langflow-base-nightly 0.5.0.dev34__py3-none-any.whl → 0.5.0.dev36__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2518,7 +2518,7 @@
2518
2518
  "legacy": false,
2519
2519
  "lf_version": "1.4.2",
2520
2520
  "metadata": {
2521
- "code_hash": "d58eb6d2b3e7",
2521
+ "code_hash": "6839fa3cae99",
2522
2522
  "module": "langflow.components.agents.mcp_component.MCPToolsComponent"
2523
2523
  },
2524
2524
  "minimized": false,
@@ -2545,6 +2545,23 @@
2545
2545
  "score": 0.003932426697386162,
2546
2546
  "template": {
2547
2547
  "_type": "Component",
2548
+ "api_key": {
2549
+ "_input_type": "SecretStrInput",
2550
+ "advanced": true,
2551
+ "display_name": "Langflow API Key",
2552
+ "dynamic": false,
2553
+ "info": "Langflow API key for authentication when fetching MCP servers and tools.",
2554
+ "input_types": [],
2555
+ "load_from_db": true,
2556
+ "name": "api_key",
2557
+ "password": true,
2558
+ "placeholder": "",
2559
+ "required": false,
2560
+ "show": true,
2561
+ "title_case": false,
2562
+ "type": "str",
2563
+ "value": ""
2564
+ },
2548
2565
  "code": {
2549
2566
  "advanced": true,
2550
2567
  "dynamic": true,
@@ -2561,7 +2578,7 @@
2561
2578
  "show": true,
2562
2579
  "title_case": false,
2563
2580
  "type": "code",
2564
- "value": "from __future__ import annotations\n\nimport asyncio\nimport uuid\nfrom typing import Any\n\nfrom langchain_core.tools import StructuredTool # noqa: TC002\n\nfrom langflow.api.v2.mcp import get_server\nfrom langflow.base.agents.utils import maybe_unflatten_dict, safe_cache_get, safe_cache_set\nfrom langflow.base.mcp.util import (\n MCPSseClient,\n MCPStdioClient,\n create_input_schema_from_json_schema,\n update_tools,\n)\nfrom langflow.custom.custom_component.component_with_cache import ComponentWithCache\nfrom langflow.inputs.inputs import InputTypes # noqa: TC001\nfrom langflow.io import DropdownInput, McpInput, MessageTextInput, Output\nfrom langflow.io.schema import flatten_schema, schema_to_langflow_inputs\nfrom langflow.logging import logger\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\nfrom langflow.services.auth.utils import create_user_longterm_token\n\n# Import get_server from the backend API\nfrom langflow.services.database.models.user.crud import get_user_by_id\nfrom langflow.services.deps import get_session, get_settings_service, get_storage_service\n\n\nclass MCPToolsComponent(ComponentWithCache):\n schema_inputs: list = []\n tools: list[StructuredTool] = []\n _not_load_actions: bool = False\n _tool_cache: dict = {}\n _last_selected_server: str | None = None # Cache for the last selected server\n\n def __init__(self, **data) -> None:\n super().__init__(**data)\n # Initialize cache keys to avoid CacheMiss when accessing them\n self._ensure_cache_structure()\n\n # Initialize clients with access to the component cache\n self.stdio_client: MCPStdioClient = MCPStdioClient(component_cache=self._shared_component_cache)\n self.sse_client: MCPSseClient = MCPSseClient(component_cache=self._shared_component_cache)\n\n def _ensure_cache_structure(self):\n \"\"\"Ensure the cache has the required structure.\"\"\"\n # Check if servers key exists and is not CacheMiss\n servers_value = safe_cache_get(self._shared_component_cache, \"servers\")\n if servers_value is None:\n safe_cache_set(self._shared_component_cache, \"servers\", {})\n\n # Check if last_selected_server key exists and is not CacheMiss\n last_server_value = safe_cache_get(self._shared_component_cache, \"last_selected_server\")\n if last_server_value is None:\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", \"\")\n\n default_keys: list[str] = [\n \"code\",\n \"_type\",\n \"tool_mode\",\n \"tool_placeholder\",\n \"mcp_server\",\n \"tool\",\n ]\n\n display_name = \"MCP Tools\"\n description = \"Connect to an MCP server to use its tools.\"\n documentation: str = \"https://docs.langflow.org/mcp-client\"\n icon = \"Mcp\"\n name = \"MCPTools\"\n\n inputs = [\n McpInput(\n name=\"mcp_server\",\n display_name=\"MCP Server\",\n info=\"Select the MCP Server that will be used by this component\",\n real_time_refresh=True,\n ),\n DropdownInput(\n name=\"tool\",\n display_name=\"Tool\",\n options=[],\n value=\"\",\n info=\"Select the tool to execute\",\n show=False,\n required=True,\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n info=\"Placeholder for the tool\",\n value=\"\",\n show=False,\n tool_mode=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Response\", name=\"response\", method=\"build_output\"),\n ]\n\n async def _validate_schema_inputs(self, tool_obj) -> list[InputTypes]:\n \"\"\"Validate and process schema inputs for a tool.\"\"\"\n try:\n if not tool_obj or not hasattr(tool_obj, \"args_schema\"):\n msg = \"Invalid tool object or missing input schema\"\n raise ValueError(msg)\n\n flat_schema = flatten_schema(tool_obj.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n if not input_schema:\n msg = f\"Empty input schema for tool '{tool_obj.name}'\"\n raise ValueError(msg)\n\n schema_inputs = schema_to_langflow_inputs(input_schema)\n if not schema_inputs:\n msg = f\"No input parameters defined for tool '{tool_obj.name}'\"\n logger.warning(msg)\n return []\n\n except Exception as e:\n msg = f\"Error validating schema inputs: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n else:\n return schema_inputs\n\n async def update_tool_list(self, mcp_server_value=None):\n # Accepts mcp_server_value as dict {name, config} or uses self.mcp_server\n mcp_server = mcp_server_value if mcp_server_value is not None else getattr(self, \"mcp_server\", None)\n server_name = None\n server_config_from_value = None\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\")\n server_config_from_value = mcp_server.get(\"config\")\n else:\n server_name = mcp_server\n if not server_name:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config_from_value}\n\n # Use shared cache if available\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n cached = servers_cache.get(server_name) if isinstance(servers_cache, dict) else None\n\n if cached is not None:\n self.tools = cached[\"tools\"]\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n server_config_from_value = cached[\"config\"]\n return self.tools, {\"name\": server_name, \"config\": server_config_from_value}\n\n try:\n async for db in get_session():\n user_id, _ = await create_user_longterm_token(db)\n current_user = await get_user_by_id(db, user_id)\n\n # Try to get server config from DB/API\n server_config = await get_server(\n server_name,\n current_user,\n db,\n storage_service=get_storage_service(),\n settings_service=get_settings_service(),\n )\n\n # If get_server returns empty but we have a config, use it\n if not server_config and server_config_from_value:\n server_config = server_config_from_value\n\n if not server_config:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config}\n\n _, tool_list, tool_cache = await update_tools(\n server_name=server_name,\n server_config=server_config,\n mcp_stdio_client=self.stdio_client,\n mcp_sse_client=self.sse_client,\n )\n\n self.tool_names = [tool.name for tool in tool_list if hasattr(tool, \"name\")]\n self._tool_cache = tool_cache\n self.tools = tool_list\n # Cache the result using shared cache\n cache_data = {\n \"tools\": tool_list,\n \"tool_names\": self.tool_names,\n \"tool_cache\": tool_cache,\n \"config\": server_config,\n }\n\n # Safely update the servers cache\n current_servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(current_servers_cache, dict):\n current_servers_cache[server_name] = cache_data\n safe_cache_set(self._shared_component_cache, \"servers\", current_servers_cache)\n\n return tool_list, {\"name\": server_name, \"config\": server_config}\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n logger.exception(msg)\n raise TimeoutError(msg) from e\n except Exception as e:\n msg = f\"Error updating tool list: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n async def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None) -> dict:\n \"\"\"Toggle the visibility of connection-specific fields based on the selected mode.\"\"\"\n try:\n if field_name == \"tool\":\n try:\n if len(self.tools) == 0:\n try:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n build_config[\"tool\"][\"options\"] = [tool.name for tool in self.tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n logger.exception(msg)\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Timeout on MCP server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n except ValueError:\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Error on MCP Server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n\n if field_value == \"\":\n return build_config\n tool_obj = None\n for tool in self.tools:\n if tool.name == field_value:\n tool_obj = tool\n break\n if tool_obj is None:\n msg = f\"Tool {field_value} not found in available tools: {self.tools}\"\n logger.warning(msg)\n return build_config\n await self._update_tool_config(build_config, field_value)\n except Exception as e:\n build_config[\"tool\"][\"options\"] = []\n msg = f\"Failed to update tools: {e!s}\"\n raise ValueError(msg) from e\n else:\n return build_config\n elif field_name == \"mcp_server\":\n if not field_value:\n build_config[\"tool\"][\"show\"] = False\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool_placeholder\"][\"tool_mode\"] = False\n self.remove_non_default_keys(build_config)\n return build_config\n\n build_config[\"tool_placeholder\"][\"tool_mode\"] = True\n\n current_server_name = field_value.get(\"name\") if isinstance(field_value, dict) else field_value\n _last_selected_server = safe_cache_get(self._shared_component_cache, \"last_selected_server\", \"\")\n\n # To avoid unnecessary updates, only proceed if the server has actually changed\n if (_last_selected_server in (current_server_name, \"\")) and build_config[\"tool\"][\"show\"]:\n return build_config\n\n # Determine if \"Tool Mode\" is active by checking if the tool dropdown is hidden.\n is_in_tool_mode = build_config[\"tools_metadata\"][\"show\"]\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", current_server_name)\n\n # Check if tools are already cached for this server before clearing\n cached_tools = None\n if current_server_name:\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(servers_cache, dict):\n cached = servers_cache.get(current_server_name)\n if cached is not None:\n cached_tools = cached[\"tools\"]\n self.tools = cached_tools\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n\n # Only clear tools if we don't have cached tools for the current server\n if not cached_tools:\n self.tools = [] # Clear previous tools only if no cache\n\n self.remove_non_default_keys(build_config) # Clear previous tool inputs\n\n # Only show the tool dropdown if not in tool_mode\n if not is_in_tool_mode:\n build_config[\"tool\"][\"show\"] = True\n if cached_tools:\n # Use cached tools to populate options immediately\n build_config[\"tool\"][\"options\"] = [tool.name for tool in cached_tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n else:\n # Show loading state only when we need to fetch tools\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n else:\n # Keep the tool dropdown hidden if in tool_mode\n self._not_load_actions = True\n build_config[\"tool\"][\"show\"] = False\n\n elif field_name == \"tool_mode\":\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool\"][\"show\"] = not bool(field_value) and bool(build_config[\"mcp_server\"])\n self.remove_non_default_keys(build_config)\n self.tool = build_config[\"tool\"][\"value\"]\n if field_value:\n self._not_load_actions = True\n else:\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n elif field_name == \"tools_metadata\":\n self._not_load_actions = False\n\n except Exception as e:\n msg = f\"Error in update_build_config: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n else:\n return build_config\n\n def get_inputs_for_all_tools(self, tools: list) -> dict:\n \"\"\"Get input schemas for all tools.\"\"\"\n inputs = {}\n for tool in tools:\n if not tool or not hasattr(tool, \"name\"):\n continue\n try:\n flat_schema = flatten_schema(tool.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n langflow_inputs = schema_to_langflow_inputs(input_schema)\n inputs[tool.name] = langflow_inputs\n except (AttributeError, ValueError, TypeError, KeyError) as e:\n msg = f\"Error getting inputs for tool {getattr(tool, 'name', 'unknown')}: {e!s}\"\n logger.exception(msg)\n continue\n return inputs\n\n def remove_input_schema_from_build_config(\n self, build_config: dict, tool_name: str, input_schema: dict[list[InputTypes], Any]\n ):\n \"\"\"Remove the input schema for the tool from the build config.\"\"\"\n # Keep only schemas that don't belong to the current tool\n input_schema = {k: v for k, v in input_schema.items() if k != tool_name}\n # Remove all inputs from other tools\n for value in input_schema.values():\n for _input in value:\n if _input.name in build_config:\n build_config.pop(_input.name)\n\n def remove_non_default_keys(self, build_config: dict) -> None:\n \"\"\"Remove non-default keys from the build config.\"\"\"\n for key in list(build_config.keys()):\n if key not in self.default_keys:\n build_config.pop(key)\n\n async def _update_tool_config(self, build_config: dict, tool_name: str) -> None:\n \"\"\"Update tool configuration with proper error handling.\"\"\"\n if not self.tools:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n\n if not tool_name:\n return\n\n tool_obj = next((tool for tool in self.tools if tool.name == tool_name), None)\n if not tool_obj:\n msg = f\"Tool {tool_name} not found in available tools: {self.tools}\"\n self.remove_non_default_keys(build_config)\n build_config[\"tool\"][\"value\"] = \"\"\n logger.warning(msg)\n return\n\n try:\n # Store current values before removing inputs\n current_values = {}\n for key, value in build_config.items():\n if key not in self.default_keys and isinstance(value, dict) and \"value\" in value:\n current_values[key] = value[\"value\"]\n\n # Get all tool inputs and remove old ones\n input_schema_for_all_tools = self.get_inputs_for_all_tools(self.tools)\n self.remove_input_schema_from_build_config(build_config, tool_name, input_schema_for_all_tools)\n\n # Get and validate new inputs\n self.schema_inputs = await self._validate_schema_inputs(tool_obj)\n if not self.schema_inputs:\n msg = f\"No input parameters to configure for tool '{tool_name}'\"\n logger.info(msg)\n return\n\n # Add new inputs to build config\n for schema_input in self.schema_inputs:\n if not schema_input or not hasattr(schema_input, \"name\"):\n msg = \"Invalid schema input detected, skipping\"\n logger.warning(msg)\n continue\n\n try:\n name = schema_input.name\n input_dict = schema_input.to_dict()\n input_dict.setdefault(\"value\", None)\n input_dict.setdefault(\"required\", True)\n\n build_config[name] = input_dict\n\n # Preserve existing value if the parameter name exists in current_values\n if name in current_values:\n build_config[name][\"value\"] = current_values[name]\n\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error processing schema input {schema_input}: {e!s}\"\n logger.exception(msg)\n continue\n except ValueError as e:\n msg = f\"Schema validation error for tool {tool_name}: {e!s}\"\n logger.exception(msg)\n self.schema_inputs = []\n return\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error updating tool config: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n async def build_output(self) -> DataFrame:\n \"\"\"Build output with improved error handling and validation.\"\"\"\n try:\n self.tools, _ = await self.update_tool_list()\n if self.tool != \"\":\n # Set session context for persistent MCP sessions using Langflow session ID\n session_context = self._get_session_context()\n if session_context:\n self.stdio_client.set_session_context(session_context)\n self.sse_client.set_session_context(session_context)\n\n exec_tool = self._tool_cache[self.tool]\n tool_args = self.get_inputs_for_all_tools(self.tools)[self.tool]\n kwargs = {}\n for arg in tool_args:\n value = getattr(self, arg.name, None)\n if value is not None:\n if isinstance(value, Message):\n kwargs[arg.name] = value.text\n else:\n kwargs[arg.name] = value\n\n unflattened_kwargs = maybe_unflatten_dict(kwargs)\n\n output = await exec_tool.coroutine(**unflattened_kwargs)\n\n tool_content = []\n for item in output.content:\n item_dict = item.model_dump()\n tool_content.append(item_dict)\n return DataFrame(data=tool_content)\n return DataFrame(data=[{\"error\": \"You must select a tool\"}])\n except Exception as e:\n msg = f\"Error in build_output: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n def _get_session_context(self) -> str | None:\n \"\"\"Get the Langflow session ID for MCP session caching.\"\"\"\n # Try to get session ID from the component's execution context\n if hasattr(self, \"graph\") and hasattr(self.graph, \"session_id\"):\n session_id = self.graph.session_id\n # Include server name to ensure different servers get different sessions\n server_name = \"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\", \"\")\n elif mcp_server:\n server_name = str(mcp_server)\n return f\"{session_id}_{server_name}\" if session_id else None\n return None\n\n async def _get_tools(self):\n \"\"\"Get cached tools or update if necessary.\"\"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if not self._not_load_actions:\n tools, _ = await self.update_tool_list(mcp_server)\n return tools\n return []\n"
2581
+ "value": "from __future__ import annotations\n\nimport asyncio\nimport uuid\nfrom typing import Any\n\nfrom langchain_core.tools import StructuredTool # noqa: TC002\n\nfrom langflow.api.v2.mcp import get_server\nfrom langflow.base.agents.utils import maybe_unflatten_dict, safe_cache_get, safe_cache_set\nfrom langflow.base.mcp.util import (\n MCPSseClient,\n MCPStdioClient,\n create_input_schema_from_json_schema,\n update_tools,\n)\nfrom langflow.custom.custom_component.component_with_cache import ComponentWithCache\nfrom langflow.inputs.inputs import InputTypes # noqa: TC001\nfrom langflow.io import DropdownInput, McpInput, MessageTextInput, Output, SecretStrInput\nfrom langflow.io.schema import flatten_schema, schema_to_langflow_inputs\nfrom langflow.logging import logger\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\n\n# Import get_server from the backend API\nfrom langflow.services.auth.utils import create_user_longterm_token, get_current_user\nfrom langflow.services.database.models.user.crud import get_user_by_id\nfrom langflow.services.deps import get_session, get_settings_service, get_storage_service\n\n\nclass MCPToolsComponent(ComponentWithCache):\n schema_inputs: list = []\n tools: list[StructuredTool] = []\n _not_load_actions: bool = False\n _tool_cache: dict = {}\n _last_selected_server: str | None = None # Cache for the last selected server\n\n def __init__(self, **data) -> None:\n super().__init__(**data)\n # Initialize cache keys to avoid CacheMiss when accessing them\n self._ensure_cache_structure()\n\n # Initialize clients with access to the component cache\n self.stdio_client: MCPStdioClient = MCPStdioClient(component_cache=self._shared_component_cache)\n self.sse_client: MCPSseClient = MCPSseClient(component_cache=self._shared_component_cache)\n\n def _ensure_cache_structure(self):\n \"\"\"Ensure the cache has the required structure.\"\"\"\n # Check if servers key exists and is not CacheMiss\n servers_value = safe_cache_get(self._shared_component_cache, \"servers\")\n if servers_value is None:\n safe_cache_set(self._shared_component_cache, \"servers\", {})\n\n # Check if last_selected_server key exists and is not CacheMiss\n last_server_value = safe_cache_get(self._shared_component_cache, \"last_selected_server\")\n if last_server_value is None:\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", \"\")\n\n default_keys: list[str] = [\n \"code\",\n \"_type\",\n \"tool_mode\",\n \"tool_placeholder\",\n \"mcp_server\",\n \"tool\",\n ]\n\n display_name = \"MCP Tools\"\n description = \"Connect to an MCP server to use its tools.\"\n documentation: str = \"https://docs.langflow.org/mcp-client\"\n icon = \"Mcp\"\n name = \"MCPTools\"\n\n inputs = [\n McpInput(\n name=\"mcp_server\",\n display_name=\"MCP Server\",\n info=\"Select the MCP Server that will be used by this component\",\n real_time_refresh=True,\n ),\n DropdownInput(\n name=\"tool\",\n display_name=\"Tool\",\n options=[],\n value=\"\",\n info=\"Select the tool to execute\",\n show=False,\n required=True,\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n info=\"Placeholder for the tool\",\n value=\"\",\n show=False,\n tool_mode=False,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Langflow API Key\",\n info=\"Langflow API key for authentication when fetching MCP servers and tools.\",\n required=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Response\", name=\"response\", method=\"build_output\"),\n ]\n\n async def _validate_schema_inputs(self, tool_obj) -> list[InputTypes]:\n \"\"\"Validate and process schema inputs for a tool.\"\"\"\n try:\n if not tool_obj or not hasattr(tool_obj, \"args_schema\"):\n msg = \"Invalid tool object or missing input schema\"\n raise ValueError(msg)\n\n flat_schema = flatten_schema(tool_obj.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n if not input_schema:\n msg = f\"Empty input schema for tool '{tool_obj.name}'\"\n raise ValueError(msg)\n\n schema_inputs = schema_to_langflow_inputs(input_schema)\n if not schema_inputs:\n msg = f\"No input parameters defined for tool '{tool_obj.name}'\"\n logger.warning(msg)\n return []\n\n except Exception as e:\n msg = f\"Error validating schema inputs: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n else:\n return schema_inputs\n\n async def update_tool_list(self, mcp_server_value=None):\n # Accepts mcp_server_value as dict {name, config} or uses self.mcp_server\n mcp_server = mcp_server_value if mcp_server_value is not None else getattr(self, \"mcp_server\", None)\n server_name = None\n server_config_from_value = None\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\")\n server_config_from_value = mcp_server.get(\"config\")\n else:\n server_name = mcp_server\n if not server_name:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config_from_value}\n\n # Use shared cache if available\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n cached = servers_cache.get(server_name) if isinstance(servers_cache, dict) else None\n\n if cached is not None:\n self.tools = cached[\"tools\"]\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n server_config_from_value = cached[\"config\"]\n return self.tools, {\"name\": server_name, \"config\": server_config_from_value}\n\n try:\n async for db in get_session():\n # TODO: In 1.6, this may need to be removed or adjusted\n # Try to get the super user token, if possible\n if self.api_key:\n current_user = await get_current_user(\n token=None,\n query_param=self.api_key,\n header_param=None,\n db=db,\n )\n else:\n user_id, _ = await create_user_longterm_token(db)\n current_user = await get_user_by_id(db, user_id)\n\n # Try to get server config from DB/API\n server_config = await get_server(\n server_name,\n current_user,\n db,\n storage_service=get_storage_service(),\n settings_service=get_settings_service(),\n )\n\n # If get_server returns empty but we have a config, use it\n if not server_config and server_config_from_value:\n server_config = server_config_from_value\n\n if not server_config:\n self.tools = []\n return [], {\"name\": server_name, \"config\": server_config}\n\n _, tool_list, tool_cache = await update_tools(\n server_name=server_name,\n server_config=server_config,\n mcp_stdio_client=self.stdio_client,\n mcp_sse_client=self.sse_client,\n )\n\n self.tool_names = [tool.name for tool in tool_list if hasattr(tool, \"name\")]\n self._tool_cache = tool_cache\n self.tools = tool_list\n # Cache the result using shared cache\n cache_data = {\n \"tools\": tool_list,\n \"tool_names\": self.tool_names,\n \"tool_cache\": tool_cache,\n \"config\": server_config,\n }\n\n # Safely update the servers cache\n current_servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(current_servers_cache, dict):\n current_servers_cache[server_name] = cache_data\n safe_cache_set(self._shared_component_cache, \"servers\", current_servers_cache)\n\n return tool_list, {\"name\": server_name, \"config\": server_config}\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n logger.exception(msg)\n raise TimeoutError(msg) from e\n except Exception as e:\n msg = f\"Error updating tool list: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n async def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None) -> dict:\n \"\"\"Toggle the visibility of connection-specific fields based on the selected mode.\"\"\"\n try:\n if field_name == \"tool\":\n try:\n if len(self.tools) == 0:\n try:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n build_config[\"tool\"][\"options\"] = [tool.name for tool in self.tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n except (TimeoutError, asyncio.TimeoutError) as e:\n msg = f\"Timeout updating tool list: {e!s}\"\n logger.exception(msg)\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Timeout on MCP server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n except ValueError:\n if not build_config[\"tools_metadata\"][\"show\"]:\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"Error on MCP Server\"\n else:\n build_config[\"tool\"][\"show\"] = False\n\n if field_value == \"\":\n return build_config\n tool_obj = None\n for tool in self.tools:\n if tool.name == field_value:\n tool_obj = tool\n break\n if tool_obj is None:\n msg = f\"Tool {field_value} not found in available tools: {self.tools}\"\n logger.warning(msg)\n return build_config\n await self._update_tool_config(build_config, field_value)\n except Exception as e:\n build_config[\"tool\"][\"options\"] = []\n msg = f\"Failed to update tools: {e!s}\"\n raise ValueError(msg) from e\n else:\n return build_config\n elif field_name == \"mcp_server\":\n if not field_value:\n build_config[\"tool\"][\"show\"] = False\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = \"\"\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool_placeholder\"][\"tool_mode\"] = False\n self.remove_non_default_keys(build_config)\n return build_config\n\n build_config[\"tool_placeholder\"][\"tool_mode\"] = True\n\n current_server_name = field_value.get(\"name\") if isinstance(field_value, dict) else field_value\n _last_selected_server = safe_cache_get(self._shared_component_cache, \"last_selected_server\", \"\")\n\n # To avoid unnecessary updates, only proceed if the server has actually changed\n if (_last_selected_server in (current_server_name, \"\")) and build_config[\"tool\"][\"show\"]:\n return build_config\n\n # Determine if \"Tool Mode\" is active by checking if the tool dropdown is hidden.\n is_in_tool_mode = build_config[\"tools_metadata\"][\"show\"]\n safe_cache_set(self._shared_component_cache, \"last_selected_server\", current_server_name)\n\n # Check if tools are already cached for this server before clearing\n cached_tools = None\n if current_server_name:\n servers_cache = safe_cache_get(self._shared_component_cache, \"servers\", {})\n if isinstance(servers_cache, dict):\n cached = servers_cache.get(current_server_name)\n if cached is not None:\n cached_tools = cached[\"tools\"]\n self.tools = cached_tools\n self.tool_names = cached[\"tool_names\"]\n self._tool_cache = cached[\"tool_cache\"]\n\n # Only clear tools if we don't have cached tools for the current server\n if not cached_tools:\n self.tools = [] # Clear previous tools only if no cache\n\n self.remove_non_default_keys(build_config) # Clear previous tool inputs\n\n # Only show the tool dropdown if not in tool_mode\n if not is_in_tool_mode:\n build_config[\"tool\"][\"show\"] = True\n if cached_tools:\n # Use cached tools to populate options immediately\n build_config[\"tool\"][\"options\"] = [tool.name for tool in cached_tools]\n build_config[\"tool\"][\"placeholder\"] = \"Select a tool\"\n else:\n # Show loading state only when we need to fetch tools\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n else:\n # Keep the tool dropdown hidden if in tool_mode\n self._not_load_actions = True\n build_config[\"tool\"][\"show\"] = False\n\n elif field_name == \"tool_mode\":\n build_config[\"tool\"][\"placeholder\"] = \"\"\n build_config[\"tool\"][\"show\"] = not bool(field_value) and bool(build_config[\"mcp_server\"])\n self.remove_non_default_keys(build_config)\n self.tool = build_config[\"tool\"][\"value\"]\n if field_value:\n self._not_load_actions = True\n else:\n build_config[\"tool\"][\"value\"] = uuid.uuid4()\n build_config[\"tool\"][\"options\"] = []\n build_config[\"tool\"][\"show\"] = True\n build_config[\"tool\"][\"placeholder\"] = \"Loading tools...\"\n elif field_name == \"tools_metadata\":\n self._not_load_actions = False\n\n except Exception as e:\n msg = f\"Error in update_build_config: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n else:\n return build_config\n\n def get_inputs_for_all_tools(self, tools: list) -> dict:\n \"\"\"Get input schemas for all tools.\"\"\"\n inputs = {}\n for tool in tools:\n if not tool or not hasattr(tool, \"name\"):\n continue\n try:\n flat_schema = flatten_schema(tool.args_schema.schema())\n input_schema = create_input_schema_from_json_schema(flat_schema)\n langflow_inputs = schema_to_langflow_inputs(input_schema)\n inputs[tool.name] = langflow_inputs\n except (AttributeError, ValueError, TypeError, KeyError) as e:\n msg = f\"Error getting inputs for tool {getattr(tool, 'name', 'unknown')}: {e!s}\"\n logger.exception(msg)\n continue\n return inputs\n\n def remove_input_schema_from_build_config(\n self, build_config: dict, tool_name: str, input_schema: dict[list[InputTypes], Any]\n ):\n \"\"\"Remove the input schema for the tool from the build config.\"\"\"\n # Keep only schemas that don't belong to the current tool\n input_schema = {k: v for k, v in input_schema.items() if k != tool_name}\n # Remove all inputs from other tools\n for value in input_schema.values():\n for _input in value:\n if _input.name in build_config:\n build_config.pop(_input.name)\n\n def remove_non_default_keys(self, build_config: dict) -> None:\n \"\"\"Remove non-default keys from the build config.\"\"\"\n for key in list(build_config.keys()):\n if key not in self.default_keys:\n build_config.pop(key)\n\n async def _update_tool_config(self, build_config: dict, tool_name: str) -> None:\n \"\"\"Update tool configuration with proper error handling.\"\"\"\n if not self.tools:\n self.tools, build_config[\"mcp_server\"][\"value\"] = await self.update_tool_list()\n\n if not tool_name:\n return\n\n tool_obj = next((tool for tool in self.tools if tool.name == tool_name), None)\n if not tool_obj:\n msg = f\"Tool {tool_name} not found in available tools: {self.tools}\"\n self.remove_non_default_keys(build_config)\n build_config[\"tool\"][\"value\"] = \"\"\n logger.warning(msg)\n return\n\n try:\n # Store current values before removing inputs\n current_values = {}\n for key, value in build_config.items():\n if key not in self.default_keys and isinstance(value, dict) and \"value\" in value:\n current_values[key] = value[\"value\"]\n\n # Get all tool inputs and remove old ones\n input_schema_for_all_tools = self.get_inputs_for_all_tools(self.tools)\n self.remove_input_schema_from_build_config(build_config, tool_name, input_schema_for_all_tools)\n\n # Get and validate new inputs\n self.schema_inputs = await self._validate_schema_inputs(tool_obj)\n if not self.schema_inputs:\n msg = f\"No input parameters to configure for tool '{tool_name}'\"\n logger.info(msg)\n return\n\n # Add new inputs to build config\n for schema_input in self.schema_inputs:\n if not schema_input or not hasattr(schema_input, \"name\"):\n msg = \"Invalid schema input detected, skipping\"\n logger.warning(msg)\n continue\n\n try:\n name = schema_input.name\n input_dict = schema_input.to_dict()\n input_dict.setdefault(\"value\", None)\n input_dict.setdefault(\"required\", True)\n\n build_config[name] = input_dict\n\n # Preserve existing value if the parameter name exists in current_values\n if name in current_values:\n build_config[name][\"value\"] = current_values[name]\n\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error processing schema input {schema_input}: {e!s}\"\n logger.exception(msg)\n continue\n except ValueError as e:\n msg = f\"Schema validation error for tool {tool_name}: {e!s}\"\n logger.exception(msg)\n self.schema_inputs = []\n return\n except (AttributeError, KeyError, TypeError) as e:\n msg = f\"Error updating tool config: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n async def build_output(self) -> DataFrame:\n \"\"\"Build output with improved error handling and validation.\"\"\"\n try:\n self.tools, _ = await self.update_tool_list()\n if self.tool != \"\":\n # Set session context for persistent MCP sessions using Langflow session ID\n session_context = self._get_session_context()\n if session_context:\n self.stdio_client.set_session_context(session_context)\n self.sse_client.set_session_context(session_context)\n\n exec_tool = self._tool_cache[self.tool]\n tool_args = self.get_inputs_for_all_tools(self.tools)[self.tool]\n kwargs = {}\n for arg in tool_args:\n value = getattr(self, arg.name, None)\n if value is not None:\n if isinstance(value, Message):\n kwargs[arg.name] = value.text\n else:\n kwargs[arg.name] = value\n\n unflattened_kwargs = maybe_unflatten_dict(kwargs)\n\n output = await exec_tool.coroutine(**unflattened_kwargs)\n\n tool_content = []\n for item in output.content:\n item_dict = item.model_dump()\n tool_content.append(item_dict)\n return DataFrame(data=tool_content)\n return DataFrame(data=[{\"error\": \"You must select a tool\"}])\n except Exception as e:\n msg = f\"Error in build_output: {e!s}\"\n logger.exception(msg)\n raise ValueError(msg) from e\n\n def _get_session_context(self) -> str | None:\n \"\"\"Get the Langflow session ID for MCP session caching.\"\"\"\n # Try to get session ID from the component's execution context\n if hasattr(self, \"graph\") and hasattr(self.graph, \"session_id\"):\n session_id = self.graph.session_id\n # Include server name to ensure different servers get different sessions\n server_name = \"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if isinstance(mcp_server, dict):\n server_name = mcp_server.get(\"name\", \"\")\n elif mcp_server:\n server_name = str(mcp_server)\n return f\"{session_id}_{server_name}\" if session_id else None\n return None\n\n async def _get_tools(self):\n \"\"\"Get cached tools or update if necessary.\"\"\"\n mcp_server = getattr(self, \"mcp_server\", None)\n if not self._not_load_actions:\n tools, _ = await self.update_tool_list(mcp_server)\n return tools\n return []\n"
2565
2582
  },
2566
2583
  "mcp_server": {
2567
2584
  "_input_type": "McpInput",
@@ -1,7 +1,7 @@
1
1
  from datetime import datetime, timezone
2
2
  from uuid import UUID, uuid4
3
3
 
4
- from sqlmodel import Field, SQLModel
4
+ from sqlmodel import Field, SQLModel, UniqueConstraint
5
5
 
6
6
  from langflow.schema.serialize import UUIDstr
7
7
 
@@ -9,9 +9,11 @@ from langflow.schema.serialize import UUIDstr
9
9
  class File(SQLModel, table=True): # type: ignore[call-arg]
10
10
  id: UUIDstr = Field(default_factory=uuid4, primary_key=True)
11
11
  user_id: UUID = Field(foreign_key="user.id")
12
- name: str = Field(unique=True, nullable=False)
12
+ name: str = Field(nullable=False)
13
13
  path: str = Field(nullable=False)
14
14
  size: int = Field(nullable=False)
15
15
  provider: str | None = Field(default=None)
16
16
  created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
17
17
  updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
18
+
19
+ __table_args__ = (UniqueConstraint("name", "user_id"),)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langflow-base-nightly
3
- Version: 0.5.0.dev34
3
+ Version: 0.5.0.dev36
4
4
  Summary: A Python package with a built-in web application
5
5
  Project-URL: Repository, https://github.com/langflow-ai/langflow
6
6
  Project-URL: Documentation, https://docs.langflow.org
@@ -20,6 +20,7 @@ langflow/alembic/versions/0d60fcbd4e8e_create_vertex_builds_table.py,sha256=BYNy
20
20
  langflow/alembic/versions/1a110b568907_replace_credential_table_with_variable.py,sha256=Xh1DEgm3GaDG5NApaUVUJjbEKYDBMZAM_mINO_72Wf0,2620
21
21
  langflow/alembic/versions/1b8b740a6fa3_remove_fk_constraint_in_message_.py,sha256=mrpCamCU7Q-AY7q_P7sdq_HlgqffIO2P_sk0GU4Qrc0,15034
22
22
  langflow/alembic/versions/1c79524817ed_add_unique_constraints_per_user_in_.py,sha256=9GoBzcOjomBz19f3fFya8tLDgNk-PoF4RdalvQANRWY,1531
23
+ langflow/alembic/versions/1cb603706752_modify_uniqueness_constraint_on_file_.py,sha256=qo8JoNA_LgnRaEqS1JwNnqPEjnZlJ9VR-q4cs_OAoRw,10618
23
24
  langflow/alembic/versions/1d90f8a0efe1_update_description_columns_type.py,sha256=iqeMojwUhUMUCDFpRdZWRPhsV4EiQ20lYKOMJN6rXfo,3275
24
25
  langflow/alembic/versions/1eab2c3eb45e_event_error.py,sha256=RC3vb57r2FI3C6AQBmSEHvE0Q51i2kMkpPw1kTWV19A,1977
25
26
  langflow/alembic/versions/1ef9c4f3765d_.py,sha256=Ly3M6wbbKxzdwha1Mr3fVruruNg4I0fAWvFamy9gtBw,2044
@@ -194,7 +195,7 @@ langflow/components/agentql/__init__.py,sha256=Erl669Dzsk-SegsDPWTtkKbprMXVuv8UT
194
195
  langflow/components/agentql/agentql_api.py,sha256=zoRcxHro69_l3-VUYOXkfb3J78VNu0kJzCDbIQJbv8s,5606
195
196
  langflow/components/agents/__init__.py,sha256=IXzXcobwGvV0MxtCrZfia5DlTnNL1OyOAADquoJn8Hc,130
196
197
  langflow/components/agents/agent.py,sha256=UzqsX2GFFIt0JcgaHzxQlod2v32NKsbI5E3tWS-coks,15552
197
- langflow/components/agents/mcp_component.py,sha256=1Y620rPnRpB-JGubGTN8RQLpQuBV3RYvNFyzazoiKCs,22584
198
+ langflow/components/agents/mcp_component.py,sha256=aDn6PK6ZNAMLghWWew23Y1diHrv1JRf1P6Znr_e19yg,23313
198
199
  langflow/components/aiml/__init__.py,sha256=uHyRjn6RHih__xQl9imVc2T3EVDJXh_YfHjA-OKSOC8,1102
199
200
  langflow/components/aiml/aiml.py,sha256=P0-1dKjiQq-vima7QGwnAYMi8XKcrf9vXfEfkg7kZ8s,3860
200
201
  langflow/components/aiml/aiml_embeddings.py,sha256=B-Nqe0wCwv9eNU9auyj62LQ1J0hmPfmxjZ5uxwSwPMo,1120
@@ -265,7 +266,7 @@ langflow/components/data/csv_to_data.py,sha256=FL99gVyquYmdrD6Z1S0X_l3DDkVDRfdCw
265
266
  langflow/components/data/directory.py,sha256=MqSUyq5cL6Xy2CqBREc0hJlcoega3r82ti29oNmGlog,3966
266
267
  langflow/components/data/file.py,sha256=07zPsp7_qUyBpziW7UfQLHoWY70Ps6hRPyKyX3aLLzw,5861
267
268
  langflow/components/data/json_to_data.py,sha256=uN3yyVHo-DOvv0ZwYQx99V-rWddh3A6iDBKW7ga1J4c,3554
268
- langflow/components/data/kb_ingest.py,sha256=Ed8Z3lQdjsT-FScEYnJA0N68ReppmP7JZvczViZ12eU,24334
269
+ langflow/components/data/kb_ingest.py,sha256=4evNZuy8-M93S8I-mmjxiRjWit66cFIUwCqrBv7InFU,24478
269
270
  langflow/components/data/kb_retrieval.py,sha256=7itmlY8JTS91P_oju0-sKDV2vZyWUuiQVRhg88I_3s8,9947
270
271
  langflow/components/data/news_search.py,sha256=PpuhSTH_gk1iWjX4X3N0PxIPAAdcrnH0GAtu_d5LSgA,6196
271
272
  langflow/components/data/rss.py,sha256=B_DZvPdnJhnh7qkzPHcp-ERsfqcft6kTNl58G94zJzg,2504
@@ -312,9 +313,9 @@ langflow/components/deactivated/vectara_self_query.py,sha256=4O1jCCBLxTwzr1HUOwJ
312
313
  langflow/components/deactivated/vector_store.py,sha256=vLBqJ99SwXfWO3BrHnL-DEh0mnJ9IXWl43hiM6I-d7Y,743
313
314
  langflow/components/deepseek/__init__.py,sha256=KJHElyBgRcJIGoejJV-MSwSQ-fz3ZbVCVNbi-vs63nc,940
314
315
  langflow/components/deepseek/deepseek.py,sha256=VJo3tfF8lOoAmhzzv3CeRUFb2zDZG18-BokpAR-GMYU,4717
315
- langflow/components/docling/__init__.py,sha256=MxEEA_bDfWEQ630yj-K0cwkRNd9UVFDKeEJ9HXhRghg,1429
316
+ langflow/components/docling/__init__.py,sha256=fYTURN1YnJtmcVC3eX25-sA9pn-_qOtU5O6XhNOCRBA,9174
316
317
  langflow/components/docling/chunk_docling_document.py,sha256=Y8JVHza3uUiANkpoGkmvULKG47So7R_0h5ogtc3KA4E,7620
317
- langflow/components/docling/docling_inline.py,sha256=SShARkFo6Emf9T5fjBV3iUI3BWOIYWERdWtGRGDPnR4,4564
318
+ langflow/components/docling/docling_inline.py,sha256=5e8Er9Mq_Hr-mORU3M67Isr_WOaqHYFYZxX0qBSSUoE,6080
318
319
  langflow/components/docling/docling_remote.py,sha256=iAU4hgQxklYr_3OECuoXI08iQ_MvJ22JC2LrGVU0vwQ,6810
319
320
  langflow/components/docling/export_docling_document.py,sha256=RRyWc71MpzlI7Tx1mW4XMn9lKkQCqlIh_fPCkeAAbpE,4701
320
321
  langflow/components/documentloaders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -485,7 +486,7 @@ langflow/components/processing/parser.py,sha256=VWIJUgZQRN-eW8zgEUOECfpmy0nmfRI7
485
486
  langflow/components/processing/prompt.py,sha256=xHilcszTEdewqBufJusnkXWTrRqC8MX9fEEz1n-vgK0,2791
486
487
  langflow/components/processing/python_repl_core.py,sha256=FaNGm6f2ngniE2lueYaoxSn-hZ-yKePdV60y-jc9nfs,3477
487
488
  langflow/components/processing/regex.py,sha256=MQVd8nUwe3engl_JiI-wEn1BvXVm1e0vQOn99gdiOrw,2660
488
- langflow/components/processing/save_file.py,sha256=kTSFnPJN7em85Dpa6EzqyALSc3A3eaP6MnQMPu_IojU,8842
489
+ langflow/components/processing/save_file.py,sha256=2a9yjOAqRf6x22157DJFLnSTJOMyiwFqaUDIttByDiM,9949
489
490
  langflow/components/processing/select_data.py,sha256=t1InSoxLIageodImGpkNG1tWAirHKuFrU9QhNdom8PA,1765
490
491
  langflow/components/processing/split_text.py,sha256=2_Lp0jGdEAnuup4ucL-ZexpcarCL78wJAwQLCL2cleE,5323
491
492
  langflow/components/processing/structured_output.py,sha256=rSpvRVLAlxcnEWFJVvExZC-NTmIb6rUieBzYnSMV9po,7991
@@ -883,13 +884,13 @@ langflow/initial_setup/starter_projects/Hybrid Search RAG.json,sha256=YalCD1u0CQ
883
884
  langflow/initial_setup/starter_projects/Image Sentiment Analysis.json,sha256=p3yUZeuCPiAlvHBjArJtNiAUdXV4viKYeRagI3fI534,113531
884
885
  langflow/initial_setup/starter_projects/Instagram Copywriter.json,sha256=iBqKLxara5PJsbztdq9k-M6q0mkd_OExISb71t9Ft6o,169884
885
886
  langflow/initial_setup/starter_projects/Invoice Summarizer.json,sha256=IdWYegxw5qTplYBdBt3Vl_b61bNgeTzPEtX6DVuimSM,95726
886
- langflow/initial_setup/starter_projects/Knowledge Ingestion.json,sha256=tqDxS1SO6L8ReXutxVgJSeoV-m_R6slPPsF1uswsMcc,81324
887
+ langflow/initial_setup/starter_projects/Knowledge Ingestion.json,sha256=Ynqwki9sC6j0ioMiqyWryeR8jyBcF-a7uQyfj7ivxxA,81467
887
888
  langflow/initial_setup/starter_projects/Knowledge Retrieval.json,sha256=abZ7akGNWy_ywoFWTcq0xyT--iRbEBnXh8Xx0Q1BizY,43494
888
889
  langflow/initial_setup/starter_projects/Market Research.json,sha256=i3IZbaXaXwNL_l222sikK4kCbtVjm_JU8xHrs-KTFI0,151362
889
890
  langflow/initial_setup/starter_projects/Meeting Summary.json,sha256=rm58p7Dkxb4vBzyin-Aa1i6XdMT0Au5D5_QuEuuxNDM,195851
890
891
  langflow/initial_setup/starter_projects/Memory Chatbot.json,sha256=d4imk-w2M69O8iCJT-Xbf9dleEf8uaLAsKzqLkMMZWw,85446
891
- langflow/initial_setup/starter_projects/News Aggregator.json,sha256=vx0oPSjujjvtvq1XexHHs5VqA_thHpP4toPp7bS4R1Y,113354
892
- langflow/initial_setup/starter_projects/Nvidia Remix.json,sha256=hv-3BxMnVVh4b8Jk_b80EDRRlxOKEmG0-qYsehX6TzE,315071
892
+ langflow/initial_setup/starter_projects/News Aggregator.json,sha256=ut1RyPTD1sIdM97wuAw_i_jpPwK6HhoWX5hdK1e8XXo,115136
893
+ langflow/initial_setup/starter_projects/Nvidia Remix.json,sha256=Nh1K7ifymwVgiaf7GBG17zDNRgf8khu4zSv3gcp69e0,316474
893
894
  langflow/initial_setup/starter_projects/Pokédex Agent.json,sha256=xBs9Ih8IRFDTAP64ra2DhO52iQHui7xj-2JMq6YL3kY,111969
894
895
  langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json,sha256=GU8ESXR_Lf6_NdGihyuPyk4JUcO0KhzmL7dQQGr9XAo,123578
895
896
  langflow/initial_setup/starter_projects/Price Deal Finder.json,sha256=b9DZDCmCCGmIym6szI7NSMA6bG1Kwa_UpvO6PJBQ9sk,122658
@@ -999,7 +1000,7 @@ langflow/services/database/models/api_key/crud.py,sha256=Boy5k8QktC8FaXSou2ub1WT
999
1000
  langflow/services/database/models/api_key/model.py,sha256=DkfuvuyqxIA4V2Tps_Cl3elzsgRNmhNt3M0JvEgr_Lc,1991
1000
1001
  langflow/services/database/models/file/__init__.py,sha256=1VvR0bFrVeDf-lVwXWa2YT0nbOnvkdxCbcMcSAONlPs,51
1001
1002
  langflow/services/database/models/file/crud.py,sha256=ASclS7DS_y-fi7TdZi4dDWN61UjEro1bVL_g283oT1M,401
1002
- langflow/services/database/models/file/model.py,sha256=pMVPwsk5ONC9NjLUVUG_iWSPfKw-DkVzieatKmdVBCI,674
1003
+ langflow/services/database/models/file/model.py,sha256=k4WoyKaEDVQ6295QBxjtZ_BhgEaPnqp__IKCHptcPl4,740
1003
1004
  langflow/services/database/models/flow/__init__.py,sha256=QJ8bBCOVfpsOITXiN92d7yBdRdS9apqetshv-jjDVlk,118
1004
1005
  langflow/services/database/models/flow/model.py,sha256=ORA2qt1uNVuPclRUobFcs_VC17qA_a03iIdE3eu9kBo,11182
1005
1006
  langflow/services/database/models/flow/schema.py,sha256=IeisZjKaOUp4EerBr5oAchOFkYrvjG1JDateLpa94Pg,95
@@ -1128,7 +1129,7 @@ langflow/utils/util_strings.py,sha256=Blz5lwvE7lml7nKCG9vVJ6me5VNmVtYzFXDVPHPK7v
1128
1129
  langflow/utils/validate.py,sha256=8RnY61LZFCBU1HIlPDCMI3vsXOmK_IFAYBGZIfZJcsU,16362
1129
1130
  langflow/utils/version.py,sha256=OjSj0smls9XnPd4-LpTH9AWyUO_NAn5mncqKkkXl_fw,2840
1130
1131
  langflow/utils/voice_utils.py,sha256=pzU6uuseI2_5mi-yXzFIjMavVRFyuVrpLmR6LqbF7mE,3346
1131
- langflow_base_nightly-0.5.0.dev34.dist-info/METADATA,sha256=esLWWKg7pj4tlTNSeJ3FcBgWgy3ycCJ-ih-lCD2RQJo,4212
1132
- langflow_base_nightly-0.5.0.dev34.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
1133
- langflow_base_nightly-0.5.0.dev34.dist-info/entry_points.txt,sha256=JvuLdXSrkeDmDdpb8M-VvFIzb84n4HmqUcIP10_EIF8,57
1134
- langflow_base_nightly-0.5.0.dev34.dist-info/RECORD,,
1132
+ langflow_base_nightly-0.5.0.dev36.dist-info/METADATA,sha256=FST1eF7horVqutiEmlhKW2RUm0QRgQve8nL3gMj9E0o,4212
1133
+ langflow_base_nightly-0.5.0.dev36.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
1134
+ langflow_base_nightly-0.5.0.dev36.dist-info/entry_points.txt,sha256=JvuLdXSrkeDmDdpb8M-VvFIzb84n4HmqUcIP10_EIF8,57
1135
+ langflow_base_nightly-0.5.0.dev36.dist-info/RECORD,,