=\"Select the file format to save the input. If not provided, the default format will be used.\",\n value=\"\",\n advanced=True,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Langflow API Key\",\n info=\"Langflow API key for authentication when saving the file.\",\n required=False,\n advanced=True,\n ),\n ]\n\n outputs = [Output(display_name=\"File Path\", name=\"message\", method=\"save_to_file\")]\n\n async def save_to_file(self) -> Message:\n \"\"\"Save the input to a file and upload it, returning a confirmation message.\"\"\"\n # Validate inputs\n if not self.file_name:\n msg = \"File name must be provided.\"\n raise ValueError(msg)\n if not self._get_input_type():\n msg = \"Input type is not set.\"\n raise ValueError(msg)\n\n # Validate file format based on input type\n file_format = self.file_format or self._get_default_format()\n allowed_formats = (\n self.MESSAGE_FORMAT_CHOICES if self._get_input_type() == \"Message\" else self.DATA_FORMAT_CHOICES\n )\n if file_format not in allowed_formats:\n msg = f\"Invalid file format '{file_format}' for {self._get_input_type()}. Allowed: {allowed_formats}\"\n raise ValueError(msg)\n\n # Prepare file path\n file_path = Path(self.file_name).expanduser()\n if not file_path.parent.exists():\n file_path.parent.mkdir(parents=True, exist_ok=True)\n file_path = self._adjust_file_path_with_format(file_path, file_format)\n\n # Save the input to file based on type\n if self._get_input_type() == \"DataFrame\":\n confirmation = self._save_dataframe(self.input, file_path, file_format)\n elif self._get_input_type() == \"Data\":\n confirmation = self._save_data(self.input, file_path, file_format)\n elif self._get_input_type() == \"Message\":\n confirmation = await self._save_message(self.input, file_path, file_format)\n else:\n msg = f\"Unsupported input type: {self._get_input_type()}\"\n raise ValueError(msg)\n\n # Upload the saved file\n await self._upload_file(file_path)\n\n # Return the final file path and confirmation message\n final_path = Path.cwd() / file_path if not file_path.is_absolute() else file_path\n\n return Message(text=f\"{confirmation} at {final_path}\")\n\n def _get_input_type(self) -> str:\n \"\"\"Determine the input type based on the provided input.\"\"\"\n # Use exact type checking (type() is) instead of isinstance() to avoid inheritance issues.\n # Since Message inherits from Data, isinstance(message, Data) would return True for Message objects,\n # causing Message inputs to be incorrectly identified as Data type.\n if type(self.input) is DataFrame:\n return \"DataFrame\"\n if type(self.input) is Message:\n return \"Message\"\n if type(self.input) is Data:\n return \"Data\"\n msg = f\"Unsupported input type: {type(self.input)}\"\n raise ValueError(msg)\n\n def _get_default_format(self) -> str:\n \"\"\"Return the default file format based on input type.\"\"\"\n if self._get_input_type() == \"DataFrame\":\n return \"csv\"\n if self._get_input_type() == \"Data\":\n return \"json\"\n if self._get_input_type() == \"Message\":\n return \"json\"\n return \"json\" # Fallback\n\n def _adjust_file_path_with_format(self, path: Path, fmt: str) -> Path:\n \"\"\"Adjust the file path to include the correct extension.\"\"\"\n file_extension = path.suffix.lower().lstrip(\".\")\n if fmt == \"excel\":\n return Path(f\"{path}.xlsx\").expanduser() if file_extension not in [\"xlsx\", \"xls\"] else path\n return Path(f\"{path}.{fmt}\").expanduser() if file_extension != fmt else path\n\n async def _upload_file(self, file_path: Path) -> None:\n \"\"\"Upload the saved file using the upload_user_file service.\"\"\"\n if not file_path.exists():\n msg = f\"File not found: {file_path}\"\n raise FileNotFoundError(msg)\n\n with file_path.open(\"rb\") as f:\n async for db in get_session():\n # TODO: In 1.6, this may need to be removed or adjusted\n # Try to get the super user token, if possible\n current_user: User | None = None\n if self.api_key:\n current_user = await get_current_user(\n token=\"\",\n query_param=self.api_key,\n header_param=\"\",\n db=db,\n )\n else:\n user_id, _ = await create_user_longterm_token(db)\n current_user = await get_user_by_id(db, user_id)\n\n # Fail if the user is not found\n if not current_user:\n msg = \"User not found. Please provide a valid API key or ensure the user exists.\"\n raise ValueError(msg)\n\n await upload_user_file(\n file=UploadFile(filename=file_path.name, file=f, size=file_path.stat().st_size),\n session=db,\n current_user=current_user,\n storage_service=get_storage_service(),\n settings_service=get_settings_service(),\n )\n\n def _save_dataframe(self, dataframe: DataFrame, path: Path, fmt: str) -> str:\n \"\"\"Save a DataFrame to the specified file format.\"\"\"\n if fmt == \"csv\":\n dataframe.to_csv(path, index=False)\n elif fmt == \"excel\":\n dataframe.to_excel(path, index=False, engine=\"openpyxl\")\n elif fmt == \"json\":\n dataframe.to_json(path, orient=\"records\", indent=2)\n elif fmt == \"markdown\":\n path.write_text(dataframe.to_markdown(index=False), encoding=\"utf-8\")\n else:\n msg = f\"Unsupported DataFrame format: {fmt}\"\n raise ValueError(msg)\n return f\"DataFrame saved successfully as '{path}'\"\n\n def _save_data(self, data: Data, path: Path, fmt: str) -> str:\n \"\"\"Save a Data object to the specified file format.\"\"\"\n if fmt == \"csv\":\n pd.DataFrame(data.data).to_csv(path, index=False)\n elif fmt == \"excel\":\n pd.DataFrame(data.data).to_excel(path, index=False, engine=\"openpyxl\")\n elif fmt == \"json\":\n path.write_text(\n orjson.dumps(jsonable_encoder(data.data), option=orjson.OPT_INDENT_2).decode(\"utf-8\"), encoding=\"utf-8\"\n )\n elif fmt == \"markdown\":\n path.write_text(pd.DataFrame(data.data).to_markdown(index=False), encoding=\"utf-8\")\n else:\n msg = f\"Unsupported Data format: {fmt}\"\n raise ValueError(msg)\n return f\"Data saved successfully as '{path}'\"\n\n async def _save_message(self, message: Message, path: Path, fmt: str) -> str:\n \"\"\"Save a Message to the specified file format, handling async iterators.\"\"\"\n content = \"\"\n if message.text is None:\n content = \"\"\n elif isinstance(message.text, AsyncIterator):\n async for item in message.text:\n content += str(item) + \" \"\n content = content.strip()\n elif isinstance(message.text, Iterator):\n content = \" \".join(str(item) for item in message.text)\n else:\n content = str(message.text)\n\n if fmt == \"txt\":\n path.write_text(content, encoding=\"utf-8\")\n elif fmt == \"json\":\n path.write_text(json.dumps({\"message\": content}, indent=2), encoding=\"utf-8\")\n elif fmt == \"markdown\":\n path.write_text(f\"**Message:**\\n\\n{content}\", encoding=\"utf-8\")\n else:\n msg = f\"Unsupported Message format: {fmt}\"\n raise ValueError(msg)\n return f\"Message saved successfully as '{path}'\"\n"
1251
+ "value": "import json\nfrom collections.abc import AsyncIterator, Iterator\nfrom pathlib import Path\n\nimport orjson\nimport pandas as pd\nfrom fastapi import UploadFile\nfrom fastapi.encoders import jsonable_encoder\n\nfrom langflow.api.v2.files import upload_user_file\nfrom langflow.custom import Component\nfrom langflow.io import DropdownInput, HandleInput, StrInput\nfrom langflow.schema import Data, DataFrame, Message\nfrom langflow.services.database.models.user.crud import get_user_by_id\nfrom langflow.services.deps import get_settings_service, get_storage_service, session_scope\nfrom langflow.template.field.base import Output\n\n\nclass SaveToFileComponent(Component):\n display_name = \"Save File\"\n description = \"Save data to a local file in the selected format.\"\n documentation: str = \"https://docs.langflow.org/components-processing#save-file\"\n icon = \"save\"\n name = \"SaveToFile\"\n\n # File format options for different types\n DATA_FORMAT_CHOICES = [\"csv\", \"excel\", \"json\", \"markdown\"]\n MESSAGE_FORMAT_CHOICES = [\"txt\", \"json\", \"markdown\"]\n\n inputs = [\n HandleInput(\n name=\"input\",\n display_name=\"Input\",\n info=\"The input to save.\",\n dynamic=True,\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n StrInput(\n name=\"file_name\",\n display_name=\"File Name\",\n info=\"Name file will be saved as (without extension).\",\n required=True,\n ),\n DropdownInput(\n name=\"file_format\",\n display_name=\"File Format\",\n options=list(dict.fromkeys(DATA_FORMAT_CHOICES + MESSAGE_FORMAT_CHOICES)),\n info=\"Select the file format to save the input. If not provided, the default format will be used.\",\n value=\"\",\n advanced=True,\n ),\n ]\n\n outputs = [Output(display_name=\"File Path\", name=\"message\", method=\"save_to_file\")]\n\n async def save_to_file(self) -> Message:\n \"\"\"Save the input to a file and upload it, returning a confirmation message.\"\"\"\n # Validate inputs\n if not self.file_name:\n msg = \"File name must be provided.\"\n raise ValueError(msg)\n if not self._get_input_type():\n msg = \"Input type is not set.\"\n raise ValueError(msg)\n\n # Validate file format based on input type\n file_format = self.file_format or self._get_default_format()\n allowed_formats = (\n self.MESSAGE_FORMAT_CHOICES if self._get_input_type() == \"Message\" else self.DATA_FORMAT_CHOICES\n )\n if file_format not in allowed_formats:\n msg = f\"Invalid file format '{file_format}' for {self._get_input_type()}. Allowed: {allowed_formats}\"\n raise ValueError(msg)\n\n # Prepare file path\n file_path = Path(self.file_name).expanduser()\n if not file_path.parent.exists():\n file_path.parent.mkdir(parents=True, exist_ok=True)\n file_path = self._adjust_file_path_with_format(file_path, file_format)\n\n # Save the input to file based on type\n if self._get_input_type() == \"DataFrame\":\n confirmation = self._save_dataframe(self.input, file_path, file_format)\n elif self._get_input_type() == \"Data\":\n confirmation = self._save_data(self.input, file_path, file_format)\n elif self._get_input_type() == \"Message\":\n confirmation = await self._save_message(self.input, file_path, file_format)\n else:\n msg = f\"Unsupported input type: {self._get_input_type()}\"\n raise ValueError(msg)\n\n # Upload the saved file\n await self._upload_file(file_path)\n\n # Return the final file path and confirmation message\n final_path = Path.cwd() / file_path if not file_path.is_absolute() else file_path\n\n return Message(text=f\"{confirmation} at {final_path}\")\n\n def _get_input_type(self) -> str:\n \"\"\"Determine the input type based on the provided input.\"\"\"\n # Use exact type checking (type() is) instead of isinstance() to avoid inheritance issues.\n # Since Message inherits from Data, isinstance(message, Data) would return True for Message objects,\n # causing Message inputs to be incorrectly identified as Data type.\n if type(self.input) is DataFrame:\n return \"DataFrame\"\n if type(self.input) is Message:\n return \"Message\"\n if type(self.input) is Data:\n return \"Data\"\n msg = f\"Unsupported input type: {type(self.input)}\"\n raise ValueError(msg)\n\n def _get_default_format(self) -> str:\n \"\"\"Return the default file format based on input type.\"\"\"\n if self._get_input_type() == \"DataFrame\":\n return \"csv\"\n if self._get_input_type() == \"Data\":\n return \"json\"\n if self._get_input_type() == \"Message\":\n return \"json\"\n return \"json\" # Fallback\n\n def _adjust_file_path_with_format(self, path: Path, fmt: str) -> Path:\n \"\"\"Adjust the file path to include the correct extension.\"\"\"\n file_extension = path.suffix.lower().lstrip(\".\")\n if fmt == \"excel\":\n return Path(f\"{path}.xlsx\").expanduser() if file_extension not in [\"xlsx\", \"xls\"] else path\n return Path(f\"{path}.{fmt}\").expanduser() if file_extension != fmt else path\n\n async def _upload_file(self, file_path: Path) -> None:\n \"\"\"Upload the saved file using the upload_user_file service.\"\"\"\n if not file_path.exists():\n msg = f\"File not found: {file_path}\"\n raise FileNotFoundError(msg)\n\n with file_path.open(\"rb\") as f:\n async with session_scope() as db:\n if not self.user_id:\n msg = \"User ID is required for file saving.\"\n raise ValueError(msg)\n current_user = await get_user_by_id(db, self.user_id)\n\n await upload_user_file(\n file=UploadFile(filename=file_path.name, file=f, size=file_path.stat().st_size),\n session=db,\n current_user=current_user,\n storage_service=get_storage_service(),\n settings_service=get_settings_service(),\n )\n\n def _save_dataframe(self, dataframe: DataFrame, path: Path, fmt: str) -> str:\n \"\"\"Save a DataFrame to the specified file format.\"\"\"\n if fmt == \"csv\":\n dataframe.to_csv(path, index=False)\n elif fmt == \"excel\":\n dataframe.to_excel(path, index=False, engine=\"openpyxl\")\n elif fmt == \"json\":\n dataframe.to_json(path, orient=\"records\", indent=2)\n elif fmt == \"markdown\":\n path.write_text(dataframe.to_markdown(index=False), encoding=\"utf-8\")\n else:\n msg = f\"Unsupported DataFrame format: {fmt}\"\n raise ValueError(msg)\n return f\"DataFrame saved successfully as '{path}'\"\n\n def _save_data(self, data: Data, path: Path, fmt: str) -> str:\n \"\"\"Save a Data object to the specified file format.\"\"\"\n if fmt == \"csv\":\n pd.DataFrame(data.data).to_csv(path, index=False)\n elif fmt == \"excel\":\n pd.DataFrame(data.data).to_excel(path, index=False, engine=\"openpyxl\")\n elif fmt == \"json\":\n path.write_text(\n orjson.dumps(jsonable_encoder(data.data), option=orjson.OPT_INDENT_2).decode(\"utf-8\"), encoding=\"utf-8\"\n )\n elif fmt == \"markdown\":\n path.write_text(pd.DataFrame(data.data).to_markdown(index=False), encoding=\"utf-8\")\n else:\n msg = f\"Unsupported Data format: {fmt}\"\n raise ValueError(msg)\n return f\"Data saved successfully as '{path}'\"\n\n async def _save_message(self, message: Message, path: Path, fmt: str) -> str:\n \"\"\"Save a Message to the specified file format, handling async iterators.\"\"\"\n content = \"\"\n if message.text is None:\n content = \"\"\n elif isinstance(message.text, AsyncIterator):\n async for item in message.text:\n content += str(item) + \" \"\n content = content.strip()\n elif isinstance(message.text, Iterator):\n content = \" \".join(str(item) for item in message.text)\n else:\n content = str(message.text)\n\n if fmt == \"txt\":\n path.write_text(content, encoding=\"utf-8\")\n elif fmt == \"json\":\n path.write_text(json.dumps({\"message\": content}, indent=2), encoding=\"utf-8\")\n elif fmt == \"markdown\":\n path.write_text(f\"**Message:**\\n\\n{content}\", encoding=\"utf-8\")\n else:\n msg = f\"Unsupported Message format: {fmt}\"\n raise ValueError(msg)\n return f\"Message saved successfully as '{path}'\"\n"
1269
1252
  },
1270
1253
  "file_format": {
1271
1254
  "_input_type": "DropdownInput",
@@ -1542,7 +1525,7 @@
1542
1525
  "show": true,
1543
1526
  "title_case": false,
1544
1527
  "type": "code",
1545
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
1528
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
1546
1529
  },
1547
1530
  "handle_parsing_errors": {
1548
1531
  "_input_type": "BoolInput",
@@ -1033,7 +1033,7 @@
1033
1033
  "show": true,
1034
1034
  "title_case": false,
1035
1035
  "type": "code",
1036
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n logger.error(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n logger.error(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n logger.error(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
1036
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
1037
1037
  },
1038
1038
  "handle_parsing_errors": {
1039
1039
  "_input_type": "BoolInput",
@@ -2518,7 +2518,7 @@
2518
2518
  "legacy": false,
2519
2519
  "lf_version": "1.4.2",
2520
2520
  "metadata": {
2521
- "code_hash": "6839fa3cae99",
2521
+ "code_hash": "bd0c4250c82c",
2522
2522
  "module": "langflow.components.agents.mcp_component.MCPToolsComponent"
2523
2523
  },
2524
2524
  "minimized": false,
@@ -2545,23 +2545,6 @@
2545
2545
  "score": 0.003932426697386162,
2546
2546
  "template": {
2547
2547
  "_type": "Component",
2548
- "api_key": {
2549
- "_input_type": "SecretStrInput",
2550
- "advanced": true,
2551
- "display_name": "Langflow API Key",
2552
- "dynamic": false,
2553
- "info": "Langflow API key for authentication when fetching MCP servers and tools.",
2554
- "input_types": [],
2555
- "load_from_db": true,
2556
- "name": "api_key",
2557
- "password": true,
2558
- "placeholder": "",
2559
- "required": false,
2560
- "show": true,
2561
- "title_case": false,
2562
- "type": "str",
2563
- "value": ""
2564
- },
2565
2548
  "code": {
2566
2549
  "advanced": true,
2567
2550
  "dynamic": true,
@@ -2578,7 +2561,7 @@
2578
2561
  "show": true,
2579
2562
  "title_case": false,
2580
2563
  "type": "code",
2581
- "value": "from __future__ import annotations\n\nimport asyncio\nimport uuid\nfrom typing import Any\n\nfrom langchain_core.tools import StructuredTool # noqa: TC002\n\nfrom langflow.api.v2.mcp import get_server\nfrom langflow.base.agents.utils import maybe_unflatten_dict, safe_cache_get, safe_cache_set\nfrom langflow.base.mcp.util import (\n MCPSseClient,\n MCPStdioClient,\n create_input_schema_from_json_schema,\n update_tools,\n)\nfrom langflow.custom.custom_component.component_with_cache import ComponentWithCache\nfrom langflow.inputs.inputs import InputTypes # noqa: TC001\nfrom langflow.io import DropdownInput, McpInput, MessageTextInput, Output, SecretStrInput\nfrom langflow.io.schema import flatten_schema, schema_to_langflow_inputs\nfrom langflow.logging import logger\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\n\n# Import get_server from the backend API\nfrom langflow.services.auth.utils import create_user_longterm_token, get_current_user\nfrom langflow.services.database.models.user.crud import get_user_by_id\nfrom langflow.services.deps import get_session, get_settings_service, get_storage_service\n\n\nclass MCPToolsComponent(ComponentWithCache):\n schema_inputs: list = []\n tools: list[StructuredTool] = []\n _not_load_actions: bool = False\n _tool_cache: dict = {}\n _last_selected_server: str | None = None # Cache for the last selected server\n\n def __init__(self, **data) -> None:\n super().__init__(**data)\n # Initialize cache keys to avoid CacheMiss when accessing them\n self._ensure_cache_structure()\n\n # Initialize clients with access to the component cache\n self.stdio_client: MCPStdioClient = MCPStdioClient(component_cache=self._shared_component_cache)\n self.sse_client: MCPSseClient = MCPSseClient(component_cache=self._shared_component_cache)\n\n def _ensure_cache_structure(self):\n \"\"\"Ensure the cache has the required structure.\"\"\"\n # Check if servers key exists and is not CacheMiss\n servers_value = safe_cache_get(self._shared_component_cache, \"servers\")\n if servers_value is None:\n safe_cache_set(self._shared_component_cache, \"servers\", {})\n\n # Check if last_selected_server key exists and is not CacheMiss\n last_server_value = safe_cache_get(self._shared_component_cache, \"last_selected_server\")\n if last_server_value is None:\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", \"\")\n\n default_keys: list[str] = [\n \"code\",\n \"_type\",\n \"tool_mode\",\n \"tool_placeholder\",\n \"mcp_server\",\n \"tool\",\n ]\n\n display_name = \"MCP Tools\"\n description = \"Connect to an MCP server to use its tools.\"\n documentation: str = \"https://docs.langflow.org/mcp-client\"\n icon = \"Mcp\"\n name = \"MCPTools\"\n\n inputs = [\n McpInput(\n name=\"mcp_server\",\n display_name=\"MCP Server\",\n info=\"Select the MCP Server that will be used by this component\",\n real_time_refresh=True,\n ),\n DropdownInput(\n name=\"tool\",\n display_name=\"Tool\",\n options=[],\n value=\"\",\n info=\"Select the tool to execute\",\n show=False,\n required=True,\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n info=\"Placeholder for the tool\",\n value=\"\",\n show=False,\n tool_mode=False,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Langflow API Key\",\n info=\"Langflow API key for authentication when fetching MCP servers and tools.\",\n required=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Response\", name=\"response\", method=\"build_output\"),\n ]\n\n async def _validate_schema_inputs(self, tool_obj) -> list[InputTypes]:\n \"\"\"Validate and process schema inputs for a tool.\"\"\"\n try:\n if not tool_obj or not hasattr(tool_obj, \"args_schema\"):\n msg = \"Invalid tool object or missing input schema\"\n raise ValueError(msg)\n\n flat_schema = flatten_schema(tool_obj.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n if not input_schema:\n msg = f\"Empty input schema for tool '{tool_obj.name}'\"\n raise ValueError(msg)\n\n schema_inputs = schema_to_langflow_inputs(input_schema)\n if not schema_inputs:\n msg = f\"No input parameters defined for tool '{tool_obj.name}'\"\n logger.warning(msg)\n return []\n\n except Exception as e:\n msg = f\"Error validating schema inputs: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n else:\n return schema_inputs\n\n async def update_tool_list(self, mcp_server_value=None):\n # Accepts mcp_server_value as dict {name, config} or uses self.mcp_server\n mcp_server = mcp_server_value if mcp_server_value is not None else getattr(self, \"mcp_server\", None)\n server_name = None\n server_config_from_value = None\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\")\n server_config_from_value = mcp_server.get(\"config\")\n else:\n server_name = mcp_server\n if not server_name:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config_from_value}\n\n # Use shared cache if available\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n cached = servers_cache.get(server_name) if isinstance(servers_cache, dict) else None\n\n if cached is not None:\n self.tools = cached[\"tools\"]\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n server_config_from_value = cached[\"config\"]\n return self.tools, {\"name\": server_name, \"config\": server_config_from_value}\n\n try:\n async for db in get_session():\n # TODO: In 1.6, this may need to be removed or adjusted\n # Try to get the super user token, if possible\n if self.api_key:\n current_user = await get_current_user(\n token=None,\n query_param=self.api_key,\n header_param=None,\n db=db,\n )\n else:\n user_id, _ = await create_user_longterm_token(db)\n current_user = await get_user_by_id(db, user_id)\n\n # Try to get server config from DB/API\n server_config = await get_server(\n server_name,\n current_user,\n db,\n storage_service=get_storage_service(),\n settings_service=get_settings_service(),\n )\n\n # If get_server returns empty but we have a config, use it\n if not server_config and server_config_from_value:\n server_config = server_config_from_value\n\n if not server_config:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config}\n\n _, tool_list, tool_cache = await update_tools(\n server_name=server_name,\n server_config=server_config,\n mcp_stdio_client=self.stdio_client,\n mcp_sse_client=self.sse_client,\n )\n\n self.tool_names = [tool.name for tool in tool_list if hasattr(tool, \"name\")]\n self._tool_cache = tool_cache\n self.tools = tool_list\n # Cache the result using shared cache\n cache_data = {\n \"tools\": tool_list,\n \"tool_names\": self.tool_names,\n \"tool_cache\": tool_cache,\n \"config\": server_config,\n }\n\n # Safely update the servers cache\n current_servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(current_servers_cache, dict):\n current_servers_cache[server_name] = cache_data\n safe_cache_set(self._shared_component_cache, \"servers\", current_servers_cache)\n\n return tool_list, {\"name\": server_name, \"config\": server_config}\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n logger.exception(msg)\n raise TimeoutError(msg) from e\n except Exception as e:\n msg = f\"Error updating tool list: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n async def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None) -> dict:\n \"\"\"Toggle the visibility of connection-specific fields based on the selected mode.\"\"\"\n try:\n if field_name == \"tool\":\n try:\n if len(self.tools) == 0:\n try:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n build_config[\"tool\"][\"options\"] = [tool.name for tool in self.tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n logger.exception(msg)\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Timeout on MCP server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n except ValueError:\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Error on MCP Server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n\n if field_value == \"\":\n return build_config\n tool_obj = None\n for tool in self.tools:\n if tool.name == field_value:\n tool_obj = tool\n break\n if tool_obj is None:\n msg = f\"Tool {field_value} not found in available tools: {self.tools}\"\n logger.warning(msg)\n return build_config\n await self._update_tool_config(build_config, field_value)\n except Exception as e:\n build_config[\"tool\"][\"options\"] = []\n msg = f\"Failed to update tools: {e!s}\"\n raise ValueError(msg) from e\n else:\n return build_config\n elif field_name == \"mcp_server\":\n if not field_value:\n build_config[\"tool\"][\"show\"] = False\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool_placeholder\"][\"tool_mode\"] = False\n self.remove_non_default_keys(build_config)\n return build_config\n\n build_config[\"tool_placeholder\"][\"tool_mode\"] = True\n\n current_server_name = field_value.get(\"name\") if isinstance(field_value, dict) else field_value\n _last_selected_server = safe_cache_get(self._shared_component_cache, \"last_selected_server\", \"\")\n\n # To avoid unnecessary updates, only proceed if the server has actually changed\n if (_last_selected_server in (current_server_name, \"\")) and build_config[\"tool\"][\"show\"]:\n return build_config\n\n # Determine if \"Tool Mode\" is active by checking if the tool dropdown is hidden.\n is_in_tool_mode = build_config[\"tools_metadata\"][\"show\"]\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", current_server_name)\n\n # Check if tools are already cached for this server before clearing\n cached_tools = None\n if current_server_name:\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(servers_cache, dict):\n cached = servers_cache.get(current_server_name)\n if cached is not None:\n cached_tools = cached[\"tools\"]\n self.tools = cached_tools\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n\n # Only clear tools if we don't have cached tools for the current server\n if not cached_tools:\n self.tools = [] # Clear previous tools only if no cache\n\n self.remove_non_default_keys(build_config) # Clear previous tool inputs\n\n # Only show the tool dropdown if not in tool_mode\n if not is_in_tool_mode:\n build_config[\"tool\"][\"show\"] = True\n if cached_tools:\n # Use cached tools to populate options immediately\n build_config[\"tool\"][\"options\"] = [tool.name for tool in cached_tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n else:\n # Show loading state only when we need to fetch tools\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n else:\n # Keep the tool dropdown hidden if in tool_mode\n self._not_load_actions = True\n build_config[\"tool\"][\"show\"] = False\n\n elif field_name == \"tool_mode\":\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool\"][\"show\"] = not bool(field_value) and bool(build_config[\"mcp_server\"])\n self.remove_non_default_keys(build_config)\n self.tool = build_config[\"tool\"][\"value\"]\n if field_value:\n self._not_load_actions = True\n else:\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n elif field_name == \"tools_metadata\":\n self._not_load_actions = False\n\n except Exception as e:\n msg = f\"Error in update_build_config: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n else:\n return build_config\n\n def get_inputs_for_all_tools(self, tools: list) -> dict:\n \"\"\"Get input schemas for all tools.\"\"\"\n inputs = {}\n for tool in tools:\n if not tool or not hasattr(tool, \"name\"):\n continue\n try:\n flat_schema = flatten_schema(tool.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n langflow_inputs = schema_to_langflow_inputs(input_schema)\n inputs[tool.name] = langflow_inputs\n except (AttributeError, ValueError, TypeError, KeyError) as e:\n msg = f\"Error getting inputs for tool {getattr(tool, 'name', 'unknown')}: {e!s}\"\n logger.exception(msg)\n continue\n return inputs\n\n def remove_input_schema_from_build_config(\n self, build_config: dict, tool_name: str, input_schema: dict[list[InputTypes], Any]\n ):\n \"\"\"Remove the input schema for the tool from the build config.\"\"\"\n # Keep only schemas that don't belong to the current tool\n input_schema = {k: v for k, v in input_schema.items() if k != tool_name}\n # Remove all inputs from other tools\n for value in input_schema.values():\n for _input in value:\n if _input.name in build_config:\n build_config.pop(_input.name)\n\n def remove_non_default_keys(self, build_config: dict) -> None:\n \"\"\"Remove non-default keys from the build config.\"\"\"\n for key in list(build_config.keys()):\n if key not in self.default_keys:\n build_config.pop(key)\n\n async def _update_tool_config(self, build_config: dict, tool_name: str) -> None:\n \"\"\"Update tool configuration with proper error handling.\"\"\"\n if not self.tools:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n\n if not tool_name:\n return\n\n tool_obj = next((tool for tool in self.tools if tool.name == tool_name), None)\n if not tool_obj:\n msg = f\"Tool {tool_name} not found in available tools: {self.tools}\"\n self.remove_non_default_keys(build_config)\n build_config[\"tool\"][\"value\"] = \"\"\n logger.warning(msg)\n return\n\n try:\n # Store current values before removing inputs\n current_values = {}\n for key, value in build_config.items():\n if key not in self.default_keys and isinstance(value, dict) and \"value\" in value:\n current_values[key] = value[\"value\"]\n\n # Get all tool inputs and remove old ones\n input_schema_for_all_tools = self.get_inputs_for_all_tools(self.tools)\n self.remove_input_schema_from_build_config(build_config, tool_name, input_schema_for_all_tools)\n\n # Get and validate new inputs\n self.schema_inputs = await self._validate_schema_inputs(tool_obj)\n if not self.schema_inputs:\n msg = f\"No input parameters to configure for tool '{tool_name}'\"\n logger.info(msg)\n return\n\n # Add new inputs to build config\n for schema_input in self.schema_inputs:\n if not schema_input or not hasattr(schema_input, \"name\"):\n msg = \"Invalid schema input detected, skipping\"\n logger.warning(msg)\n continue\n\n try:\n name = schema_input.name\n input_dict = schema_input.to_dict()\n input_dict.setdefault(\"value\", None)\n input_dict.setdefault(\"required\", True)\n\n build_config[name] = input_dict\n\n # Preserve existing value if the parameter name exists in current_values\n if name in current_values:\n build_config[name][\"value\"] = current_values[name]\n\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error processing schema input {schema_input}: {e!s}\"\n logger.exception(msg)\n continue\n except ValueError as e:\n msg = f\"Schema validation error for tool {tool_name}: {e!s}\"\n logger.exception(msg)\n self.schema_inputs = []\n return\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error updating tool config: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n async def build_output(self) -> DataFrame:\n \"\"\"Build output with improved error handling and validation.\"\"\"\n try:\n self.tools, _ = await self.update_tool_list()\n if self.tool != \"\":\n # Set session context for persistent MCP sessions using Langflow session ID\n session_context = self._get_session_context()\n if session_context:\n self.stdio_client.set_session_context(session_context)\n self.sse_client.set_session_context(session_context)\n\n exec_tool = self._tool_cache[self.tool]\n tool_args = self.get_inputs_for_all_tools(self.tools)[self.tool]\n kwargs = {}\n for arg in tool_args:\n value = getattr(self, arg.name, None)\n if value is not None:\n if isinstance(value, Message):\n kwargs[arg.name] = value.text\n else:\n kwargs[arg.name] = value\n\n unflattened_kwargs = maybe_unflatten_dict(kwargs)\n\n output = await exec_tool.coroutine(**unflattened_kwargs)\n\n tool_content = []\n for item in output.content:\n item_dict = item.model_dump()\n tool_content.append(item_dict)\n return DataFrame(data=tool_content)\n return DataFrame(data=[{\"error\": \"You must select a tool\"}])\n except Exception as e:\n msg = f\"Error in build_output: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n def _get_session_context(self) -> str | None:\n \"\"\"Get the Langflow session ID for MCP session caching.\"\"\"\n # Try to get session ID from the component's execution context\n if hasattr(self, \"graph\") and hasattr(self.graph, \"session_id\"):\n session_id = self.graph.session_id\n # Include server name to ensure different servers get different sessions\n server_name = \"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\", \"\")\n elif mcp_server:\n server_name = str(mcp_server)\n return f\"{session_id}_{server_name}\" if session_id else None\n return None\n\n async def _get_tools(self):\n \"\"\"Get cached tools or update if necessary.\"\"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if not self._not_load_actions:\n tools, _ = await self.update_tool_list(mcp_server)\n return tools\n return []\n"
2564
+ "value": "from __future__ import annotations\n\nimport asyncio\nimport uuid\nfrom typing import Any\n\nfrom langchain_core.tools import StructuredTool # noqa: TC002\n\nfrom langflow.api.v2.mcp import get_server\nfrom langflow.base.agents.utils import maybe_unflatten_dict, safe_cache_get, safe_cache_set\nfrom langflow.base.mcp.util import (\n MCPSseClient,\n MCPStdioClient,\n create_input_schema_from_json_schema,\n update_tools,\n)\nfrom langflow.custom.custom_component.component_with_cache import ComponentWithCache\nfrom langflow.inputs.inputs import InputTypes # noqa: TC001\nfrom langflow.io import DropdownInput, McpInput, MessageTextInput, Output\nfrom langflow.io.schema import flatten_schema, schema_to_langflow_inputs\nfrom langflow.logging import logger\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\n\n# Import get_server from the backend API\nfrom langflow.services.database.models.user.crud import get_user_by_id\nfrom langflow.services.deps import get_settings_service, get_storage_service, session_scope\n\n\nclass MCPToolsComponent(ComponentWithCache):\n schema_inputs: list = []\n tools: list[StructuredTool] = []\n _not_load_actions: bool = False\n _tool_cache: dict = {}\n _last_selected_server: str | None = None # Cache for the last selected server\n\n def __init__(self, **data) -> None:\n super().__init__(**data)\n # Initialize cache keys to avoid CacheMiss when accessing them\n self._ensure_cache_structure()\n\n # Initialize clients with access to the component cache\n self.stdio_client: MCPStdioClient = MCPStdioClient(component_cache=self._shared_component_cache)\n self.sse_client: MCPSseClient = MCPSseClient(component_cache=self._shared_component_cache)\n\n def _ensure_cache_structure(self):\n \"\"\"Ensure the cache has the required structure.\"\"\"\n # Check if servers key exists and is not CacheMiss\n servers_value = safe_cache_get(self._shared_component_cache, \"servers\")\n if servers_value is None:\n safe_cache_set(self._shared_component_cache, \"servers\", {})\n\n # Check if last_selected_server key exists and is not CacheMiss\n last_server_value = safe_cache_get(self._shared_component_cache, \"last_selected_server\")\n if last_server_value is None:\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", \"\")\n\n default_keys: list[str] = [\n \"code\",\n \"_type\",\n \"tool_mode\",\n \"tool_placeholder\",\n \"mcp_server\",\n \"tool\",\n ]\n\n display_name = \"MCP Tools\"\n description = \"Connect to an MCP server to use its tools.\"\n documentation: str = \"https://docs.langflow.org/mcp-client\"\n icon = \"Mcp\"\n name = \"MCPTools\"\n\n inputs = [\n McpInput(\n name=\"mcp_server\",\n display_name=\"MCP Server\",\n info=\"Select the MCP Server that will be used by this component\",\n real_time_refresh=True,\n ),\n DropdownInput(\n name=\"tool\",\n display_name=\"Tool\",\n options=[],\n value=\"\",\n info=\"Select the tool to execute\",\n show=False,\n required=True,\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n info=\"Placeholder for the tool\",\n value=\"\",\n show=False,\n tool_mode=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Response\", name=\"response\", method=\"build_output\"),\n ]\n\n async def _validate_schema_inputs(self, tool_obj) -> list[InputTypes]:\n \"\"\"Validate and process schema inputs for a tool.\"\"\"\n try:\n if not tool_obj or not hasattr(tool_obj, \"args_schema\"):\n msg = \"Invalid tool object or missing input schema\"\n raise ValueError(msg)\n\n flat_schema = flatten_schema(tool_obj.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n if not input_schema:\n msg = f\"Empty input schema for tool '{tool_obj.name}'\"\n raise ValueError(msg)\n\n schema_inputs = schema_to_langflow_inputs(input_schema)\n if not schema_inputs:\n msg = f\"No input parameters defined for tool '{tool_obj.name}'\"\n await logger.awarning(msg)\n return []\n\n except Exception as e:\n msg = f\"Error validating schema inputs: {e!s}\"\n await logger.aexception(msg)\n raise ValueError(msg) from e\n else:\n return schema_inputs\n\n async def update_tool_list(self, mcp_server_value=None):\n # Accepts mcp_server_value as dict {name, config} or uses self.mcp_server\n mcp_server = mcp_server_value if mcp_server_value is not None else getattr(self, \"mcp_server\", None)\n server_name = None\n server_config_from_value = None\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\")\n server_config_from_value = mcp_server.get(\"config\")\n else:\n server_name = mcp_server\n if not server_name:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config_from_value}\n\n # Use shared cache if available\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n cached = servers_cache.get(server_name) if isinstance(servers_cache, dict) else None\n\n if cached is not None:\n self.tools = cached[\"tools\"]\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n server_config_from_value = cached[\"config\"]\n return self.tools, {\"name\": server_name, \"config\": server_config_from_value}\n\n try:\n async with session_scope() as db:\n if not self.user_id:\n msg = \"User ID is required for fetching MCP tools.\"\n raise ValueError(msg)\n current_user = await get_user_by_id(db, self.user_id)\n\n # Try to get server config from DB/API\n server_config = await get_server(\n server_name,\n current_user,\n db,\n storage_service=get_storage_service(),\n settings_service=get_settings_service(),\n )\n\n # If get_server returns empty but we have a config, use it\n if not server_config and server_config_from_value:\n server_config = server_config_from_value\n\n if not server_config:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config}\n\n _, tool_list, tool_cache = await update_tools(\n server_name=server_name,\n server_config=server_config,\n mcp_stdio_client=self.stdio_client,\n mcp_sse_client=self.sse_client,\n )\n\n self.tool_names = [tool.name for tool in tool_list if hasattr(tool, \"name\")]\n self._tool_cache = tool_cache\n self.tools = tool_list\n # Cache the result using shared cache\n cache_data = {\n \"tools\": tool_list,\n \"tool_names\": self.tool_names,\n \"tool_cache\": tool_cache,\n \"config\": server_config,\n }\n\n # Safely update the servers cache\n current_servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(current_servers_cache, dict):\n current_servers_cache[server_name] = cache_data\n safe_cache_set(self._shared_component_cache, \"servers\", current_servers_cache)\n\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n await logger.aexception(msg)\n raise TimeoutError(msg) from e\n except Exception as e:\n msg = f\"Error updating tool list: {e!s}\"\n await logger.aexception(msg)\n raise ValueError(msg) from e\n else:\n return tool_list, {\"name\": server_name, \"config\": server_config}\n\n async def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None) -> dict:\n \"\"\"Toggle the visibility of connection-specific fields based on the selected mode.\"\"\"\n try:\n if field_name == \"tool\":\n try:\n if len(self.tools) == 0:\n try:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n build_config[\"tool\"][\"options\"] = [tool.name for tool in self.tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n await logger.aexception(msg)\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Timeout on MCP server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n except ValueError:\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Error on MCP Server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n\n if field_value == \"\":\n return build_config\n tool_obj = None\n for tool in self.tools:\n if tool.name == field_value:\n tool_obj = tool\n break\n if tool_obj is None:\n msg = f\"Tool {field_value} not found in available tools: {self.tools}\"\n await logger.awarning(msg)\n return build_config\n await self._update_tool_config(build_config, field_value)\n except Exception as e:\n build_config[\"tool\"][\"options\"] = []\n msg = f\"Failed to update tools: {e!s}\"\n raise ValueError(msg) from e\n else:\n return build_config\n elif field_name == \"mcp_server\":\n if not field_value:\n build_config[\"tool\"][\"show\"] = False\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool_placeholder\"][\"tool_mode\"] = False\n self.remove_non_default_keys(build_config)\n return build_config\n\n build_config[\"tool_placeholder\"][\"tool_mode\"] = True\n\n current_server_name = field_value.get(\"name\") if isinstance(field_value, dict) else field_value\n _last_selected_server = safe_cache_get(self._shared_component_cache, \"last_selected_server\", \"\")\n\n # To avoid unnecessary updates, only proceed if the server has actually changed\n if (_last_selected_server in (current_server_name, \"\")) and build_config[\"tool\"][\"show\"]:\n return build_config\n\n # Determine if \"Tool Mode\" is active by checking if the tool dropdown is hidden.\n is_in_tool_mode = build_config[\"tools_metadata\"][\"show\"]\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", current_server_name)\n\n # Check if tools are already cached for this server before clearing\n cached_tools = None\n if current_server_name:\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(servers_cache, dict):\n cached = servers_cache.get(current_server_name)\n if cached is not None:\n cached_tools = cached[\"tools\"]\n self.tools = cached_tools\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n\n # Only clear tools if we don't have cached tools for the current server\n if not cached_tools:\n self.tools = [] # Clear previous tools only if no cache\n\n self.remove_non_default_keys(build_config) # Clear previous tool inputs\n\n # Only show the tool dropdown if not in tool_mode\n if not is_in_tool_mode:\n build_config[\"tool\"][\"show\"] = True\n if cached_tools:\n # Use cached tools to populate options immediately\n build_config[\"tool\"][\"options\"] = [tool.name for tool in cached_tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n else:\n # Show loading state only when we need to fetch tools\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n else:\n # Keep the tool dropdown hidden if in tool_mode\n self._not_load_actions = True\n build_config[\"tool\"][\"show\"] = False\n\n elif field_name == \"tool_mode\":\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool\"][\"show\"] = not bool(field_value) and bool(build_config[\"mcp_server\"])\n self.remove_non_default_keys(build_config)\n self.tool = build_config[\"tool\"][\"value\"]\n if field_value:\n self._not_load_actions = True\n else:\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n elif field_name == \"tools_metadata\":\n self._not_load_actions = False\n\n except Exception as e:\n msg = f\"Error in update_build_config: {e!s}\"\n await logger.aexception(msg)\n raise ValueError(msg) from e\n else:\n return build_config\n\n def get_inputs_for_all_tools(self, tools: list) -> dict:\n \"\"\"Get input schemas for all tools.\"\"\"\n inputs = {}\n for tool in tools:\n if not tool or not hasattr(tool, \"name\"):\n continue\n try:\n flat_schema = flatten_schema(tool.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n langflow_inputs = schema_to_langflow_inputs(input_schema)\n inputs[tool.name] = langflow_inputs\n except (AttributeError, ValueError, TypeError, KeyError) as e:\n msg = f\"Error getting inputs for tool {getattr(tool, 'name', 'unknown')}: {e!s}\"\n logger.exception(msg)\n continue\n return inputs\n\n def remove_input_schema_from_build_config(\n self, build_config: dict, tool_name: str, input_schema: dict[list[InputTypes], Any]\n ):\n \"\"\"Remove the input schema for the tool from the build config.\"\"\"\n # Keep only schemas that don't belong to the current tool\n input_schema = {k: v for k, v in input_schema.items() if k != tool_name}\n # Remove all inputs from other tools\n for value in input_schema.values():\n for _input in value:\n if _input.name in build_config:\n build_config.pop(_input.name)\n\n def remove_non_default_keys(self, build_config: dict) -> None:\n \"\"\"Remove non-default keys from the build config.\"\"\"\n for key in list(build_config.keys()):\n if key not in self.default_keys:\n build_config.pop(key)\n\n async def _update_tool_config(self, build_config: dict, tool_name: str) -> None:\n \"\"\"Update tool configuration with proper error handling.\"\"\"\n if not self.tools:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n\n if not tool_name:\n return\n\n tool_obj = next((tool for tool in self.tools if tool.name == tool_name), None)\n if not tool_obj:\n msg = f\"Tool {tool_name} not found in available tools: {self.tools}\"\n self.remove_non_default_keys(build_config)\n build_config[\"tool\"][\"value\"] = \"\"\n await logger.awarning(msg)\n return\n\n try:\n # Store current values before removing inputs\n current_values = {}\n for key, value in build_config.items():\n if key not in self.default_keys and isinstance(value, dict) and \"value\" in value:\n current_values[key] = value[\"value\"]\n\n # Get all tool inputs and remove old ones\n input_schema_for_all_tools = self.get_inputs_for_all_tools(self.tools)\n self.remove_input_schema_from_build_config(build_config, tool_name, input_schema_for_all_tools)\n\n # Get and validate new inputs\n self.schema_inputs = await self._validate_schema_inputs(tool_obj)\n if not self.schema_inputs:\n msg = f\"No input parameters to configure for tool '{tool_name}'\"\n await logger.ainfo(msg)\n return\n\n # Add new inputs to build config\n for schema_input in self.schema_inputs:\n if not schema_input or not hasattr(schema_input, \"name\"):\n msg = \"Invalid schema input detected, skipping\"\n await logger.awarning(msg)\n continue\n\n try:\n name = schema_input.name\n input_dict = schema_input.to_dict()\n input_dict.setdefault(\"value\", None)\n input_dict.setdefault(\"required\", True)\n\n build_config[name] = input_dict\n\n # Preserve existing value if the parameter name exists in current_values\n if name in current_values:\n build_config[name][\"value\"] = current_values[name]\n\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error processing schema input {schema_input}: {e!s}\"\n await logger.aexception(msg)\n continue\n except ValueError as e:\n msg = f\"Schema validation error for tool {tool_name}: {e!s}\"\n await logger.aexception(msg)\n self.schema_inputs = []\n return\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error updating tool config: {e!s}\"\n await logger.aexception(msg)\n raise ValueError(msg) from e\n\n async def build_output(self) -> DataFrame:\n \"\"\"Build output with improved error handling and validation.\"\"\"\n try:\n self.tools, _ = await self.update_tool_list()\n if self.tool != \"\":\n # Set session context for persistent MCP sessions using Langflow session ID\n session_context = self._get_session_context()\n if session_context:\n self.stdio_client.set_session_context(session_context)\n self.sse_client.set_session_context(session_context)\n\n exec_tool = self._tool_cache[self.tool]\n tool_args = self.get_inputs_for_all_tools(self.tools)[self.tool]\n kwargs = {}\n for arg in tool_args:\n value = getattr(self, arg.name, None)\n if value is not None:\n if isinstance(value, Message):\n kwargs[arg.name] = value.text\n else:\n kwargs[arg.name] = value\n\n unflattened_kwargs = maybe_unflatten_dict(kwargs)\n\n output = await exec_tool.coroutine(**unflattened_kwargs)\n\n tool_content = []\n for item in output.content:\n item_dict = item.model_dump()\n tool_content.append(item_dict)\n return DataFrame(data=tool_content)\n return DataFrame(data=[{\"error\": \"You must select a tool\"}])\n except Exception as e:\n msg = f\"Error in build_output: {e!s}\"\n await logger.aexception(msg)\n raise ValueError(msg) from e\n\n def _get_session_context(self) -> str | None:\n \"\"\"Get the Langflow session ID for MCP session caching.\"\"\"\n # Try to get session ID from the component's execution context\n if hasattr(self, \"graph\") and hasattr(self.graph, \"session_id\"):\n session_id = self.graph.session_id\n # Include server name to ensure different servers get different sessions\n server_name = \"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\", \"\")\n elif mcp_server:\n server_name = str(mcp_server)\n return f\"{session_id}_{server_name}\" if session_id else None\n return None\n\n async def _get_tools(self):\n \"\"\"Get cached tools or update if necessary.\"\"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if not self._not_load_actions:\n tools, _ = await self.update_tool_list(mcp_server)\n return tools\n return []\n"
2582
2565
  },
2583
2566
  "mcp_server": {
2584
2567
  "_input_type": "McpInput",