langchain 1.0.0a15__py3-none-any.whl → 1.0.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of langchain might be problematic. Click here for more details.

@@ -0,0 +1,384 @@
1
+ """Tool retry middleware for agents."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import asyncio
6
+ import random
7
+ import time
8
+ from typing import TYPE_CHECKING, Literal
9
+
10
+ from langchain_core.messages import ToolMessage
11
+
12
+ from langchain.agents.middleware.types import AgentMiddleware
13
+
14
+ if TYPE_CHECKING:
15
+ from collections.abc import Awaitable, Callable
16
+
17
+ from langgraph.types import Command
18
+
19
+ from langchain.tools import BaseTool
20
+ from langchain.tools.tool_node import ToolCallRequest
21
+
22
+
23
+ class ToolRetryMiddleware(AgentMiddleware):
24
+ """Middleware that automatically retries failed tool calls with configurable backoff.
25
+
26
+ Supports retrying on specific exceptions and exponential backoff.
27
+
28
+ Examples:
29
+ Basic usage with default settings (2 retries, exponential backoff):
30
+ ```python
31
+ from langchain.agents import create_agent
32
+ from langchain.agents.middleware import ToolRetryMiddleware
33
+
34
+ agent = create_agent(model, tools=[search_tool], middleware=[ToolRetryMiddleware()])
35
+ ```
36
+
37
+ Retry specific exceptions only:
38
+ ```python
39
+ from requests.exceptions import RequestException, Timeout
40
+
41
+ retry = ToolRetryMiddleware(
42
+ max_retries=4,
43
+ retry_on=(RequestException, Timeout),
44
+ backoff_factor=1.5,
45
+ )
46
+ ```
47
+
48
+ Custom exception filtering:
49
+ ```python
50
+ from requests.exceptions import HTTPError
51
+
52
+
53
+ def should_retry(exc: Exception) -> bool:
54
+ # Only retry on 5xx errors
55
+ if isinstance(exc, HTTPError):
56
+ return 500 <= exc.status_code < 600
57
+ return False
58
+
59
+
60
+ retry = ToolRetryMiddleware(
61
+ max_retries=3,
62
+ retry_on=should_retry,
63
+ )
64
+ ```
65
+
66
+ Apply to specific tools with custom error handling:
67
+ ```python
68
+ def format_error(exc: Exception) -> str:
69
+ return "Database temporarily unavailable. Please try again later."
70
+
71
+
72
+ retry = ToolRetryMiddleware(
73
+ max_retries=4,
74
+ tools=["search_database"],
75
+ on_failure=format_error,
76
+ )
77
+ ```
78
+
79
+ Apply to specific tools using BaseTool instances:
80
+ ```python
81
+ from langchain_core.tools import tool
82
+
83
+
84
+ @tool
85
+ def search_database(query: str) -> str:
86
+ '''Search the database.'''
87
+ return results
88
+
89
+
90
+ retry = ToolRetryMiddleware(
91
+ max_retries=4,
92
+ tools=[search_database], # Pass BaseTool instance
93
+ )
94
+ ```
95
+
96
+ Constant backoff (no exponential growth):
97
+ ```python
98
+ retry = ToolRetryMiddleware(
99
+ max_retries=5,
100
+ backoff_factor=0.0, # No exponential growth
101
+ initial_delay=2.0, # Always wait 2 seconds
102
+ )
103
+ ```
104
+
105
+ Raise exception on failure:
106
+ ```python
107
+ retry = ToolRetryMiddleware(
108
+ max_retries=2,
109
+ on_failure="raise", # Re-raise exception instead of returning message
110
+ )
111
+ ```
112
+ """
113
+
114
+ def __init__(
115
+ self,
116
+ *,
117
+ max_retries: int = 2,
118
+ tools: list[BaseTool | str] | None = None,
119
+ retry_on: tuple[type[Exception], ...] | Callable[[Exception], bool] = (Exception,),
120
+ on_failure: (
121
+ Literal["raise", "return_message"] | Callable[[Exception], str]
122
+ ) = "return_message",
123
+ backoff_factor: float = 2.0,
124
+ initial_delay: float = 1.0,
125
+ max_delay: float = 60.0,
126
+ jitter: bool = True,
127
+ ) -> None:
128
+ """Initialize ToolRetryMiddleware.
129
+
130
+ Args:
131
+ max_retries: Maximum number of retry attempts after the initial call.
132
+ Default is 2 retries (3 total attempts). Must be >= 0.
133
+ tools: Optional list of tools or tool names to apply retry logic to.
134
+ Can be a list of `BaseTool` instances or tool name strings.
135
+ If `None`, applies to all tools. Default is `None`.
136
+ retry_on: Either a tuple of exception types to retry on, or a callable
137
+ that takes an exception and returns `True` if it should be retried.
138
+ Default is to retry on all exceptions.
139
+ on_failure: Behavior when all retries are exhausted. Options:
140
+ - `"return_message"` (default): Return a ToolMessage with error details,
141
+ allowing the LLM to handle the failure and potentially recover.
142
+ - `"raise"`: Re-raise the exception, stopping agent execution.
143
+ - Custom callable: Function that takes the exception and returns a string
144
+ for the ToolMessage content, allowing custom error formatting.
145
+ backoff_factor: Multiplier for exponential backoff. Each retry waits
146
+ `initial_delay * (backoff_factor ** retry_number)` seconds.
147
+ Set to 0.0 for constant delay. Default is 2.0.
148
+ initial_delay: Initial delay in seconds before first retry. Default is 1.0.
149
+ max_delay: Maximum delay in seconds between retries. Caps exponential
150
+ backoff growth. Default is 60.0.
151
+ jitter: Whether to add random jitter (±25%) to delay to avoid thundering herd.
152
+ Default is `True`.
153
+
154
+ Raises:
155
+ ValueError: If max_retries < 0 or delays are negative.
156
+ """
157
+ super().__init__()
158
+
159
+ # Validate parameters
160
+ if max_retries < 0:
161
+ msg = "max_retries must be >= 0"
162
+ raise ValueError(msg)
163
+ if initial_delay < 0:
164
+ msg = "initial_delay must be >= 0"
165
+ raise ValueError(msg)
166
+ if max_delay < 0:
167
+ msg = "max_delay must be >= 0"
168
+ raise ValueError(msg)
169
+ if backoff_factor < 0:
170
+ msg = "backoff_factor must be >= 0"
171
+ raise ValueError(msg)
172
+
173
+ self.max_retries = max_retries
174
+
175
+ # Extract tool names from BaseTool instances or strings
176
+ self._tool_filter: list[str] | None
177
+ if tools is not None:
178
+ self._tool_filter = [tool.name if not isinstance(tool, str) else tool for tool in tools]
179
+ else:
180
+ self._tool_filter = None
181
+
182
+ self.tools = [] # No additional tools registered by this middleware
183
+ self.retry_on = retry_on
184
+ self.on_failure = on_failure
185
+ self.backoff_factor = backoff_factor
186
+ self.initial_delay = initial_delay
187
+ self.max_delay = max_delay
188
+ self.jitter = jitter
189
+
190
+ def _should_retry_tool(self, tool_name: str) -> bool:
191
+ """Check if retry logic should apply to this tool.
192
+
193
+ Args:
194
+ tool_name: Name of the tool being called.
195
+
196
+ Returns:
197
+ `True` if retry logic should apply, `False` otherwise.
198
+ """
199
+ if self._tool_filter is None:
200
+ return True
201
+ return tool_name in self._tool_filter
202
+
203
+ def _should_retry_exception(self, exc: Exception) -> bool:
204
+ """Check if the exception should trigger a retry.
205
+
206
+ Args:
207
+ exc: The exception that occurred.
208
+
209
+ Returns:
210
+ `True` if the exception should be retried, `False` otherwise.
211
+ """
212
+ if callable(self.retry_on):
213
+ return self.retry_on(exc)
214
+ return isinstance(exc, self.retry_on)
215
+
216
+ def _calculate_delay(self, retry_number: int) -> float:
217
+ """Calculate delay for the given retry attempt.
218
+
219
+ Args:
220
+ retry_number: The retry attempt number (0-indexed).
221
+
222
+ Returns:
223
+ Delay in seconds before next retry.
224
+ """
225
+ if self.backoff_factor == 0.0:
226
+ delay = self.initial_delay
227
+ else:
228
+ delay = self.initial_delay * (self.backoff_factor**retry_number)
229
+
230
+ # Cap at max_delay
231
+ delay = min(delay, self.max_delay)
232
+
233
+ if self.jitter and delay > 0:
234
+ jitter_amount = delay * 0.25
235
+ delay = delay + random.uniform(-jitter_amount, jitter_amount) # noqa: S311
236
+ # Ensure delay is not negative after jitter
237
+ delay = max(0, delay)
238
+
239
+ return delay
240
+
241
+ def _format_failure_message(self, tool_name: str, exc: Exception, attempts_made: int) -> str:
242
+ """Format the failure message when retries are exhausted.
243
+
244
+ Args:
245
+ tool_name: Name of the tool that failed.
246
+ exc: The exception that caused the failure.
247
+ attempts_made: Number of attempts actually made.
248
+
249
+ Returns:
250
+ Formatted error message string.
251
+ """
252
+ exc_type = type(exc).__name__
253
+ attempt_word = "attempt" if attempts_made == 1 else "attempts"
254
+ return f"Tool '{tool_name}' failed after {attempts_made} {attempt_word} with {exc_type}"
255
+
256
+ def _handle_failure(
257
+ self, tool_name: str, tool_call_id: str | None, exc: Exception, attempts_made: int
258
+ ) -> ToolMessage:
259
+ """Handle failure when all retries are exhausted.
260
+
261
+ Args:
262
+ tool_name: Name of the tool that failed.
263
+ tool_call_id: ID of the tool call (may be None).
264
+ exc: The exception that caused the failure.
265
+ attempts_made: Number of attempts actually made.
266
+
267
+ Returns:
268
+ ToolMessage with error details.
269
+
270
+ Raises:
271
+ Exception: If on_failure is "raise", re-raises the exception.
272
+ """
273
+ if self.on_failure == "raise":
274
+ raise exc
275
+
276
+ if callable(self.on_failure):
277
+ content = self.on_failure(exc)
278
+ else:
279
+ content = self._format_failure_message(tool_name, exc, attempts_made)
280
+
281
+ return ToolMessage(
282
+ content=content,
283
+ tool_call_id=tool_call_id,
284
+ name=tool_name,
285
+ status="error",
286
+ )
287
+
288
+ def wrap_tool_call(
289
+ self,
290
+ request: ToolCallRequest,
291
+ handler: Callable[[ToolCallRequest], ToolMessage | Command],
292
+ ) -> ToolMessage | Command:
293
+ """Intercept tool execution and retry on failure.
294
+
295
+ Args:
296
+ request: Tool call request with call dict, BaseTool, state, and runtime.
297
+ handler: Callable to execute the tool (can be called multiple times).
298
+
299
+ Returns:
300
+ ToolMessage or Command (the final result).
301
+ """
302
+ tool_name = request.tool.name if request.tool else request.tool_call["name"]
303
+
304
+ # Check if retry should apply to this tool
305
+ if not self._should_retry_tool(tool_name):
306
+ return handler(request)
307
+
308
+ tool_call_id = request.tool_call["id"]
309
+
310
+ # Initial attempt + retries
311
+ for attempt in range(self.max_retries + 1):
312
+ try:
313
+ return handler(request)
314
+ except Exception as exc: # noqa: BLE001
315
+ attempts_made = attempt + 1 # attempt is 0-indexed
316
+
317
+ # Check if we should retry this exception
318
+ if not self._should_retry_exception(exc):
319
+ # Exception is not retryable, handle failure immediately
320
+ return self._handle_failure(tool_name, tool_call_id, exc, attempts_made)
321
+
322
+ # Check if we have more retries left
323
+ if attempt < self.max_retries:
324
+ # Calculate and apply backoff delay
325
+ delay = self._calculate_delay(attempt)
326
+ if delay > 0:
327
+ time.sleep(delay)
328
+ # Continue to next retry
329
+ else:
330
+ # No more retries, handle failure
331
+ return self._handle_failure(tool_name, tool_call_id, exc, attempts_made)
332
+
333
+ # Unreachable: loop always returns via handler success or _handle_failure
334
+ msg = "Unexpected: retry loop completed without returning"
335
+ raise RuntimeError(msg)
336
+
337
+ async def awrap_tool_call(
338
+ self,
339
+ request: ToolCallRequest,
340
+ handler: Callable[[ToolCallRequest], Awaitable[ToolMessage | Command]],
341
+ ) -> ToolMessage | Command:
342
+ """Intercept and control async tool execution with retry logic.
343
+
344
+ Args:
345
+ request: Tool call request with call dict, BaseTool, state, and runtime.
346
+ handler: Async callable to execute the tool and returns ToolMessage or Command.
347
+
348
+ Returns:
349
+ ToolMessage or Command (the final result).
350
+ """
351
+ tool_name = request.tool.name if request.tool else request.tool_call["name"]
352
+
353
+ # Check if retry should apply to this tool
354
+ if not self._should_retry_tool(tool_name):
355
+ return await handler(request)
356
+
357
+ tool_call_id = request.tool_call["id"]
358
+
359
+ # Initial attempt + retries
360
+ for attempt in range(self.max_retries + 1):
361
+ try:
362
+ return await handler(request)
363
+ except Exception as exc: # noqa: BLE001
364
+ attempts_made = attempt + 1 # attempt is 0-indexed
365
+
366
+ # Check if we should retry this exception
367
+ if not self._should_retry_exception(exc):
368
+ # Exception is not retryable, handle failure immediately
369
+ return self._handle_failure(tool_name, tool_call_id, exc, attempts_made)
370
+
371
+ # Check if we have more retries left
372
+ if attempt < self.max_retries:
373
+ # Calculate and apply backoff delay
374
+ delay = self._calculate_delay(attempt)
375
+ if delay > 0:
376
+ await asyncio.sleep(delay)
377
+ # Continue to next retry
378
+ else:
379
+ # No more retries, handle failure
380
+ return self._handle_failure(tool_name, tool_call_id, exc, attempts_made)
381
+
382
+ # Unreachable: loop always returns via handler success or _handle_failure
383
+ msg = "Unexpected: retry loop completed without returning"
384
+ raise RuntimeError(msg)