langchain-ollama 0.2.3__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,12 +7,14 @@ from typing import (
7
7
  AsyncIterator,
8
8
  Callable,
9
9
  Dict,
10
+ Final,
10
11
  Iterator,
11
12
  List,
12
13
  Literal,
13
14
  Mapping,
14
15
  Optional,
15
16
  Sequence,
17
+ Tuple,
16
18
  Type,
17
19
  Union,
18
20
  cast,
@@ -30,6 +32,7 @@ from langchain_core.messages import (
30
32
  AIMessage,
31
33
  AIMessageChunk,
32
34
  BaseMessage,
35
+ BaseMessageChunk,
33
36
  HumanMessage,
34
37
  SystemMessage,
35
38
  ToolCall,
@@ -47,15 +50,19 @@ from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResu
47
50
  from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
48
51
  from langchain_core.tools import BaseTool
49
52
  from langchain_core.utils.function_calling import (
50
- _convert_any_typed_dicts_to_pydantic as convert_any_typed_dicts_to_pydantic,
53
+ convert_to_json_schema,
54
+ convert_to_openai_tool,
51
55
  )
52
- from langchain_core.utils.function_calling import convert_to_openai_tool
53
56
  from langchain_core.utils.pydantic import TypeBaseModel, is_basemodel_subclass
54
57
  from ollama import AsyncClient, Client, Message, Options
55
58
  from pydantic import BaseModel, PrivateAttr, model_validator
56
59
  from pydantic.json_schema import JsonSchemaValue
60
+ from pydantic.v1 import BaseModel as BaseModelV1
57
61
  from typing_extensions import Self, is_typeddict
58
62
 
63
+ DEFAULT_THINK_TOKEN_START: Final[str] = "<think>"
64
+ DEFAULT_THINK_TOKEN_END: Final[str] = "</think>"
65
+
59
66
 
60
67
  def _get_usage_metadata_from_generation_info(
61
68
  generation_info: Optional[Mapping[str, Any]],
@@ -124,13 +131,17 @@ def _parse_arguments_from_tool_call(
124
131
  if "function" not in raw_tool_call:
125
132
  return None
126
133
  arguments = raw_tool_call["function"]["arguments"]
127
- parsed_arguments = {}
134
+ parsed_arguments: dict = {}
128
135
  if isinstance(arguments, dict):
129
136
  for key, value in arguments.items():
130
137
  if isinstance(value, str):
131
- parsed_arguments[key] = _parse_json_string(
138
+ parsed_value = _parse_json_string(
132
139
  value, skip=True, raw_tool_call=raw_tool_call
133
140
  )
141
+ if isinstance(parsed_value, (dict, list)):
142
+ parsed_arguments[key] = parsed_value
143
+ else:
144
+ parsed_arguments[key] = value
134
145
  else:
135
146
  parsed_arguments[key] = value
136
147
  else:
@@ -228,7 +239,7 @@ class ChatOllama(BaseChatModel):
228
239
  ("human", "Return the words Hello World!"),
229
240
  ]
230
241
  for chunk in llm.stream(messages):
231
- print(chunk)
242
+ print(chunk.text(), end="")
232
243
 
233
244
 
234
245
  .. code-block:: python
@@ -330,6 +341,13 @@ class ChatOllama(BaseChatModel):
330
341
  model: str
331
342
  """Model name to use."""
332
343
 
344
+ extract_reasoning: Optional[Union[bool, Tuple[str, str]]] = False
345
+ """Whether to extract the reasoning tokens in think blocks.
346
+ Extracts `chunk.content` to `chunk.additional_kwargs.reasoning_content`.
347
+ If a tuple is supplied, they are assumed to be the (start, end) tokens.
348
+ If `extract_reasoning=True`, the tokens will default to (<think>, </think>).
349
+ """
350
+
333
351
  mirostat: Optional[int] = None
334
352
  """Enable Mirostat sampling for controlling perplexity.
335
353
  (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
@@ -563,6 +581,28 @@ class ChatOllama(BaseChatModel):
563
581
 
564
582
  return ollama_messages
565
583
 
584
+ def _extract_reasoning(
585
+ self, message_chunk: BaseMessageChunk, is_thinking: bool
586
+ ) -> Tuple[BaseMessageChunk, bool]:
587
+ """Mutate a message chunk to extract reasoning content."""
588
+ if not self.extract_reasoning:
589
+ return message_chunk, is_thinking
590
+ elif self.extract_reasoning is True:
591
+ start_token = DEFAULT_THINK_TOKEN_START
592
+ end_token = DEFAULT_THINK_TOKEN_END
593
+ else:
594
+ start_token, end_token = cast(tuple, self.extract_reasoning)
595
+ if start_token in message_chunk.content:
596
+ is_thinking = True
597
+ content = message_chunk.content
598
+ if is_thinking:
599
+ message_chunk.additional_kwargs["reasoning_content"] = content
600
+ message_chunk.content = ""
601
+ if end_token in content:
602
+ is_thinking = False
603
+
604
+ return message_chunk, is_thinking
605
+
566
606
  async def _acreate_chat_stream(
567
607
  self,
568
608
  messages: List[BaseMessage],
@@ -599,35 +639,17 @@ class ChatOllama(BaseChatModel):
599
639
  **kwargs: Any,
600
640
  ) -> ChatGenerationChunk:
601
641
  final_chunk = None
602
- for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
603
- if not isinstance(stream_resp, str):
604
- chunk = ChatGenerationChunk(
605
- message=AIMessageChunk(
606
- content=(
607
- stream_resp["message"]["content"]
608
- if "message" in stream_resp
609
- and "content" in stream_resp["message"]
610
- else ""
611
- ),
612
- usage_metadata=_get_usage_metadata_from_generation_info(
613
- stream_resp
614
- ),
615
- tool_calls=_get_tool_calls_from_response(stream_resp),
616
- ),
617
- generation_info=(
618
- dict(stream_resp) if stream_resp.get("done") is True else None
619
- ),
642
+ for chunk in self._iterate_over_stream(messages, stop, **kwargs):
643
+ if final_chunk is None:
644
+ final_chunk = chunk
645
+ else:
646
+ final_chunk += chunk
647
+ if run_manager:
648
+ run_manager.on_llm_new_token(
649
+ chunk.text,
650
+ chunk=chunk,
651
+ verbose=verbose,
620
652
  )
621
- if final_chunk is None:
622
- final_chunk = chunk
623
- else:
624
- final_chunk += chunk
625
- if run_manager:
626
- run_manager.on_llm_new_token(
627
- chunk.text,
628
- chunk=chunk,
629
- verbose=verbose,
630
- )
631
653
  if final_chunk is None:
632
654
  raise ValueError("No data received from Ollama stream.")
633
655
 
@@ -642,35 +664,17 @@ class ChatOllama(BaseChatModel):
642
664
  **kwargs: Any,
643
665
  ) -> ChatGenerationChunk:
644
666
  final_chunk = None
645
- async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs):
646
- if not isinstance(stream_resp, str):
647
- chunk = ChatGenerationChunk(
648
- message=AIMessageChunk(
649
- content=(
650
- stream_resp["message"]["content"]
651
- if "message" in stream_resp
652
- and "content" in stream_resp["message"]
653
- else ""
654
- ),
655
- usage_metadata=_get_usage_metadata_from_generation_info(
656
- stream_resp
657
- ),
658
- tool_calls=_get_tool_calls_from_response(stream_resp),
659
- ),
660
- generation_info=(
661
- dict(stream_resp) if stream_resp.get("done") is True else None
662
- ),
667
+ async for chunk in self._aiterate_over_stream(messages, stop, **kwargs):
668
+ if final_chunk is None:
669
+ final_chunk = chunk
670
+ else:
671
+ final_chunk += chunk
672
+ if run_manager:
673
+ await run_manager.on_llm_new_token(
674
+ chunk.text,
675
+ chunk=chunk,
676
+ verbose=verbose,
663
677
  )
664
- if final_chunk is None:
665
- final_chunk = chunk
666
- else:
667
- final_chunk += chunk
668
- if run_manager:
669
- await run_manager.on_llm_new_token(
670
- chunk.text,
671
- chunk=chunk,
672
- verbose=verbose,
673
- )
674
678
  if final_chunk is None:
675
679
  raise ValueError("No data received from Ollama stream.")
676
680
 
@@ -707,18 +711,19 @@ class ChatOllama(BaseChatModel):
707
711
  content=final_chunk.text,
708
712
  usage_metadata=cast(AIMessageChunk, final_chunk.message).usage_metadata,
709
713
  tool_calls=cast(AIMessageChunk, final_chunk.message).tool_calls,
714
+ additional_kwargs=final_chunk.message.additional_kwargs,
710
715
  ),
711
716
  generation_info=generation_info,
712
717
  )
713
718
  return ChatResult(generations=[chat_generation])
714
719
 
715
- def _stream(
720
+ def _iterate_over_stream(
716
721
  self,
717
722
  messages: List[BaseMessage],
718
723
  stop: Optional[List[str]] = None,
719
- run_manager: Optional[CallbackManagerForLLMRun] = None,
720
724
  **kwargs: Any,
721
725
  ) -> Iterator[ChatGenerationChunk]:
726
+ is_thinking = False
722
727
  for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
723
728
  if not isinstance(stream_resp, str):
724
729
  chunk = ChatGenerationChunk(
@@ -738,20 +743,39 @@ class ChatOllama(BaseChatModel):
738
743
  dict(stream_resp) if stream_resp.get("done") is True else None
739
744
  ),
740
745
  )
741
- if run_manager:
742
- run_manager.on_llm_new_token(
743
- chunk.text,
744
- verbose=self.verbose,
746
+ if chunk.generation_info and (
747
+ model := chunk.generation_info.get("model")
748
+ ):
749
+ chunk.generation_info["model_name"] = model # backwards compat
750
+ if self.extract_reasoning:
751
+ message, is_thinking = self._extract_reasoning(
752
+ chunk.message, is_thinking
745
753
  )
754
+ chunk.message = message
746
755
  yield chunk
747
756
 
748
- async def _astream(
757
+ def _stream(
758
+ self,
759
+ messages: List[BaseMessage],
760
+ stop: Optional[List[str]] = None,
761
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
762
+ **kwargs: Any,
763
+ ) -> Iterator[ChatGenerationChunk]:
764
+ for chunk in self._iterate_over_stream(messages, stop, **kwargs):
765
+ if run_manager:
766
+ run_manager.on_llm_new_token(
767
+ chunk.text,
768
+ verbose=self.verbose,
769
+ )
770
+ yield chunk
771
+
772
+ async def _aiterate_over_stream(
749
773
  self,
750
774
  messages: List[BaseMessage],
751
775
  stop: Optional[List[str]] = None,
752
- run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
753
776
  **kwargs: Any,
754
777
  ) -> AsyncIterator[ChatGenerationChunk]:
778
+ is_thinking = False
755
779
  async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs):
756
780
  if not isinstance(stream_resp, str):
757
781
  chunk = ChatGenerationChunk(
@@ -771,13 +795,32 @@ class ChatOllama(BaseChatModel):
771
795
  dict(stream_resp) if stream_resp.get("done") is True else None
772
796
  ),
773
797
  )
774
- if run_manager:
775
- await run_manager.on_llm_new_token(
776
- chunk.text,
777
- verbose=self.verbose,
798
+ if chunk.generation_info and (
799
+ model := chunk.generation_info.get("model")
800
+ ):
801
+ chunk.generation_info["model_name"] = model # backwards compat
802
+ if self.extract_reasoning:
803
+ message, is_thinking = self._extract_reasoning(
804
+ chunk.message, is_thinking
778
805
  )
806
+ chunk.message = message
779
807
  yield chunk
780
808
 
809
+ async def _astream(
810
+ self,
811
+ messages: List[BaseMessage],
812
+ stop: Optional[List[str]] = None,
813
+ run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
814
+ **kwargs: Any,
815
+ ) -> AsyncIterator[ChatGenerationChunk]:
816
+ async for chunk in self._aiterate_over_stream(messages, stop, **kwargs):
817
+ if run_manager:
818
+ await run_manager.on_llm_new_token(
819
+ chunk.text,
820
+ verbose=self.verbose,
821
+ )
822
+ yield chunk
823
+
781
824
  async def _agenerate(
782
825
  self,
783
826
  messages: List[BaseMessage],
@@ -794,6 +837,7 @@ class ChatOllama(BaseChatModel):
794
837
  content=final_chunk.text,
795
838
  usage_metadata=cast(AIMessageChunk, final_chunk.message).usage_metadata,
796
839
  tool_calls=cast(AIMessageChunk, final_chunk.message).tool_calls,
840
+ additional_kwargs=final_chunk.message.additional_kwargs,
797
841
  ),
798
842
  generation_info=generation_info,
799
843
  )
@@ -831,9 +875,7 @@ class ChatOllama(BaseChatModel):
831
875
  self,
832
876
  schema: Union[Dict, type],
833
877
  *,
834
- method: Literal[
835
- "function_calling", "json_mode", "json_schema"
836
- ] = "function_calling",
878
+ method: Literal["function_calling", "json_mode", "json_schema"] = "json_schema",
837
879
  include_raw: bool = False,
838
880
  **kwargs: Any,
839
881
  ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
@@ -857,10 +899,10 @@ class ChatOllama(BaseChatModel):
857
899
 
858
900
  method: The method for steering model generation, one of:
859
901
 
860
- - "function_calling":
861
- Uses Ollama's tool-calling API
862
902
  - "json_schema":
863
903
  Uses Ollama's structured output API: https://ollama.com/blog/structured-outputs
904
+ - "function_calling":
905
+ Uses Ollama's tool-calling API
864
906
  - "json_mode":
865
907
  Specifies ``format="json"``. Note that if using JSON mode then you
866
908
  must include instructions for formatting the output into the
@@ -891,7 +933,11 @@ class ChatOllama(BaseChatModel):
891
933
 
892
934
  Added support for structured output API via ``format`` parameter.
893
935
 
894
- .. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=False
936
+ .. versionchanged:: 0.3.0
937
+
938
+ Updated default ``method`` to ``"json_schema"``.
939
+
940
+ .. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=False
895
941
 
896
942
  .. code-block:: python
897
943
 
@@ -924,7 +970,7 @@ class ChatOllama(BaseChatModel):
924
970
  # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
925
971
  # )
926
972
 
927
- .. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=True
973
+ .. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=True
928
974
 
929
975
  .. code-block:: python
930
976
 
@@ -953,7 +999,7 @@ class ChatOllama(BaseChatModel):
953
999
  # 'parsing_error': None
954
1000
  # }
955
1001
 
956
- .. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=False
1002
+ .. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=False
957
1003
 
958
1004
  .. code-block:: python
959
1005
 
@@ -974,7 +1020,7 @@ class ChatOllama(BaseChatModel):
974
1020
 
975
1021
  llm = ChatOllama(model="llama3.1", temperature=0)
976
1022
  structured_llm = llm.with_structured_output(
977
- AnswerWithJustification, method="json_schema"
1023
+ AnswerWithJustification, method="function_calling"
978
1024
  )
979
1025
 
980
1026
  structured_llm.invoke(
@@ -1076,6 +1122,7 @@ class ChatOllama(BaseChatModel):
1076
1122
  # 'parsing_error': None
1077
1123
  # }
1078
1124
  """ # noqa: E501, D301
1125
+ _ = kwargs.pop("strict", None)
1079
1126
  if kwargs:
1080
1127
  raise ValueError(f"Received unsupported arguments {kwargs}")
1081
1128
  is_pydantic_schema = _is_pydantic_class(schema)
@@ -1090,7 +1137,7 @@ class ChatOllama(BaseChatModel):
1090
1137
  llm = self.bind_tools(
1091
1138
  [schema],
1092
1139
  tool_choice=tool_name,
1093
- structured_output_format={
1140
+ ls_structured_output_format={
1094
1141
  "kwargs": {"method": method},
1095
1142
  "schema": formatted_tool,
1096
1143
  },
@@ -1107,7 +1154,7 @@ class ChatOllama(BaseChatModel):
1107
1154
  elif method == "json_mode":
1108
1155
  llm = self.bind(
1109
1156
  format="json",
1110
- structured_output_format={
1157
+ ls_structured_output_format={
1111
1158
  "kwargs": {"method": method},
1112
1159
  "schema": schema,
1113
1160
  },
@@ -1125,9 +1172,13 @@ class ChatOllama(BaseChatModel):
1125
1172
  )
1126
1173
  if is_pydantic_schema:
1127
1174
  schema = cast(TypeBaseModel, schema)
1175
+ if issubclass(schema, BaseModelV1):
1176
+ response_format = schema.schema()
1177
+ else:
1178
+ response_format = schema.model_json_schema()
1128
1179
  llm = self.bind(
1129
- format=schema.model_json_schema(),
1130
- structured_output_format={
1180
+ format=response_format,
1181
+ ls_structured_output_format={
1131
1182
  "kwargs": {"method": method},
1132
1183
  "schema": schema,
1133
1184
  },
@@ -1135,20 +1186,17 @@ class ChatOllama(BaseChatModel):
1135
1186
  output_parser = PydanticOutputParser(pydantic_object=schema)
1136
1187
  else:
1137
1188
  if is_typeddict(schema):
1138
- schema = cast(type, schema)
1139
- response_format = convert_any_typed_dicts_to_pydantic(
1140
- schema, visited={}
1141
- ).schema() # type: ignore[attr-defined]
1189
+ response_format = convert_to_json_schema(schema)
1142
1190
  if "required" not in response_format:
1143
1191
  response_format["required"] = list(
1144
1192
  response_format["properties"].keys()
1145
1193
  )
1146
1194
  else:
1147
1195
  # is JSON schema
1148
- response_format = schema
1196
+ response_format = cast(dict, schema)
1149
1197
  llm = self.bind(
1150
1198
  format=response_format,
1151
- structured_output_format={
1199
+ ls_structured_output_format={
1152
1200
  "kwargs": {"method": method},
1153
1201
  "schema": response_format,
1154
1202
  },
@@ -164,6 +164,11 @@ class OllamaEmbeddings(BaseModel, Embeddings):
164
164
  """The number of GPUs to use. On macOS it defaults to 1 to
165
165
  enable metal support, 0 to disable."""
166
166
 
167
+ keep_alive: Optional[int] = None
168
+ """controls how long the model will stay loaded into memory
169
+ following the request (default: 5m)
170
+ """
171
+
167
172
  num_thread: Optional[int] = None
168
173
  """Sets the number of threads to use during computation.
169
174
  By default, Ollama will detect this for optimal performance.
@@ -235,7 +240,7 @@ class OllamaEmbeddings(BaseModel, Embeddings):
235
240
  def embed_documents(self, texts: List[str]) -> List[List[float]]:
236
241
  """Embed search docs."""
237
242
  embedded_docs = self._client.embed(
238
- self.model, texts, options=self._default_params
243
+ self.model, texts, options=self._default_params, keep_alive=self.keep_alive
239
244
  )["embeddings"]
240
245
  return embedded_docs
241
246
 
@@ -245,9 +250,11 @@ class OllamaEmbeddings(BaseModel, Embeddings):
245
250
 
246
251
  async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
247
252
  """Embed search docs."""
248
- embedded_docs = (await self._async_client.embed(self.model, texts))[
249
- "embeddings"
250
- ]
253
+ embedded_docs = (
254
+ await self._async_client.embed(
255
+ self.model, texts, keep_alive=self.keep_alive
256
+ )
257
+ )["embeddings"]
251
258
  return embedded_docs
252
259
 
253
260
  async def aembed_query(self, text: str) -> List[float]:
langchain_ollama/llms.py CHANGED
@@ -84,6 +84,11 @@ class OllamaLLM(BaseLLM):
84
84
  """The temperature of the model. Increasing the temperature will
85
85
  make the model answer more creatively. (Default: 0.8)"""
86
86
 
87
+ seed: Optional[int] = None
88
+ """Sets the random number seed to use for generation. Setting this
89
+ to a specific number will make the model generate the same text for
90
+ the same prompt."""
91
+
87
92
  stop: Optional[List[str]] = None
88
93
  """Sets the stop tokens to use."""
89
94
 
@@ -150,6 +155,7 @@ class OllamaLLM(BaseLLM):
150
155
  "repeat_last_n": self.repeat_last_n,
151
156
  "repeat_penalty": self.repeat_penalty,
152
157
  "temperature": self.temperature,
158
+ "seed": self.seed,
153
159
  "stop": self.stop if stop is None else stop,
154
160
  "tfs_z": self.tfs_z,
155
161
  "top_k": self.top_k,
@@ -1,22 +1,14 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langchain-ollama
3
- Version: 0.2.3
3
+ Version: 0.3.1
4
4
  Summary: An integration package connecting Ollama and LangChain
5
- Home-page: https://github.com/langchain-ai/langchain
6
5
  License: MIT
7
- Requires-Python: >=3.9,<4.0
8
- Classifier: License :: OSI Approved :: MIT License
9
- Classifier: Programming Language :: Python :: 3
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: Programming Language :: Python :: 3.12
14
- Classifier: Programming Language :: Python :: 3.13
15
- Requires-Dist: langchain-core (>=0.3.33,<0.4.0)
16
- Requires-Dist: ollama (>=0.4.4,<1)
17
- Project-URL: Repository, https://github.com/langchain-ai/langchain
18
- Project-URL: Release Notes, https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-ollama%3D%3D0%22&expanded=true
19
6
  Project-URL: Source Code, https://github.com/langchain-ai/langchain/tree/master/libs/partners/ollama
7
+ Project-URL: Release Notes, https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-ollama%3D%3D0%22&expanded=true
8
+ Project-URL: repository, https://github.com/langchain-ai/langchain
9
+ Requires-Python: <4.0,>=3.9
10
+ Requires-Dist: ollama<1,>=0.4.4
11
+ Requires-Dist: langchain-core<1.0.0,>=0.3.51
20
12
  Description-Content-Type: text/markdown
21
13
 
22
14
  # langchain-ollama
@@ -63,4 +55,3 @@ from langchain_ollama import OllamaLLM
63
55
  llm = OllamaLLM(model="llama3")
64
56
  llm.invoke("The meaning of life is")
65
57
  ```
66
-
@@ -0,0 +1,10 @@
1
+ langchain_ollama-0.3.1.dist-info/METADATA,sha256=ryQPLWBXudxvwl7tLwTVn-qIhUQhP5oqAF0u-u6zjzc,1463
2
+ langchain_ollama-0.3.1.dist-info/WHEEL,sha256=tSfRZzRHthuv7vxpI4aehrdN9scLjk-dCJkPLzkHxGg,90
3
+ langchain_ollama-0.3.1.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ langchain_ollama-0.3.1.dist-info/licenses/LICENSE,sha256=2btS8uNUDWD_UNjw9ba6ZJt_00aUjEw9CGyK-xIHY8c,1072
5
+ langchain_ollama/__init__.py,sha256=SxPRrWcPayJpbwhheTtlqCaPp9ffiAAgZMM5Wc1yYpM,634
6
+ langchain_ollama/chat_models.py,sha256=UUZl-xQh6hjb6zCJOXet1fpe3C-Pc-WNKPAaadLgBaY,49756
7
+ langchain_ollama/embeddings.py,sha256=d0jSB-T8Awv0razTUA_iD-ZvTma82Nw44YtiVu983u0,8633
8
+ langchain_ollama/llms.py,sha256=DnCpLYL3kmUSVObgmZN0XZC0OB-upUjtRLjA3HfZFXY,13012
9
+ langchain_ollama/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ langchain_ollama-0.3.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.1
2
+ Generator: pdm-backend (2.4.4)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -0,0 +1,4 @@
1
+ [console_scripts]
2
+
3
+ [gui_scripts]
4
+
@@ -1,9 +0,0 @@
1
- langchain_ollama/__init__.py,sha256=SxPRrWcPayJpbwhheTtlqCaPp9ffiAAgZMM5Wc1yYpM,634
2
- langchain_ollama/chat_models.py,sha256=YDaHyz5t4EfQrMIGJsNFdiPH9LJUOBdrBjlr0qAC8GM,48172
3
- langchain_ollama/embeddings.py,sha256=rZLgMvuEVqMRo1kPr9pPPrGVpEOes76cwzkXJRged_4,8397
4
- langchain_ollama/llms.py,sha256=ojnYU0efhN10xhUINu1dCR2Erw79J_mYS6_l45J7Vls,12778
5
- langchain_ollama/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- langchain_ollama-0.2.3.dist-info/LICENSE,sha256=2btS8uNUDWD_UNjw9ba6ZJt_00aUjEw9CGyK-xIHY8c,1072
7
- langchain_ollama-0.2.3.dist-info/METADATA,sha256=BZ3HPeJJiDPaEhUjJIC-3SmIhQuNs6r97LS7EOVoPsE,1876
8
- langchain_ollama-0.2.3.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
9
- langchain_ollama-0.2.3.dist-info/RECORD,,