langchain 1.0.0a3__py3-none-any.whl → 1.0.0a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langchain/__init__.py +1 -1
- langchain/agents/middleware/__init__.py +15 -0
- langchain/agents/middleware/_utils.py +11 -0
- langchain/agents/middleware/human_in_the_loop.py +128 -0
- langchain/agents/middleware/prompt_caching.py +57 -0
- langchain/agents/middleware/summarization.py +248 -0
- langchain/agents/middleware/types.py +78 -0
- langchain/agents/middleware_agent.py +554 -0
- langchain/agents/react_agent.py +28 -0
- langchain/chat_models/__init__.py +2 -0
- langchain/chat_models/base.py +2 -0
- langchain/documents/__init__.py +2 -0
- langchain/embeddings/__init__.py +2 -0
- langchain/embeddings/base.py +2 -0
- langchain/storage/encoder_backed.py +2 -0
- langchain/storage/exceptions.py +2 -0
- langchain/tools/__init__.py +2 -0
- {langchain-1.0.0a3.dist-info → langchain-1.0.0a4.dist-info}/METADATA +2 -2
- langchain-1.0.0a4.dist-info/RECORD +40 -0
- langchain-1.0.0a3.dist-info/RECORD +0 -33
- {langchain-1.0.0a3.dist-info → langchain-1.0.0a4.dist-info}/WHEEL +0 -0
- {langchain-1.0.0a3.dist-info → langchain-1.0.0a4.dist-info}/entry_points.txt +0 -0
- {langchain-1.0.0a3.dist-info → langchain-1.0.0a4.dist-info}/licenses/LICENSE +0 -0
langchain/__init__.py
CHANGED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
"""Middleware plugins for agents."""
|
|
2
|
+
|
|
3
|
+
from .human_in_the_loop import HumanInTheLoopMiddleware
|
|
4
|
+
from .prompt_caching import AnthropicPromptCachingMiddleware
|
|
5
|
+
from .summarization import SummarizationMiddleware
|
|
6
|
+
from .types import AgentMiddleware, AgentState, ModelRequest
|
|
7
|
+
|
|
8
|
+
__all__ = [
|
|
9
|
+
"AgentMiddleware",
|
|
10
|
+
"AgentState",
|
|
11
|
+
"AnthropicPromptCachingMiddleware",
|
|
12
|
+
"HumanInTheLoopMiddleware",
|
|
13
|
+
"ModelRequest",
|
|
14
|
+
"SummarizationMiddleware",
|
|
15
|
+
]
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
"""Utility functions for middleware."""
|
|
2
|
+
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def _generate_correction_tool_messages(content: str, tool_calls: list) -> list[dict[str, Any]]:
|
|
7
|
+
"""Generate tool messages for model behavior correction."""
|
|
8
|
+
return [
|
|
9
|
+
{"role": "tool", "content": content, "tool_call_id": tool_call["id"]}
|
|
10
|
+
for tool_call in tool_calls
|
|
11
|
+
]
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
"""Human in the loop middleware."""
|
|
2
|
+
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
from langgraph.prebuilt.interrupt import (
|
|
6
|
+
ActionRequest,
|
|
7
|
+
HumanInterrupt,
|
|
8
|
+
HumanInterruptConfig,
|
|
9
|
+
HumanResponse,
|
|
10
|
+
)
|
|
11
|
+
from langgraph.types import interrupt
|
|
12
|
+
|
|
13
|
+
from langchain.agents.middleware._utils import _generate_correction_tool_messages
|
|
14
|
+
from langchain.agents.middleware.types import AgentMiddleware, AgentState
|
|
15
|
+
|
|
16
|
+
ToolInterruptConfig = dict[str, HumanInterruptConfig]
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class HumanInTheLoopMiddleware(AgentMiddleware):
|
|
20
|
+
"""Human in the loop middleware."""
|
|
21
|
+
|
|
22
|
+
def __init__(
|
|
23
|
+
self,
|
|
24
|
+
tool_configs: ToolInterruptConfig,
|
|
25
|
+
message_prefix: str = "Tool execution requires approval",
|
|
26
|
+
) -> None:
|
|
27
|
+
"""Initialize the human in the loop middleware.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
tool_configs: The tool interrupt configs to use for the middleware.
|
|
31
|
+
message_prefix: The message prefix to use when constructing interrupt content.
|
|
32
|
+
"""
|
|
33
|
+
super().__init__()
|
|
34
|
+
self.tool_configs = tool_configs
|
|
35
|
+
self.message_prefix = message_prefix
|
|
36
|
+
|
|
37
|
+
def after_model(self, state: AgentState) -> dict[str, Any] | None:
|
|
38
|
+
"""Trigger HITL flows for relevant tool calls after an AIMessage."""
|
|
39
|
+
messages = state["messages"]
|
|
40
|
+
if not messages:
|
|
41
|
+
return None
|
|
42
|
+
|
|
43
|
+
last_message = messages[-1]
|
|
44
|
+
|
|
45
|
+
if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
|
|
46
|
+
return None
|
|
47
|
+
|
|
48
|
+
# Separate tool calls that need interrupts from those that don't
|
|
49
|
+
interrupt_tool_calls = []
|
|
50
|
+
auto_approved_tool_calls = []
|
|
51
|
+
|
|
52
|
+
for tool_call in last_message.tool_calls:
|
|
53
|
+
tool_name = tool_call["name"]
|
|
54
|
+
if tool_name in self.tool_configs:
|
|
55
|
+
interrupt_tool_calls.append(tool_call)
|
|
56
|
+
else:
|
|
57
|
+
auto_approved_tool_calls.append(tool_call)
|
|
58
|
+
|
|
59
|
+
# If no interrupts needed, return early
|
|
60
|
+
if not interrupt_tool_calls:
|
|
61
|
+
return None
|
|
62
|
+
|
|
63
|
+
approved_tool_calls = auto_approved_tool_calls.copy()
|
|
64
|
+
|
|
65
|
+
# Right now, we do not support multiple tool calls with interrupts
|
|
66
|
+
if len(interrupt_tool_calls) > 1:
|
|
67
|
+
tool_names = [t["name"] for t in interrupt_tool_calls]
|
|
68
|
+
msg = f"Called the following tools which require interrupts: {tool_names}\n\nYou may only call ONE tool that requires an interrupt at a time"
|
|
69
|
+
return {
|
|
70
|
+
"messages": _generate_correction_tool_messages(msg, last_message.tool_calls),
|
|
71
|
+
"jump_to": "model",
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
# Right now, we do not support interrupting a tool call if other tool calls exist
|
|
75
|
+
if auto_approved_tool_calls:
|
|
76
|
+
tool_names = [t["name"] for t in interrupt_tool_calls]
|
|
77
|
+
msg = f"Called the following tools which require interrupts: {tool_names}. You also called other tools that do not require interrupts. If you call a tool that requires and interrupt, you may ONLY call that tool."
|
|
78
|
+
return {
|
|
79
|
+
"messages": _generate_correction_tool_messages(msg, last_message.tool_calls),
|
|
80
|
+
"jump_to": "model",
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
# Only one tool call will need interrupts
|
|
84
|
+
tool_call = interrupt_tool_calls[0]
|
|
85
|
+
tool_name = tool_call["name"]
|
|
86
|
+
tool_args = tool_call["args"]
|
|
87
|
+
description = f"{self.message_prefix}\n\nTool: {tool_name}\nArgs: {tool_args}"
|
|
88
|
+
tool_config = self.tool_configs[tool_name]
|
|
89
|
+
|
|
90
|
+
request: HumanInterrupt = {
|
|
91
|
+
"action_request": ActionRequest(
|
|
92
|
+
action=tool_name,
|
|
93
|
+
args=tool_args,
|
|
94
|
+
),
|
|
95
|
+
"config": tool_config,
|
|
96
|
+
"description": description,
|
|
97
|
+
}
|
|
98
|
+
|
|
99
|
+
responses: list[HumanResponse] = interrupt([request])
|
|
100
|
+
response = responses[0]
|
|
101
|
+
|
|
102
|
+
if response["type"] == "accept":
|
|
103
|
+
approved_tool_calls.append(tool_call)
|
|
104
|
+
elif response["type"] == "edit":
|
|
105
|
+
edited: ActionRequest = response["args"] # type: ignore[assignment]
|
|
106
|
+
new_tool_call = {
|
|
107
|
+
"type": "tool_call",
|
|
108
|
+
"name": tool_call["name"],
|
|
109
|
+
"args": edited["args"],
|
|
110
|
+
"id": tool_call["id"],
|
|
111
|
+
}
|
|
112
|
+
approved_tool_calls.append(new_tool_call)
|
|
113
|
+
elif response["type"] == "ignore":
|
|
114
|
+
return {"jump_to": "__end__"}
|
|
115
|
+
elif response["type"] == "response":
|
|
116
|
+
tool_message = {
|
|
117
|
+
"role": "tool",
|
|
118
|
+
"tool_call_id": tool_call["id"],
|
|
119
|
+
"content": response["args"],
|
|
120
|
+
}
|
|
121
|
+
return {"messages": [tool_message], "jump_to": "model"}
|
|
122
|
+
else:
|
|
123
|
+
msg = f"Unknown response type: {response['type']}"
|
|
124
|
+
raise ValueError(msg)
|
|
125
|
+
|
|
126
|
+
last_message.tool_calls = approved_tool_calls
|
|
127
|
+
|
|
128
|
+
return {"messages": [last_message]}
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
"""Anthropic prompt caching middleware."""
|
|
2
|
+
|
|
3
|
+
from typing import Literal
|
|
4
|
+
|
|
5
|
+
from langchain.agents.middleware.types import AgentMiddleware, AgentState, ModelRequest
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class AnthropicPromptCachingMiddleware(AgentMiddleware):
|
|
9
|
+
"""Prompt Caching Middleware - Optimizes API usage by caching conversation prefixes for Anthropic models.
|
|
10
|
+
|
|
11
|
+
Learn more about anthropic prompt caching [here](https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching).
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
def __init__(
|
|
15
|
+
self,
|
|
16
|
+
type: Literal["ephemeral"] = "ephemeral",
|
|
17
|
+
ttl: Literal["5m", "1h"] = "5m",
|
|
18
|
+
min_messages_to_cache: int = 0,
|
|
19
|
+
) -> None:
|
|
20
|
+
"""Initialize the middleware with cache control settings.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
type: The type of cache to use, only "ephemeral" is supported.
|
|
24
|
+
ttl: The time to live for the cache, only "5m" and "1h" are supported.
|
|
25
|
+
min_messages_to_cache: The minimum number of messages until the cache is used, default is 0.
|
|
26
|
+
"""
|
|
27
|
+
self.type = type
|
|
28
|
+
self.ttl = ttl
|
|
29
|
+
self.min_messages_to_cache = min_messages_to_cache
|
|
30
|
+
|
|
31
|
+
def modify_model_request(self, request: ModelRequest, state: AgentState) -> ModelRequest: # noqa: ARG002
|
|
32
|
+
"""Modify the model request to add cache control blocks."""
|
|
33
|
+
try:
|
|
34
|
+
from langchain_anthropic import ChatAnthropic
|
|
35
|
+
except ImportError:
|
|
36
|
+
msg = (
|
|
37
|
+
"AnthropicPromptCachingMiddleware caching middleware only supports Anthropic models."
|
|
38
|
+
"Please install langchain-anthropic."
|
|
39
|
+
)
|
|
40
|
+
raise ValueError(msg)
|
|
41
|
+
|
|
42
|
+
if not isinstance(request.model, ChatAnthropic):
|
|
43
|
+
msg = (
|
|
44
|
+
"AnthropicPromptCachingMiddleware caching middleware only supports Anthropic models, "
|
|
45
|
+
f"not instances of {type(request.model)}"
|
|
46
|
+
)
|
|
47
|
+
raise ValueError(msg)
|
|
48
|
+
|
|
49
|
+
messages_count = (
|
|
50
|
+
len(request.messages) + 1 if request.system_prompt else len(request.messages)
|
|
51
|
+
)
|
|
52
|
+
if messages_count < self.min_messages_to_cache:
|
|
53
|
+
return request
|
|
54
|
+
|
|
55
|
+
request.model_settings["cache_control"] = {"type": self.type, "ttl": self.ttl}
|
|
56
|
+
|
|
57
|
+
return request
|
|
@@ -0,0 +1,248 @@
|
|
|
1
|
+
"""Summarization middleware."""
|
|
2
|
+
|
|
3
|
+
import uuid
|
|
4
|
+
from collections.abc import Callable, Iterable
|
|
5
|
+
from typing import Any, cast
|
|
6
|
+
|
|
7
|
+
from langchain_core.messages import (
|
|
8
|
+
AIMessage,
|
|
9
|
+
AnyMessage,
|
|
10
|
+
MessageLikeRepresentation,
|
|
11
|
+
RemoveMessage,
|
|
12
|
+
ToolMessage,
|
|
13
|
+
)
|
|
14
|
+
from langchain_core.messages.human import HumanMessage
|
|
15
|
+
from langchain_core.messages.utils import count_tokens_approximately, trim_messages
|
|
16
|
+
from langgraph.graph.message import (
|
|
17
|
+
REMOVE_ALL_MESSAGES,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
from langchain.agents.middleware.types import AgentMiddleware, AgentState
|
|
21
|
+
from langchain.chat_models import BaseChatModel, init_chat_model
|
|
22
|
+
|
|
23
|
+
TokenCounter = Callable[[Iterable[MessageLikeRepresentation]], int]
|
|
24
|
+
|
|
25
|
+
DEFAULT_SUMMARY_PROMPT = """<role>
|
|
26
|
+
Context Extraction Assistant
|
|
27
|
+
</role>
|
|
28
|
+
|
|
29
|
+
<primary_objective>
|
|
30
|
+
Your sole objective in this task is to extract the highest quality/most relevant context from the conversation history below.
|
|
31
|
+
</primary_objective>
|
|
32
|
+
|
|
33
|
+
<objective_information>
|
|
34
|
+
You're nearing the total number of input tokens you can accept, so you must extract the highest quality/most relevant pieces of information from your conversation history.
|
|
35
|
+
This context will then overwrite the conversation history presented below. Because of this, ensure the context you extract is only the most important information to your overall goal.
|
|
36
|
+
</objective_information>
|
|
37
|
+
|
|
38
|
+
<instructions>
|
|
39
|
+
The conversation history below will be replaced with the context you extract in this step. Because of this, you must do your very best to extract and record all of the most important context from the conversation history.
|
|
40
|
+
You want to ensure that you don't repeat any actions you've already completed, so the context you extract from the conversation history should be focused on the most important information to your overall goal.
|
|
41
|
+
</instructions>
|
|
42
|
+
|
|
43
|
+
The user will message you with the full message history you'll be extracting context from, to then replace. Carefully read over it all, and think deeply about what information is most important to your overall goal that should be saved:
|
|
44
|
+
|
|
45
|
+
With all of this in mind, please carefully read over the entire conversation history, and extract the most important and relevant context to replace it so that you can free up space in the conversation history.
|
|
46
|
+
Respond ONLY with the extracted context. Do not include any additional information, or text before or after the extracted context.
|
|
47
|
+
|
|
48
|
+
<messages>
|
|
49
|
+
Messages to summarize:
|
|
50
|
+
{messages}
|
|
51
|
+
</messages>"""
|
|
52
|
+
|
|
53
|
+
SUMMARY_PREFIX = "## Previous conversation summary:"
|
|
54
|
+
|
|
55
|
+
_DEFAULT_MESSAGES_TO_KEEP = 20
|
|
56
|
+
_DEFAULT_TRIM_TOKEN_LIMIT = 4000
|
|
57
|
+
_DEFAULT_FALLBACK_MESSAGE_COUNT = 15
|
|
58
|
+
_SEARCH_RANGE_FOR_TOOL_PAIRS = 5
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class SummarizationMiddleware(AgentMiddleware):
|
|
62
|
+
"""Middleware that summarizes conversation history when token limits are approached.
|
|
63
|
+
|
|
64
|
+
This middleware monitors message token counts and automatically summarizes older
|
|
65
|
+
messages when a threshold is reached, preserving recent messages and maintaining
|
|
66
|
+
context continuity by ensuring AI/Tool message pairs remain together.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
def __init__(
|
|
70
|
+
self,
|
|
71
|
+
model: str | BaseChatModel,
|
|
72
|
+
max_tokens_before_summary: int | None = None,
|
|
73
|
+
messages_to_keep: int = _DEFAULT_MESSAGES_TO_KEEP,
|
|
74
|
+
token_counter: TokenCounter = count_tokens_approximately,
|
|
75
|
+
summary_prompt: str = DEFAULT_SUMMARY_PROMPT,
|
|
76
|
+
summary_prefix: str = SUMMARY_PREFIX,
|
|
77
|
+
) -> None:
|
|
78
|
+
"""Initialize the summarization middleware.
|
|
79
|
+
|
|
80
|
+
Args:
|
|
81
|
+
model: The language model to use for generating summaries.
|
|
82
|
+
max_tokens_before_summary: Token threshold to trigger summarization.
|
|
83
|
+
If None, summarization is disabled.
|
|
84
|
+
messages_to_keep: Number of recent messages to preserve after summarization.
|
|
85
|
+
token_counter: Function to count tokens in messages.
|
|
86
|
+
summary_prompt: Prompt template for generating summaries.
|
|
87
|
+
summary_prefix: Prefix added to system message when including summary.
|
|
88
|
+
"""
|
|
89
|
+
super().__init__()
|
|
90
|
+
|
|
91
|
+
if isinstance(model, str):
|
|
92
|
+
model = init_chat_model(model)
|
|
93
|
+
|
|
94
|
+
self.model = model
|
|
95
|
+
self.max_tokens_before_summary = max_tokens_before_summary
|
|
96
|
+
self.messages_to_keep = messages_to_keep
|
|
97
|
+
self.token_counter = token_counter
|
|
98
|
+
self.summary_prompt = summary_prompt
|
|
99
|
+
self.summary_prefix = summary_prefix
|
|
100
|
+
|
|
101
|
+
def before_model(self, state: AgentState) -> dict[str, Any] | None:
|
|
102
|
+
"""Process messages before model invocation, potentially triggering summarization."""
|
|
103
|
+
messages = state["messages"]
|
|
104
|
+
self._ensure_message_ids(messages)
|
|
105
|
+
|
|
106
|
+
total_tokens = self.token_counter(messages)
|
|
107
|
+
if (
|
|
108
|
+
self.max_tokens_before_summary is not None
|
|
109
|
+
and total_tokens < self.max_tokens_before_summary
|
|
110
|
+
):
|
|
111
|
+
return None
|
|
112
|
+
|
|
113
|
+
cutoff_index = self._find_safe_cutoff(messages)
|
|
114
|
+
|
|
115
|
+
if cutoff_index <= 0:
|
|
116
|
+
return None
|
|
117
|
+
|
|
118
|
+
messages_to_summarize, preserved_messages = self._partition_messages(messages, cutoff_index)
|
|
119
|
+
|
|
120
|
+
summary = self._create_summary(messages_to_summarize)
|
|
121
|
+
new_messages = self._build_new_messages(summary)
|
|
122
|
+
|
|
123
|
+
return {
|
|
124
|
+
"messages": [
|
|
125
|
+
RemoveMessage(id=REMOVE_ALL_MESSAGES),
|
|
126
|
+
*new_messages,
|
|
127
|
+
*preserved_messages,
|
|
128
|
+
]
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
def _build_new_messages(self, summary: str) -> list[HumanMessage]:
|
|
132
|
+
return [
|
|
133
|
+
HumanMessage(content=f"Here is a summary of the conversation to date:\n\n{summary}")
|
|
134
|
+
]
|
|
135
|
+
|
|
136
|
+
def _ensure_message_ids(self, messages: list[AnyMessage]) -> None:
|
|
137
|
+
"""Ensure all messages have unique IDs for the add_messages reducer."""
|
|
138
|
+
for msg in messages:
|
|
139
|
+
if msg.id is None:
|
|
140
|
+
msg.id = str(uuid.uuid4())
|
|
141
|
+
|
|
142
|
+
def _partition_messages(
|
|
143
|
+
self,
|
|
144
|
+
conversation_messages: list[AnyMessage],
|
|
145
|
+
cutoff_index: int,
|
|
146
|
+
) -> tuple[list[AnyMessage], list[AnyMessage]]:
|
|
147
|
+
"""Partition messages into those to summarize and those to preserve."""
|
|
148
|
+
messages_to_summarize = conversation_messages[:cutoff_index]
|
|
149
|
+
preserved_messages = conversation_messages[cutoff_index:]
|
|
150
|
+
|
|
151
|
+
return messages_to_summarize, preserved_messages
|
|
152
|
+
|
|
153
|
+
def _find_safe_cutoff(self, messages: list[AnyMessage]) -> int:
|
|
154
|
+
"""Find safe cutoff point that preserves AI/Tool message pairs.
|
|
155
|
+
|
|
156
|
+
Returns the index where messages can be safely cut without separating
|
|
157
|
+
related AI and Tool messages. Returns 0 if no safe cutoff is found.
|
|
158
|
+
"""
|
|
159
|
+
if len(messages) <= self.messages_to_keep:
|
|
160
|
+
return 0
|
|
161
|
+
|
|
162
|
+
target_cutoff = len(messages) - self.messages_to_keep
|
|
163
|
+
|
|
164
|
+
for i in range(target_cutoff, -1, -1):
|
|
165
|
+
if self._is_safe_cutoff_point(messages, i):
|
|
166
|
+
return i
|
|
167
|
+
|
|
168
|
+
return 0
|
|
169
|
+
|
|
170
|
+
def _is_safe_cutoff_point(self, messages: list[AnyMessage], cutoff_index: int) -> bool:
|
|
171
|
+
"""Check if cutting at index would separate AI/Tool message pairs."""
|
|
172
|
+
if cutoff_index >= len(messages):
|
|
173
|
+
return True
|
|
174
|
+
|
|
175
|
+
search_start = max(0, cutoff_index - _SEARCH_RANGE_FOR_TOOL_PAIRS)
|
|
176
|
+
search_end = min(len(messages), cutoff_index + _SEARCH_RANGE_FOR_TOOL_PAIRS)
|
|
177
|
+
|
|
178
|
+
for i in range(search_start, search_end):
|
|
179
|
+
if not self._has_tool_calls(messages[i]):
|
|
180
|
+
continue
|
|
181
|
+
|
|
182
|
+
tool_call_ids = self._extract_tool_call_ids(cast("AIMessage", messages[i]))
|
|
183
|
+
if self._cutoff_separates_tool_pair(messages, i, cutoff_index, tool_call_ids):
|
|
184
|
+
return False
|
|
185
|
+
|
|
186
|
+
return True
|
|
187
|
+
|
|
188
|
+
def _has_tool_calls(self, message: AnyMessage) -> bool:
|
|
189
|
+
"""Check if message is an AI message with tool calls."""
|
|
190
|
+
return (
|
|
191
|
+
isinstance(message, AIMessage) and hasattr(message, "tool_calls") and message.tool_calls # type: ignore[return-value]
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
def _extract_tool_call_ids(self, ai_message: AIMessage) -> set[str]:
|
|
195
|
+
"""Extract tool call IDs from an AI message."""
|
|
196
|
+
tool_call_ids = set()
|
|
197
|
+
for tc in ai_message.tool_calls:
|
|
198
|
+
call_id = tc.get("id") if isinstance(tc, dict) else getattr(tc, "id", None)
|
|
199
|
+
if call_id is not None:
|
|
200
|
+
tool_call_ids.add(call_id)
|
|
201
|
+
return tool_call_ids
|
|
202
|
+
|
|
203
|
+
def _cutoff_separates_tool_pair(
|
|
204
|
+
self,
|
|
205
|
+
messages: list[AnyMessage],
|
|
206
|
+
ai_message_index: int,
|
|
207
|
+
cutoff_index: int,
|
|
208
|
+
tool_call_ids: set[str],
|
|
209
|
+
) -> bool:
|
|
210
|
+
"""Check if cutoff separates an AI message from its corresponding tool messages."""
|
|
211
|
+
for j in range(ai_message_index + 1, len(messages)):
|
|
212
|
+
message = messages[j]
|
|
213
|
+
if isinstance(message, ToolMessage) and message.tool_call_id in tool_call_ids:
|
|
214
|
+
ai_before_cutoff = ai_message_index < cutoff_index
|
|
215
|
+
tool_before_cutoff = j < cutoff_index
|
|
216
|
+
if ai_before_cutoff != tool_before_cutoff:
|
|
217
|
+
return True
|
|
218
|
+
return False
|
|
219
|
+
|
|
220
|
+
def _create_summary(self, messages_to_summarize: list[AnyMessage]) -> str:
|
|
221
|
+
"""Generate summary for the given messages."""
|
|
222
|
+
if not messages_to_summarize:
|
|
223
|
+
return "No previous conversation history."
|
|
224
|
+
|
|
225
|
+
trimmed_messages = self._trim_messages_for_summary(messages_to_summarize)
|
|
226
|
+
if not trimmed_messages:
|
|
227
|
+
return "Previous conversation was too long to summarize."
|
|
228
|
+
|
|
229
|
+
try:
|
|
230
|
+
response = self.model.invoke(self.summary_prompt.format(messages=trimmed_messages))
|
|
231
|
+
return cast("str", response.content).strip()
|
|
232
|
+
except Exception as e: # noqa: BLE001
|
|
233
|
+
return f"Error generating summary: {e!s}"
|
|
234
|
+
|
|
235
|
+
def _trim_messages_for_summary(self, messages: list[AnyMessage]) -> list[AnyMessage]:
|
|
236
|
+
"""Trim messages to fit within summary generation limits."""
|
|
237
|
+
try:
|
|
238
|
+
return trim_messages(
|
|
239
|
+
messages,
|
|
240
|
+
max_tokens=_DEFAULT_TRIM_TOKEN_LIMIT,
|
|
241
|
+
token_counter=self.token_counter,
|
|
242
|
+
start_on="human",
|
|
243
|
+
strategy="last",
|
|
244
|
+
allow_partial=True,
|
|
245
|
+
include_system=True,
|
|
246
|
+
)
|
|
247
|
+
except Exception: # noqa: BLE001
|
|
248
|
+
return messages[-_DEFAULT_FALLBACK_MESSAGE_COUNT:]
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
"""Types for middleware and agents."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from dataclasses import dataclass, field
|
|
6
|
+
from typing import TYPE_CHECKING, Annotated, Any, Generic, Literal, cast
|
|
7
|
+
|
|
8
|
+
# needed as top level import for pydantic schema generation on AgentState
|
|
9
|
+
from langchain_core.messages import AnyMessage # noqa: TC002
|
|
10
|
+
from langgraph.channels.ephemeral_value import EphemeralValue
|
|
11
|
+
from langgraph.graph.message import Messages, add_messages
|
|
12
|
+
from typing_extensions import NotRequired, Required, TypedDict, TypeVar
|
|
13
|
+
|
|
14
|
+
if TYPE_CHECKING:
|
|
15
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
|
16
|
+
from langchain_core.tools import BaseTool
|
|
17
|
+
|
|
18
|
+
from langchain.agents.structured_output import ResponseFormat
|
|
19
|
+
|
|
20
|
+
JumpTo = Literal["tools", "model", "__end__"]
|
|
21
|
+
"""Destination to jump to when a middleware node returns."""
|
|
22
|
+
|
|
23
|
+
ResponseT = TypeVar("ResponseT")
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class ModelRequest:
|
|
28
|
+
"""Model request information for the agent."""
|
|
29
|
+
|
|
30
|
+
model: BaseChatModel
|
|
31
|
+
system_prompt: str | None
|
|
32
|
+
messages: list[AnyMessage] # excluding system prompt
|
|
33
|
+
tool_choice: Any | None
|
|
34
|
+
tools: list[BaseTool]
|
|
35
|
+
response_format: ResponseFormat | None
|
|
36
|
+
model_settings: dict[str, Any] = field(default_factory=dict)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class AgentState(TypedDict, Generic[ResponseT]):
|
|
40
|
+
"""State schema for the agent."""
|
|
41
|
+
|
|
42
|
+
messages: Required[Annotated[list[AnyMessage], add_messages]]
|
|
43
|
+
model_request: NotRequired[Annotated[ModelRequest | None, EphemeralValue]]
|
|
44
|
+
jump_to: NotRequired[Annotated[JumpTo | None, EphemeralValue]]
|
|
45
|
+
response: NotRequired[ResponseT]
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class PublicAgentState(TypedDict, Generic[ResponseT]):
|
|
49
|
+
"""Input / output schema for the agent."""
|
|
50
|
+
|
|
51
|
+
messages: Required[Messages]
|
|
52
|
+
response: NotRequired[ResponseT]
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
StateT = TypeVar("StateT", bound=AgentState)
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class AgentMiddleware(Generic[StateT]):
|
|
59
|
+
"""Base middleware class for an agent.
|
|
60
|
+
|
|
61
|
+
Subclass this and implement any of the defined methods to customize agent behavior between steps in the main agent loop.
|
|
62
|
+
"""
|
|
63
|
+
|
|
64
|
+
state_schema: type[StateT] = cast("type[StateT]", AgentState)
|
|
65
|
+
"""The schema for state passed to the middleware nodes."""
|
|
66
|
+
|
|
67
|
+
tools: list[BaseTool]
|
|
68
|
+
"""Additional tools registered by the middleware."""
|
|
69
|
+
|
|
70
|
+
def before_model(self, state: StateT) -> dict[str, Any] | None:
|
|
71
|
+
"""Logic to run before the model is called."""
|
|
72
|
+
|
|
73
|
+
def modify_model_request(self, request: ModelRequest, state: StateT) -> ModelRequest: # noqa: ARG002
|
|
74
|
+
"""Logic to modify request kwargs before the model is called."""
|
|
75
|
+
return request
|
|
76
|
+
|
|
77
|
+
def after_model(self, state: StateT) -> dict[str, Any] | None:
|
|
78
|
+
"""Logic to run after the model is called."""
|
|
@@ -0,0 +1,554 @@
|
|
|
1
|
+
"""Middleware agent implementation."""
|
|
2
|
+
|
|
3
|
+
import itertools
|
|
4
|
+
from collections.abc import Callable, Sequence
|
|
5
|
+
from typing import Any, Union
|
|
6
|
+
|
|
7
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
|
8
|
+
from langchain_core.messages import AIMessage, AnyMessage, SystemMessage, ToolMessage
|
|
9
|
+
from langchain_core.runnables import Runnable
|
|
10
|
+
from langchain_core.tools import BaseTool
|
|
11
|
+
from langgraph.constants import END, START
|
|
12
|
+
from langgraph.graph.state import StateGraph
|
|
13
|
+
from langgraph.typing import ContextT
|
|
14
|
+
from typing_extensions import TypedDict, TypeVar
|
|
15
|
+
|
|
16
|
+
from langchain.agents.middleware.types import (
|
|
17
|
+
AgentMiddleware,
|
|
18
|
+
AgentState,
|
|
19
|
+
JumpTo,
|
|
20
|
+
ModelRequest,
|
|
21
|
+
PublicAgentState,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
# Import structured output classes from the old implementation
|
|
25
|
+
from langchain.agents.structured_output import (
|
|
26
|
+
MultipleStructuredOutputsError,
|
|
27
|
+
OutputToolBinding,
|
|
28
|
+
ProviderStrategy,
|
|
29
|
+
ProviderStrategyBinding,
|
|
30
|
+
ResponseFormat,
|
|
31
|
+
StructuredOutputValidationError,
|
|
32
|
+
ToolStrategy,
|
|
33
|
+
)
|
|
34
|
+
from langchain.agents.tool_node import ToolNode
|
|
35
|
+
from langchain.chat_models import init_chat_model
|
|
36
|
+
|
|
37
|
+
STRUCTURED_OUTPUT_ERROR_TEMPLATE = "Error: {error}\n Please fix your mistakes."
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def _merge_state_schemas(schemas: list[type]) -> type:
|
|
41
|
+
"""Merge multiple TypedDict schemas into a single schema with all fields."""
|
|
42
|
+
if not schemas:
|
|
43
|
+
return AgentState
|
|
44
|
+
|
|
45
|
+
all_annotations = {}
|
|
46
|
+
|
|
47
|
+
for schema in schemas:
|
|
48
|
+
all_annotations.update(schema.__annotations__)
|
|
49
|
+
|
|
50
|
+
return TypedDict("MergedState", all_annotations) # type: ignore[operator]
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _filter_state_for_schema(state: dict[str, Any], schema: type) -> dict[str, Any]:
|
|
54
|
+
"""Filter state to only include fields defined in the given schema."""
|
|
55
|
+
if not hasattr(schema, "__annotations__"):
|
|
56
|
+
return state
|
|
57
|
+
|
|
58
|
+
schema_fields = set(schema.__annotations__.keys())
|
|
59
|
+
return {k: v for k, v in state.items() if k in schema_fields}
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _supports_native_structured_output(model: Union[str, BaseChatModel]) -> bool:
|
|
63
|
+
"""Check if a model supports native structured output."""
|
|
64
|
+
model_name: str | None = None
|
|
65
|
+
if isinstance(model, str):
|
|
66
|
+
model_name = model
|
|
67
|
+
elif isinstance(model, BaseChatModel):
|
|
68
|
+
model_name = getattr(model, "model_name", None)
|
|
69
|
+
|
|
70
|
+
return (
|
|
71
|
+
"grok" in model_name.lower()
|
|
72
|
+
or any(part in model_name for part in ["gpt-5", "gpt-4.1", "gpt-oss", "o3-pro", "o3-mini"])
|
|
73
|
+
if model_name
|
|
74
|
+
else False
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def _handle_structured_output_error(
|
|
79
|
+
exception: Exception,
|
|
80
|
+
response_format: ResponseFormat,
|
|
81
|
+
) -> tuple[bool, str]:
|
|
82
|
+
"""Handle structured output error. Returns (should_retry, retry_tool_message)."""
|
|
83
|
+
if not isinstance(response_format, ToolStrategy):
|
|
84
|
+
return False, ""
|
|
85
|
+
|
|
86
|
+
handle_errors = response_format.handle_errors
|
|
87
|
+
|
|
88
|
+
if handle_errors is False:
|
|
89
|
+
return False, ""
|
|
90
|
+
if handle_errors is True:
|
|
91
|
+
return True, STRUCTURED_OUTPUT_ERROR_TEMPLATE.format(error=str(exception))
|
|
92
|
+
if isinstance(handle_errors, str):
|
|
93
|
+
return True, handle_errors
|
|
94
|
+
if isinstance(handle_errors, type) and issubclass(handle_errors, Exception):
|
|
95
|
+
if isinstance(exception, handle_errors):
|
|
96
|
+
return True, STRUCTURED_OUTPUT_ERROR_TEMPLATE.format(error=str(exception))
|
|
97
|
+
return False, ""
|
|
98
|
+
if isinstance(handle_errors, tuple):
|
|
99
|
+
if any(isinstance(exception, exc_type) for exc_type in handle_errors):
|
|
100
|
+
return True, STRUCTURED_OUTPUT_ERROR_TEMPLATE.format(error=str(exception))
|
|
101
|
+
return False, ""
|
|
102
|
+
if callable(handle_errors):
|
|
103
|
+
# type narrowing not working appropriately w/ callable check, can fix later
|
|
104
|
+
return True, handle_errors(exception) # type: ignore[return-value,call-arg]
|
|
105
|
+
return False, ""
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
ResponseT = TypeVar("ResponseT")
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def create_agent( # noqa: PLR0915
|
|
112
|
+
*,
|
|
113
|
+
model: str | BaseChatModel,
|
|
114
|
+
tools: Sequence[BaseTool | Callable | dict[str, Any]] | ToolNode | None = None,
|
|
115
|
+
system_prompt: str | None = None,
|
|
116
|
+
middleware: Sequence[AgentMiddleware] = (),
|
|
117
|
+
response_format: ResponseFormat[ResponseT] | type[ResponseT] | None = None,
|
|
118
|
+
context_schema: type[ContextT] | None = None,
|
|
119
|
+
) -> StateGraph[
|
|
120
|
+
AgentState[ResponseT], ContextT, PublicAgentState[ResponseT], PublicAgentState[ResponseT]
|
|
121
|
+
]:
|
|
122
|
+
"""Create a middleware agent graph."""
|
|
123
|
+
# init chat model
|
|
124
|
+
if isinstance(model, str):
|
|
125
|
+
model = init_chat_model(model)
|
|
126
|
+
|
|
127
|
+
# Handle tools being None or empty
|
|
128
|
+
if tools is None:
|
|
129
|
+
tools = []
|
|
130
|
+
|
|
131
|
+
# Setup structured output
|
|
132
|
+
structured_output_tools: dict[str, OutputToolBinding] = {}
|
|
133
|
+
native_output_binding: ProviderStrategyBinding | None = None
|
|
134
|
+
|
|
135
|
+
if response_format is not None:
|
|
136
|
+
if not isinstance(response_format, (ToolStrategy, ProviderStrategy)):
|
|
137
|
+
# Auto-detect strategy based on model capabilities
|
|
138
|
+
if _supports_native_structured_output(model):
|
|
139
|
+
response_format = ProviderStrategy(schema=response_format)
|
|
140
|
+
else:
|
|
141
|
+
response_format = ToolStrategy(schema=response_format)
|
|
142
|
+
|
|
143
|
+
if isinstance(response_format, ToolStrategy):
|
|
144
|
+
# Setup tools strategy for structured output
|
|
145
|
+
for response_schema in response_format.schema_specs:
|
|
146
|
+
structured_tool_info = OutputToolBinding.from_schema_spec(response_schema)
|
|
147
|
+
structured_output_tools[structured_tool_info.tool.name] = structured_tool_info
|
|
148
|
+
elif isinstance(response_format, ProviderStrategy):
|
|
149
|
+
# Setup native strategy
|
|
150
|
+
native_output_binding = ProviderStrategyBinding.from_schema_spec(
|
|
151
|
+
response_format.schema_spec
|
|
152
|
+
)
|
|
153
|
+
middleware_tools = [t for m in middleware for t in getattr(m, "tools", [])]
|
|
154
|
+
|
|
155
|
+
# Setup tools
|
|
156
|
+
tool_node: ToolNode | None = None
|
|
157
|
+
if isinstance(tools, list):
|
|
158
|
+
# Extract builtin provider tools (dict format)
|
|
159
|
+
builtin_tools = [t for t in tools if isinstance(t, dict)]
|
|
160
|
+
regular_tools = [t for t in tools if not isinstance(t, dict)]
|
|
161
|
+
|
|
162
|
+
# Add structured output tools to regular tools
|
|
163
|
+
structured_tools = [info.tool for info in structured_output_tools.values()]
|
|
164
|
+
all_tools = middleware_tools + regular_tools + structured_tools
|
|
165
|
+
|
|
166
|
+
# Only create ToolNode if we have tools
|
|
167
|
+
tool_node = ToolNode(tools=all_tools) if all_tools else None
|
|
168
|
+
default_tools = regular_tools + builtin_tools + structured_tools + middleware_tools
|
|
169
|
+
elif isinstance(tools, ToolNode):
|
|
170
|
+
# tools is ToolNode or None
|
|
171
|
+
tool_node = tools
|
|
172
|
+
if tool_node:
|
|
173
|
+
default_tools = list(tool_node.tools_by_name.values()) + middleware_tools
|
|
174
|
+
# Update tool node to know about tools provided by middleware
|
|
175
|
+
all_tools = list(tool_node.tools_by_name.values()) + middleware_tools
|
|
176
|
+
tool_node = ToolNode(all_tools)
|
|
177
|
+
# Add structured output tools
|
|
178
|
+
for info in structured_output_tools.values():
|
|
179
|
+
default_tools.append(info.tool)
|
|
180
|
+
else:
|
|
181
|
+
default_tools = (
|
|
182
|
+
list(structured_output_tools.values()) if structured_output_tools else []
|
|
183
|
+
) + middleware_tools
|
|
184
|
+
|
|
185
|
+
# validate middleware
|
|
186
|
+
assert len({m.__class__.__name__ for m in middleware}) == len(middleware), ( # noqa: S101
|
|
187
|
+
"Please remove duplicate middleware instances."
|
|
188
|
+
)
|
|
189
|
+
middleware_w_before = [
|
|
190
|
+
m for m in middleware if m.__class__.before_model is not AgentMiddleware.before_model
|
|
191
|
+
]
|
|
192
|
+
middleware_w_modify_model_request = [
|
|
193
|
+
m
|
|
194
|
+
for m in middleware
|
|
195
|
+
if m.__class__.modify_model_request is not AgentMiddleware.modify_model_request
|
|
196
|
+
]
|
|
197
|
+
middleware_w_after = [
|
|
198
|
+
m for m in middleware if m.__class__.after_model is not AgentMiddleware.after_model
|
|
199
|
+
]
|
|
200
|
+
|
|
201
|
+
# Collect all middleware state schemas and create merged schema
|
|
202
|
+
merged_state_schema: type[AgentState] = _merge_state_schemas(
|
|
203
|
+
[m.state_schema for m in middleware]
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
# create graph, add nodes
|
|
207
|
+
graph = StateGraph(
|
|
208
|
+
merged_state_schema,
|
|
209
|
+
input_schema=PublicAgentState,
|
|
210
|
+
output_schema=PublicAgentState,
|
|
211
|
+
context_schema=context_schema,
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
def _prepare_model_request(state: dict[str, Any]) -> tuple[ModelRequest, list[AnyMessage]]:
|
|
215
|
+
"""Prepare model request and messages."""
|
|
216
|
+
request = state.get("model_request") or ModelRequest(
|
|
217
|
+
model=model,
|
|
218
|
+
tools=default_tools,
|
|
219
|
+
system_prompt=system_prompt,
|
|
220
|
+
response_format=response_format,
|
|
221
|
+
messages=state["messages"],
|
|
222
|
+
tool_choice=None,
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
# prepare messages
|
|
226
|
+
messages = request.messages
|
|
227
|
+
if request.system_prompt:
|
|
228
|
+
messages = [SystemMessage(request.system_prompt), *messages]
|
|
229
|
+
|
|
230
|
+
return request, messages
|
|
231
|
+
|
|
232
|
+
def _handle_model_output(state: dict[str, Any], output: AIMessage) -> dict[str, Any]:
|
|
233
|
+
"""Handle model output including structured responses."""
|
|
234
|
+
# Handle structured output with native strategy
|
|
235
|
+
if isinstance(response_format, ProviderStrategy):
|
|
236
|
+
if not output.tool_calls and native_output_binding:
|
|
237
|
+
structured_response = native_output_binding.parse(output)
|
|
238
|
+
return {"messages": [output], "response": structured_response}
|
|
239
|
+
if state.get("response") is not None:
|
|
240
|
+
return {"messages": [output], "response": None}
|
|
241
|
+
return {"messages": [output]}
|
|
242
|
+
|
|
243
|
+
# Handle structured output with tools strategy
|
|
244
|
+
if (
|
|
245
|
+
isinstance(response_format, ToolStrategy)
|
|
246
|
+
and isinstance(output, AIMessage)
|
|
247
|
+
and output.tool_calls
|
|
248
|
+
):
|
|
249
|
+
structured_tool_calls = [
|
|
250
|
+
tc for tc in output.tool_calls if tc["name"] in structured_output_tools
|
|
251
|
+
]
|
|
252
|
+
|
|
253
|
+
if structured_tool_calls:
|
|
254
|
+
exception: Exception | None = None
|
|
255
|
+
if len(structured_tool_calls) > 1:
|
|
256
|
+
# Handle multiple structured outputs error
|
|
257
|
+
tool_names = [tc["name"] for tc in structured_tool_calls]
|
|
258
|
+
exception = MultipleStructuredOutputsError(tool_names)
|
|
259
|
+
should_retry, error_message = _handle_structured_output_error(
|
|
260
|
+
exception, response_format
|
|
261
|
+
)
|
|
262
|
+
if not should_retry:
|
|
263
|
+
raise exception
|
|
264
|
+
|
|
265
|
+
# Add error messages and retry
|
|
266
|
+
tool_messages = [
|
|
267
|
+
ToolMessage(
|
|
268
|
+
content=error_message,
|
|
269
|
+
tool_call_id=tc["id"],
|
|
270
|
+
name=tc["name"],
|
|
271
|
+
)
|
|
272
|
+
for tc in structured_tool_calls
|
|
273
|
+
]
|
|
274
|
+
return {"messages": [output, *tool_messages]}
|
|
275
|
+
|
|
276
|
+
# Handle single structured output
|
|
277
|
+
tool_call = structured_tool_calls[0]
|
|
278
|
+
try:
|
|
279
|
+
structured_tool_binding = structured_output_tools[tool_call["name"]]
|
|
280
|
+
structured_response = structured_tool_binding.parse(tool_call["args"])
|
|
281
|
+
|
|
282
|
+
tool_message_content = (
|
|
283
|
+
response_format.tool_message_content
|
|
284
|
+
if response_format.tool_message_content
|
|
285
|
+
else f"Returning structured response: {structured_response}"
|
|
286
|
+
)
|
|
287
|
+
|
|
288
|
+
return {
|
|
289
|
+
"messages": [
|
|
290
|
+
output,
|
|
291
|
+
ToolMessage(
|
|
292
|
+
content=tool_message_content,
|
|
293
|
+
tool_call_id=tool_call["id"],
|
|
294
|
+
name=tool_call["name"],
|
|
295
|
+
),
|
|
296
|
+
],
|
|
297
|
+
"response": structured_response,
|
|
298
|
+
}
|
|
299
|
+
except Exception as exc: # noqa: BLE001
|
|
300
|
+
exception = StructuredOutputValidationError(tool_call["name"], exc)
|
|
301
|
+
should_retry, error_message = _handle_structured_output_error(
|
|
302
|
+
exception, response_format
|
|
303
|
+
)
|
|
304
|
+
if not should_retry:
|
|
305
|
+
raise exception
|
|
306
|
+
|
|
307
|
+
return {
|
|
308
|
+
"messages": [
|
|
309
|
+
output,
|
|
310
|
+
ToolMessage(
|
|
311
|
+
content=error_message,
|
|
312
|
+
tool_call_id=tool_call["id"],
|
|
313
|
+
name=tool_call["name"],
|
|
314
|
+
),
|
|
315
|
+
],
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
# Standard response handling
|
|
319
|
+
if state.get("response") is not None:
|
|
320
|
+
return {"messages": [output], "response": None}
|
|
321
|
+
return {"messages": [output]}
|
|
322
|
+
|
|
323
|
+
def _get_bound_model(request: ModelRequest) -> Runnable:
|
|
324
|
+
"""Get the model with appropriate tool bindings."""
|
|
325
|
+
if isinstance(response_format, ProviderStrategy):
|
|
326
|
+
# Use native structured output
|
|
327
|
+
kwargs = response_format.to_model_kwargs()
|
|
328
|
+
return request.model.bind_tools(
|
|
329
|
+
request.tools, strict=True, **kwargs, **request.model_settings
|
|
330
|
+
)
|
|
331
|
+
if isinstance(response_format, ToolStrategy):
|
|
332
|
+
tool_choice = "any" if structured_output_tools else request.tool_choice
|
|
333
|
+
return request.model.bind_tools(
|
|
334
|
+
request.tools, tool_choice=tool_choice, **request.model_settings
|
|
335
|
+
)
|
|
336
|
+
# Standard model binding
|
|
337
|
+
if request.tools:
|
|
338
|
+
return request.model.bind_tools(
|
|
339
|
+
request.tools, tool_choice=request.tool_choice, **request.model_settings
|
|
340
|
+
)
|
|
341
|
+
return request.model.bind(**request.model_settings)
|
|
342
|
+
|
|
343
|
+
def model_request(state: dict[str, Any]) -> dict[str, Any]:
|
|
344
|
+
"""Sync model request handler with sequential middleware processing."""
|
|
345
|
+
# Start with the base model request
|
|
346
|
+
request, messages = _prepare_model_request(state)
|
|
347
|
+
|
|
348
|
+
# Apply modify_model_request middleware in sequence
|
|
349
|
+
for m in middleware_w_modify_model_request:
|
|
350
|
+
# Filter state to only include fields defined in this middleware's schema
|
|
351
|
+
filtered_state = _filter_state_for_schema(state, m.state_schema)
|
|
352
|
+
request = m.modify_model_request(request, filtered_state)
|
|
353
|
+
|
|
354
|
+
# Get the bound model with the final request
|
|
355
|
+
model_ = _get_bound_model(request)
|
|
356
|
+
output = model_.invoke(messages)
|
|
357
|
+
return _handle_model_output(state, output)
|
|
358
|
+
|
|
359
|
+
async def amodel_request(state: dict[str, Any]) -> dict[str, Any]:
|
|
360
|
+
"""Async model request handler with sequential middleware processing."""
|
|
361
|
+
# Start with the base model request
|
|
362
|
+
request, messages = _prepare_model_request(state)
|
|
363
|
+
|
|
364
|
+
# Apply modify_model_request middleware in sequence
|
|
365
|
+
for m in middleware_w_modify_model_request:
|
|
366
|
+
# Filter state to only include fields defined in this middleware's schema
|
|
367
|
+
filtered_state = _filter_state_for_schema(state, m.state_schema)
|
|
368
|
+
request = m.modify_model_request(request, filtered_state)
|
|
369
|
+
|
|
370
|
+
# Get the bound model with the final request
|
|
371
|
+
model_ = _get_bound_model(request)
|
|
372
|
+
output = await model_.ainvoke(messages)
|
|
373
|
+
return _handle_model_output(state, output)
|
|
374
|
+
|
|
375
|
+
# Use sync or async based on model capabilities
|
|
376
|
+
from langgraph._internal._runnable import RunnableCallable
|
|
377
|
+
|
|
378
|
+
graph.add_node("model_request", RunnableCallable(model_request, amodel_request))
|
|
379
|
+
|
|
380
|
+
# Only add tools node if we have tools
|
|
381
|
+
if tool_node is not None:
|
|
382
|
+
graph.add_node("tools", tool_node)
|
|
383
|
+
|
|
384
|
+
# Add middleware nodes
|
|
385
|
+
for m in middleware:
|
|
386
|
+
if m.__class__.before_model is not AgentMiddleware.before_model:
|
|
387
|
+
graph.add_node(
|
|
388
|
+
f"{m.__class__.__name__}.before_model",
|
|
389
|
+
m.before_model,
|
|
390
|
+
input_schema=m.state_schema,
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
if m.__class__.after_model is not AgentMiddleware.after_model:
|
|
394
|
+
graph.add_node(
|
|
395
|
+
f"{m.__class__.__name__}.after_model",
|
|
396
|
+
m.after_model,
|
|
397
|
+
input_schema=m.state_schema,
|
|
398
|
+
)
|
|
399
|
+
|
|
400
|
+
# add start edge
|
|
401
|
+
first_node = (
|
|
402
|
+
f"{middleware_w_before[0].__class__.__name__}.before_model"
|
|
403
|
+
if middleware_w_before
|
|
404
|
+
else "model_request"
|
|
405
|
+
)
|
|
406
|
+
last_node = (
|
|
407
|
+
f"{middleware_w_after[0].__class__.__name__}.after_model"
|
|
408
|
+
if middleware_w_after
|
|
409
|
+
else "model_request"
|
|
410
|
+
)
|
|
411
|
+
graph.add_edge(START, first_node)
|
|
412
|
+
|
|
413
|
+
# add conditional edges only if tools exist
|
|
414
|
+
if tool_node is not None:
|
|
415
|
+
graph.add_conditional_edges(
|
|
416
|
+
"tools",
|
|
417
|
+
_make_tools_to_model_edge(tool_node, first_node),
|
|
418
|
+
[first_node, END],
|
|
419
|
+
)
|
|
420
|
+
graph.add_conditional_edges(
|
|
421
|
+
last_node,
|
|
422
|
+
_make_model_to_tools_edge(first_node, structured_output_tools),
|
|
423
|
+
[first_node, "tools", END],
|
|
424
|
+
)
|
|
425
|
+
elif last_node == "model_request":
|
|
426
|
+
# If no tools, just go to END from model
|
|
427
|
+
graph.add_edge(last_node, END)
|
|
428
|
+
else:
|
|
429
|
+
# If after_model, then need to check for jump_to
|
|
430
|
+
_add_middleware_edge(
|
|
431
|
+
graph,
|
|
432
|
+
f"{middleware_w_after[0].__class__.__name__}.after_model",
|
|
433
|
+
END,
|
|
434
|
+
first_node,
|
|
435
|
+
tools_available=tool_node is not None,
|
|
436
|
+
)
|
|
437
|
+
|
|
438
|
+
# Add middleware edges (same as before)
|
|
439
|
+
if middleware_w_before:
|
|
440
|
+
for m1, m2 in itertools.pairwise(middleware_w_before):
|
|
441
|
+
_add_middleware_edge(
|
|
442
|
+
graph,
|
|
443
|
+
f"{m1.__class__.__name__}.before_model",
|
|
444
|
+
f"{m2.__class__.__name__}.before_model",
|
|
445
|
+
first_node,
|
|
446
|
+
tools_available=tool_node is not None,
|
|
447
|
+
)
|
|
448
|
+
# Go directly to model_request after the last before_model
|
|
449
|
+
_add_middleware_edge(
|
|
450
|
+
graph,
|
|
451
|
+
f"{middleware_w_before[-1].__class__.__name__}.before_model",
|
|
452
|
+
"model_request",
|
|
453
|
+
first_node,
|
|
454
|
+
tools_available=tool_node is not None,
|
|
455
|
+
)
|
|
456
|
+
|
|
457
|
+
if middleware_w_after:
|
|
458
|
+
graph.add_edge("model_request", f"{middleware_w_after[-1].__class__.__name__}.after_model")
|
|
459
|
+
for idx in range(len(middleware_w_after) - 1, 0, -1):
|
|
460
|
+
m1 = middleware_w_after[idx]
|
|
461
|
+
m2 = middleware_w_after[idx - 1]
|
|
462
|
+
_add_middleware_edge(
|
|
463
|
+
graph,
|
|
464
|
+
f"{m1.__class__.__name__}.after_model",
|
|
465
|
+
f"{m2.__class__.__name__}.after_model",
|
|
466
|
+
first_node,
|
|
467
|
+
tools_available=tool_node is not None,
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
return graph
|
|
471
|
+
|
|
472
|
+
|
|
473
|
+
def _resolve_jump(jump_to: JumpTo | None, first_node: str) -> str | None:
|
|
474
|
+
if jump_to == "model":
|
|
475
|
+
return first_node
|
|
476
|
+
if jump_to:
|
|
477
|
+
return jump_to
|
|
478
|
+
return None
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
def _make_model_to_tools_edge(
|
|
482
|
+
first_node: str, structured_output_tools: dict[str, OutputToolBinding]
|
|
483
|
+
) -> Callable[[AgentState], str | None]:
|
|
484
|
+
def model_to_tools(state: AgentState) -> str | None:
|
|
485
|
+
if jump_to := state.get("jump_to"):
|
|
486
|
+
return _resolve_jump(jump_to, first_node)
|
|
487
|
+
|
|
488
|
+
message = state["messages"][-1]
|
|
489
|
+
|
|
490
|
+
# Check if this is a ToolMessage from structured output - if so, end
|
|
491
|
+
if isinstance(message, ToolMessage) and message.name in structured_output_tools:
|
|
492
|
+
return END
|
|
493
|
+
|
|
494
|
+
# Check for tool calls
|
|
495
|
+
if isinstance(message, AIMessage) and message.tool_calls:
|
|
496
|
+
# If all tool calls are for structured output, don't go to tools
|
|
497
|
+
non_structured_calls = [
|
|
498
|
+
tc for tc in message.tool_calls if tc["name"] not in structured_output_tools
|
|
499
|
+
]
|
|
500
|
+
if non_structured_calls:
|
|
501
|
+
return "tools"
|
|
502
|
+
|
|
503
|
+
return END
|
|
504
|
+
|
|
505
|
+
return model_to_tools
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
def _make_tools_to_model_edge(
|
|
509
|
+
tool_node: ToolNode, next_node: str
|
|
510
|
+
) -> Callable[[AgentState], str | None]:
|
|
511
|
+
def tools_to_model(state: AgentState) -> str | None:
|
|
512
|
+
ai_message = [m for m in state["messages"] if isinstance(m, AIMessage)][-1]
|
|
513
|
+
if all(
|
|
514
|
+
tool_node.tools_by_name[c["name"]].return_direct
|
|
515
|
+
for c in ai_message.tool_calls
|
|
516
|
+
if c["name"] in tool_node.tools_by_name
|
|
517
|
+
):
|
|
518
|
+
return END
|
|
519
|
+
|
|
520
|
+
return next_node
|
|
521
|
+
|
|
522
|
+
return tools_to_model
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
def _add_middleware_edge(
|
|
526
|
+
graph: StateGraph[AgentState, ContextT, PublicAgentState, PublicAgentState],
|
|
527
|
+
name: str,
|
|
528
|
+
default_destination: str,
|
|
529
|
+
model_destination: str,
|
|
530
|
+
tools_available: bool, # noqa: FBT001
|
|
531
|
+
) -> None:
|
|
532
|
+
"""Add an edge to the graph for a middleware node.
|
|
533
|
+
|
|
534
|
+
Args:
|
|
535
|
+
graph: The graph to add the edge to.
|
|
536
|
+
method: The method to call for the middleware node.
|
|
537
|
+
name: The name of the middleware node.
|
|
538
|
+
default_destination: The default destination for the edge.
|
|
539
|
+
model_destination: The destination for the edge to the model.
|
|
540
|
+
tools_available: Whether tools are available for the edge to potentially route to.
|
|
541
|
+
"""
|
|
542
|
+
|
|
543
|
+
def jump_edge(state: AgentState) -> str:
|
|
544
|
+
return _resolve_jump(state.get("jump_to"), model_destination) or default_destination
|
|
545
|
+
|
|
546
|
+
destinations = [default_destination]
|
|
547
|
+
if default_destination != END:
|
|
548
|
+
destinations.append(END)
|
|
549
|
+
if tools_available:
|
|
550
|
+
destinations.append("tools")
|
|
551
|
+
if name != model_destination:
|
|
552
|
+
destinations.append(model_destination)
|
|
553
|
+
|
|
554
|
+
graph.add_conditional_edges(name, jump_edge, destinations)
|
langchain/agents/react_agent.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
"""React agent implementation."""
|
|
2
|
+
|
|
1
3
|
from __future__ import annotations
|
|
2
4
|
|
|
3
5
|
import inspect
|
|
@@ -43,6 +45,7 @@ from langgraph.typing import ContextT, StateT
|
|
|
43
45
|
from pydantic import BaseModel
|
|
44
46
|
from typing_extensions import NotRequired, TypedDict, TypeVar
|
|
45
47
|
|
|
48
|
+
from langchain.agents.middleware_agent import create_agent as create_middleware_agent
|
|
46
49
|
from langchain.agents.structured_output import (
|
|
47
50
|
MultipleStructuredOutputsError,
|
|
48
51
|
OutputToolBinding,
|
|
@@ -64,6 +67,7 @@ if TYPE_CHECKING:
|
|
|
64
67
|
from langchain.agents._internal._typing import (
|
|
65
68
|
SyncOrAsync,
|
|
66
69
|
)
|
|
70
|
+
from langchain.agents.types import AgentMiddleware
|
|
67
71
|
|
|
68
72
|
StructuredResponseT = TypeVar("StructuredResponseT", default=None)
|
|
69
73
|
|
|
@@ -906,6 +910,7 @@ def create_agent( # noqa: D417
|
|
|
906
910
|
],
|
|
907
911
|
tools: Union[Sequence[Union[BaseTool, Callable, dict[str, Any]]], ToolNode],
|
|
908
912
|
*,
|
|
913
|
+
middleware: Sequence[AgentMiddleware] = (),
|
|
909
914
|
prompt: Prompt | None = None,
|
|
910
915
|
response_format: Union[
|
|
911
916
|
ToolStrategy[StructuredResponseT],
|
|
@@ -1112,6 +1117,29 @@ def create_agent( # noqa: D417
|
|
|
1112
1117
|
print(chunk)
|
|
1113
1118
|
```
|
|
1114
1119
|
"""
|
|
1120
|
+
if middleware:
|
|
1121
|
+
assert isinstance(model, str | BaseChatModel) # noqa: S101
|
|
1122
|
+
assert isinstance(prompt, str | None) # noqa: S101
|
|
1123
|
+
assert not isinstance(response_format, tuple) # noqa: S101
|
|
1124
|
+
assert pre_model_hook is None # noqa: S101
|
|
1125
|
+
assert post_model_hook is None # noqa: S101
|
|
1126
|
+
assert state_schema is None # noqa: S101
|
|
1127
|
+
return create_middleware_agent( # type: ignore[return-value]
|
|
1128
|
+
model=model,
|
|
1129
|
+
tools=tools,
|
|
1130
|
+
system_prompt=prompt,
|
|
1131
|
+
middleware=middleware,
|
|
1132
|
+
response_format=response_format,
|
|
1133
|
+
context_schema=context_schema,
|
|
1134
|
+
).compile(
|
|
1135
|
+
checkpointer=checkpointer,
|
|
1136
|
+
store=store,
|
|
1137
|
+
name=name,
|
|
1138
|
+
interrupt_after=interrupt_after,
|
|
1139
|
+
interrupt_before=interrupt_before,
|
|
1140
|
+
debug=debug,
|
|
1141
|
+
)
|
|
1142
|
+
|
|
1115
1143
|
# Handle deprecated config_schema parameter
|
|
1116
1144
|
if (config_schema := deprecated_kwargs.pop("config_schema", MISSING)) is not MISSING:
|
|
1117
1145
|
warn(
|
langchain/chat_models/base.py
CHANGED
langchain/documents/__init__.py
CHANGED
langchain/embeddings/__init__.py
CHANGED
langchain/embeddings/base.py
CHANGED
langchain/storage/exceptions.py
CHANGED
langchain/tools/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: langchain
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.0a4
|
|
4
4
|
Summary: Building applications with LLMs through composability
|
|
5
5
|
License: MIT
|
|
6
6
|
Project-URL: Source Code, https://github.com/langchain-ai/langchain/tree/master/libs/langchain
|
|
@@ -9,7 +9,7 @@ Project-URL: repository, https://github.com/langchain-ai/langchain
|
|
|
9
9
|
Requires-Python: >=3.10
|
|
10
10
|
Requires-Dist: langchain-core<2.0.0,>=0.3.75
|
|
11
11
|
Requires-Dist: langchain-text-splitters<1.0.0,>=0.3.11
|
|
12
|
-
Requires-Dist: langgraph>=0.6.
|
|
12
|
+
Requires-Dist: langgraph>=0.6.7
|
|
13
13
|
Requires-Dist: pydantic>=2.7.4
|
|
14
14
|
Provides-Extra: anthropic
|
|
15
15
|
Requires-Dist: langchain-anthropic; extra == "anthropic"
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
langchain-1.0.0a4.dist-info/METADATA,sha256=lYsbj5Aa0dYAvavgAd4az8Ujq0aUgV74N-NSVqfN02g,6731
|
|
2
|
+
langchain-1.0.0a4.dist-info/WHEEL,sha256=9P2ygRxDrTJz3gsagc0Z96ukrxjr-LFBGOgv3AuKlCA,90
|
|
3
|
+
langchain-1.0.0a4.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
|
4
|
+
langchain-1.0.0a4.dist-info/licenses/LICENSE,sha256=TsZ-TKbmch26hJssqCJhWXyGph7iFLvyFBYAa3stBHg,1067
|
|
5
|
+
langchain/__init__.py,sha256=Gy73PvB6_XAlhmNFzilPvNZpCUHW5dcjwRYdfQG6JeQ,604
|
|
6
|
+
langchain/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
+
langchain/_internal/_documents.py,sha256=z9wAPukoASOMw4WTFFBKCCZYsvsKbo-Cq6CeHjdq9eE,1045
|
|
8
|
+
langchain/_internal/_lazy_import.py,sha256=N52tzaTdeae9XqFhLWIsfE0Am-2P4y-6v7m6n9tv0Y0,1295
|
|
9
|
+
langchain/_internal/_prompts.py,sha256=BW0PZlMoaW4jFG77-_FPHCd8NSLLg2FgF1ihG9l200M,6027
|
|
10
|
+
langchain/_internal/_typing.py,sha256=pVioGzy4zB2SxB_SyegZ7liAN1yqNHSvMviUZ47dAik,1674
|
|
11
|
+
langchain/_internal/_utils.py,sha256=lG8X9muiRAWtQjRPudq-1x-wHbk0J3spu_rYZckVdYs,251
|
|
12
|
+
langchain/agents/__init__.py,sha256=NG2S3dic9L3i4sAD9mpgaTv6Dl4L3u45xxK6jn-I4W8,281
|
|
13
|
+
langchain/agents/_internal/__init__.py,sha256=5nNBeaeQIvv9IOQjY4_aNW8pffWzMXQgi0b6Nx-WghM,37
|
|
14
|
+
langchain/agents/_internal/_typing.py,sha256=Jm3ogPZjGGgM-kz46RwxpsbBYHMnY8_bY74Vw8PLdAU,283
|
|
15
|
+
langchain/agents/interrupt.py,sha256=8A6xV3Vjm8DEO7W9mlKJKRmpl89Q0cXfDzRsz8VjJeE,3309
|
|
16
|
+
langchain/agents/middleware/__init__.py,sha256=qS6U6996Ypsiu4ZbV20pRoWmzZS3zD86ZOJo3794W9M,446
|
|
17
|
+
langchain/agents/middleware/_utils.py,sha256=XMEwKA5WjALrHcU3k89KzMxOytn5Nt_j2IwB7hIk7_I,359
|
|
18
|
+
langchain/agents/middleware/human_in_the_loop.py,sha256=1qOczElAxWY9OCxGNqSNG4FC7olhv_mzw3onSf2_UrY,4816
|
|
19
|
+
langchain/agents/middleware/prompt_caching.py,sha256=tK4PprYfMbHRxC84sl7rnw-EhFdiZ7dJkRMl9Hy8xTU,2215
|
|
20
|
+
langchain/agents/middleware/summarization.py,sha256=glk9yqJF5FfqvU3PabQVtM5yL-htP8J0myOlRl-nl-g,10241
|
|
21
|
+
langchain/agents/middleware/types.py,sha256=6DUKRME_9S6pzYph0hdTLsD2O7UdNiuPFgt0rO7x1kI,2670
|
|
22
|
+
langchain/agents/middleware_agent.py,sha256=a8TXDceRtL7ml-LsI9pldfUmOQuCrAZh25GdJrTsozQ,21472
|
|
23
|
+
langchain/agents/react_agent.py,sha256=rqRqq-SBUBbT5PABKawhWT1IHwv-K4yW8E-clK1BuA8,49479
|
|
24
|
+
langchain/agents/structured_output.py,sha256=8D7U-HXRm1-WnMX3SLUz4wpNNwbYtkq5WSpjgOWrBpk,13289
|
|
25
|
+
langchain/agents/tool_node.py,sha256=IXNX8CNxeGWln7lUfObnlQDvz3XBmz2KND_THxen1AQ,46637
|
|
26
|
+
langchain/chat_models/__init__.py,sha256=PTq9qskQEbqXYAcUUxUXDsugOcwISgFhv4w40JgkbgU,181
|
|
27
|
+
langchain/chat_models/base.py,sha256=zIKF-fBXGjbkT0gQm4r-3kZ6RyCOb6AwC_fKosUVEuI,34929
|
|
28
|
+
langchain/documents/__init__.py,sha256=DjuBCy1TQbem4Vz8SsCcGAbZeFwW5KgGPvDrA8e9oGA,94
|
|
29
|
+
langchain/embeddings/__init__.py,sha256=sJZEfZ4ovEFU5JJnoVNCJIjtSCLT1w9r9uFw1hieRZ8,269
|
|
30
|
+
langchain/embeddings/base.py,sha256=EiN1hh1PWrLmlPm3a5GU7bKfFKsgeBz43MDRxydyAlg,7550
|
|
31
|
+
langchain/embeddings/cache.py,sha256=idyAGk9QELAsnEihcA_oFrei2H0T63wRD3BPYS4_dfY,14415
|
|
32
|
+
langchain/globals.py,sha256=sVLV-9ydiPDuDAZ_f1fVqKlUDY7UgcueBw8VPlxaqRQ,575
|
|
33
|
+
langchain/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
|
+
langchain/storage/__init__.py,sha256=cvxc63N2nluqyVc7d9MeAj5mmO2iYl3GhcxMCpmqjUk,533
|
|
35
|
+
langchain/storage/encoder_backed.py,sha256=Xe60Uj0whfiIkFi5_Dw3hWyyDCALRb3e3Ev0duuEwuE,4284
|
|
36
|
+
langchain/storage/exceptions.py,sha256=Fl_8tON3KmByBKwXtno5WSj0-c2RiZxnhw3gv5aS2T8,114
|
|
37
|
+
langchain/storage/in_memory.py,sha256=ozrmu0EtaJJVSAzK_u7nzxWpr9OOscWkANHSg-qIVYQ,369
|
|
38
|
+
langchain/text_splitter.py,sha256=yxWs4secpnkfK6VZDiNJNdlYOrRZ18RQZj1S3xNQ73A,1554
|
|
39
|
+
langchain/tools/__init__.py,sha256=NYQzLxW2iI5Twu3voefVC-dJEI4Wgh7jC311CQEpvZs,252
|
|
40
|
+
langchain-1.0.0a4.dist-info/RECORD,,
|
|
@@ -1,33 +0,0 @@
|
|
|
1
|
-
langchain-1.0.0a3.dist-info/METADATA,sha256=7FrDorI_AGxr9mNHcmqcz21yjtiDVSa5iPVXQpB5Bzg,6731
|
|
2
|
-
langchain-1.0.0a3.dist-info/WHEEL,sha256=9P2ygRxDrTJz3gsagc0Z96ukrxjr-LFBGOgv3AuKlCA,90
|
|
3
|
-
langchain-1.0.0a3.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
|
4
|
-
langchain-1.0.0a3.dist-info/licenses/LICENSE,sha256=TsZ-TKbmch26hJssqCJhWXyGph7iFLvyFBYAa3stBHg,1067
|
|
5
|
-
langchain/__init__.py,sha256=ISYSSsweDINkqsfffWO_bLHCgohQqoMvZAs_5WYxA1U,604
|
|
6
|
-
langchain/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
-
langchain/_internal/_documents.py,sha256=z9wAPukoASOMw4WTFFBKCCZYsvsKbo-Cq6CeHjdq9eE,1045
|
|
8
|
-
langchain/_internal/_lazy_import.py,sha256=N52tzaTdeae9XqFhLWIsfE0Am-2P4y-6v7m6n9tv0Y0,1295
|
|
9
|
-
langchain/_internal/_prompts.py,sha256=BW0PZlMoaW4jFG77-_FPHCd8NSLLg2FgF1ihG9l200M,6027
|
|
10
|
-
langchain/_internal/_typing.py,sha256=pVioGzy4zB2SxB_SyegZ7liAN1yqNHSvMviUZ47dAik,1674
|
|
11
|
-
langchain/_internal/_utils.py,sha256=lG8X9muiRAWtQjRPudq-1x-wHbk0J3spu_rYZckVdYs,251
|
|
12
|
-
langchain/agents/__init__.py,sha256=NG2S3dic9L3i4sAD9mpgaTv6Dl4L3u45xxK6jn-I4W8,281
|
|
13
|
-
langchain/agents/_internal/__init__.py,sha256=5nNBeaeQIvv9IOQjY4_aNW8pffWzMXQgi0b6Nx-WghM,37
|
|
14
|
-
langchain/agents/_internal/_typing.py,sha256=Jm3ogPZjGGgM-kz46RwxpsbBYHMnY8_bY74Vw8PLdAU,283
|
|
15
|
-
langchain/agents/interrupt.py,sha256=8A6xV3Vjm8DEO7W9mlKJKRmpl89Q0cXfDzRsz8VjJeE,3309
|
|
16
|
-
langchain/agents/react_agent.py,sha256=z22IrQNDti0vMDD5WaaMiv5ZOZKTgdxB-4E9n01arQM,48374
|
|
17
|
-
langchain/agents/structured_output.py,sha256=8D7U-HXRm1-WnMX3SLUz4wpNNwbYtkq5WSpjgOWrBpk,13289
|
|
18
|
-
langchain/agents/tool_node.py,sha256=IXNX8CNxeGWln7lUfObnlQDvz3XBmz2KND_THxen1AQ,46637
|
|
19
|
-
langchain/chat_models/__init__.py,sha256=LlKLVCO4FTYyQawC6du1YJxQbeBvYdtYEntPowy28aA,161
|
|
20
|
-
langchain/chat_models/base.py,sha256=bUI34jo_bhPqNNhYfzZ4GqLb_fFHXwPmzczf4IkCbhw,34887
|
|
21
|
-
langchain/documents/__init__.py,sha256=4z9Hy3P7gVRyepIceVROcCXmFSAlHV1UUdwrhE4TXlM,77
|
|
22
|
-
langchain/embeddings/__init__.py,sha256=-a1o8_FQAFYNA9R0uqElDYiYNNUz_at9lpkZulYN9cQ,250
|
|
23
|
-
langchain/embeddings/base.py,sha256=IkDCQ0eIZi6ipWH6yyGcLiJMI0i4GfyYHBs5POeOFgM,7509
|
|
24
|
-
langchain/embeddings/cache.py,sha256=idyAGk9QELAsnEihcA_oFrei2H0T63wRD3BPYS4_dfY,14415
|
|
25
|
-
langchain/globals.py,sha256=sVLV-9ydiPDuDAZ_f1fVqKlUDY7UgcueBw8VPlxaqRQ,575
|
|
26
|
-
langchain/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
27
|
-
langchain/storage/__init__.py,sha256=cvxc63N2nluqyVc7d9MeAj5mmO2iYl3GhcxMCpmqjUk,533
|
|
28
|
-
langchain/storage/encoder_backed.py,sha256=JYyOk3mpBQDi5Xi5bIQQAzG-NrcpPAeAsgVDzOcaqnk,4240
|
|
29
|
-
langchain/storage/exceptions.py,sha256=P5FiMbxsTA0bLbc96i_DgWmQGOUEc1snGBtxn7sOjZk,89
|
|
30
|
-
langchain/storage/in_memory.py,sha256=ozrmu0EtaJJVSAzK_u7nzxWpr9OOscWkANHSg-qIVYQ,369
|
|
31
|
-
langchain/text_splitter.py,sha256=yxWs4secpnkfK6VZDiNJNdlYOrRZ18RQZj1S3xNQ73A,1554
|
|
32
|
-
langchain/tools/__init__.py,sha256=Fhohmkn63aAN66tqfuTVN9p5Kb1kauXVOkrvpl0x-RQ,238
|
|
33
|
-
langchain-1.0.0a3.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|