langchain-ollama 0.2.2rc1__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,5 +1,7 @@
1
1
  """Ollama chat models."""
2
2
 
3
+ import json
4
+ from operator import itemgetter
3
5
  from typing import (
4
6
  Any,
5
7
  AsyncIterator,
@@ -21,6 +23,7 @@ from langchain_core.callbacks import (
21
23
  CallbackManagerForLLMRun,
22
24
  )
23
25
  from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
26
+ from langchain_core.exceptions import OutputParserException
24
27
  from langchain_core.language_models import LanguageModelInput
25
28
  from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
26
29
  from langchain_core.messages import (
@@ -34,13 +37,24 @@ from langchain_core.messages import (
34
37
  )
35
38
  from langchain_core.messages.ai import UsageMetadata
36
39
  from langchain_core.messages.tool import tool_call
40
+ from langchain_core.output_parsers import (
41
+ JsonOutputKeyToolsParser,
42
+ JsonOutputParser,
43
+ PydanticOutputParser,
44
+ PydanticToolsParser,
45
+ )
37
46
  from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
38
- from langchain_core.runnables import Runnable
47
+ from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
39
48
  from langchain_core.tools import BaseTool
49
+ from langchain_core.utils.function_calling import (
50
+ _convert_any_typed_dicts_to_pydantic as convert_any_typed_dicts_to_pydantic,
51
+ )
40
52
  from langchain_core.utils.function_calling import convert_to_openai_tool
53
+ from langchain_core.utils.pydantic import TypeBaseModel, is_basemodel_subclass
41
54
  from ollama import AsyncClient, Client, Message, Options
42
- from pydantic import PrivateAttr, model_validator
43
- from typing_extensions import Self
55
+ from pydantic import BaseModel, PrivateAttr, model_validator
56
+ from pydantic.json_schema import JsonSchemaValue
57
+ from typing_extensions import Self, is_typeddict
44
58
 
45
59
 
46
60
  def _get_usage_metadata_from_generation_info(
@@ -60,6 +74,72 @@ def _get_usage_metadata_from_generation_info(
60
74
  return None
61
75
 
62
76
 
77
+ def _parse_json_string(
78
+ json_string: str, raw_tool_call: dict[str, Any], skip: bool
79
+ ) -> Any:
80
+ """Attempt to parse a JSON string for tool calling.
81
+
82
+ Args:
83
+ json_string: JSON string to parse.
84
+ skip: Whether to ignore parsing errors and return the value anyways.
85
+ raw_tool_call: Raw tool call to include in error message.
86
+
87
+ Returns:
88
+ The parsed JSON string.
89
+
90
+ Raises:
91
+ OutputParserException: If the JSON string wrong invalid and skip=False.
92
+ """
93
+ try:
94
+ return json.loads(json_string)
95
+ except json.JSONDecodeError as e:
96
+ if skip:
97
+ return json_string
98
+ msg = (
99
+ f"Function {raw_tool_call['function']['name']} arguments:\n\n"
100
+ f"{raw_tool_call['function']['arguments']}\n\nare not valid JSON. "
101
+ f"Received JSONDecodeError {e}"
102
+ )
103
+ raise OutputParserException(msg) from e
104
+ except TypeError as e:
105
+ if skip:
106
+ return json_string
107
+ msg = (
108
+ f"Function {raw_tool_call['function']['name']} arguments:\n\n"
109
+ f"{raw_tool_call['function']['arguments']}\n\nare not a string or a "
110
+ f"dictionary. Received TypeError {e}"
111
+ )
112
+ raise OutputParserException(msg) from e
113
+
114
+
115
+ def _parse_arguments_from_tool_call(
116
+ raw_tool_call: dict[str, Any],
117
+ ) -> Optional[dict[str, Any]]:
118
+ """Parse arguments by trying to parse any shallowly nested string-encoded JSON.
119
+
120
+ Band-aid fix for issue in Ollama with inconsistent tool call argument structure.
121
+ Should be removed/changed if fixed upstream.
122
+ See https://github.com/ollama/ollama/issues/6155
123
+ """
124
+ if "function" not in raw_tool_call:
125
+ return None
126
+ arguments = raw_tool_call["function"]["arguments"]
127
+ parsed_arguments = {}
128
+ if isinstance(arguments, dict):
129
+ for key, value in arguments.items():
130
+ if isinstance(value, str):
131
+ parsed_arguments[key] = _parse_json_string(
132
+ value, skip=True, raw_tool_call=raw_tool_call
133
+ )
134
+ else:
135
+ parsed_arguments[key] = value
136
+ else:
137
+ parsed_arguments = _parse_json_string(
138
+ arguments, skip=False, raw_tool_call=raw_tool_call
139
+ )
140
+ return parsed_arguments
141
+
142
+
63
143
  def _get_tool_calls_from_response(
64
144
  response: Mapping[str, Any],
65
145
  ) -> List[ToolCall]:
@@ -72,7 +152,7 @@ def _get_tool_calls_from_response(
72
152
  tool_call(
73
153
  id=str(uuid4()),
74
154
  name=tc["function"]["name"],
75
- args=tc["function"]["arguments"],
155
+ args=_parse_arguments_from_tool_call(tc) or {},
76
156
  )
77
157
  )
78
158
  return tool_calls
@@ -89,6 +169,10 @@ def _lc_tool_call_to_openai_tool_call(tool_call: ToolCall) -> dict:
89
169
  }
90
170
 
91
171
 
172
+ def _is_pydantic_class(obj: Any) -> bool:
173
+ return isinstance(obj, type) and is_basemodel_subclass(obj)
174
+
175
+
92
176
  class ChatOllama(BaseChatModel):
93
177
  r"""Ollama chat model integration.
94
178
 
@@ -222,8 +306,6 @@ class ChatOllama(BaseChatModel):
222
306
  '{"location": "Pune, India", "time_of_day": "morning"}'
223
307
 
224
308
  Tool Calling:
225
- .. warning::
226
- Ollama currently does not support streaming for tools
227
309
 
228
310
  .. code-block:: python
229
311
 
@@ -317,8 +399,8 @@ class ChatOllama(BaseChatModel):
317
399
  to more diverse text, while a lower value (e.g., 0.5) will
318
400
  generate more focused and conservative text. (Default: 0.9)"""
319
401
 
320
- format: Literal["", "json"] = ""
321
- """Specify the format of the output (options: json)"""
402
+ format: Optional[Union[Literal["", "json"], JsonSchemaValue]] = None
403
+ """Specify the format of the output (options: "json", JSON schema)."""
322
404
 
323
405
  keep_alive: Optional[Union[int, str]] = None
324
406
  """How long the model will stay loaded into memory."""
@@ -375,12 +457,9 @@ class ChatOllama(BaseChatModel):
375
457
  },
376
458
  )
377
459
 
378
- tools = kwargs.get("tools")
379
- default_stream = not bool(tools)
380
-
381
460
  params = {
382
461
  "messages": ollama_messages,
383
- "stream": kwargs.pop("stream", default_stream),
462
+ "stream": kwargs.pop("stream", True),
384
463
  "model": kwargs.pop("model", self.model),
385
464
  "format": kwargs.pop("format", self.format),
386
465
  "options": Options(**options_dict),
@@ -388,7 +467,7 @@ class ChatOllama(BaseChatModel):
388
467
  **kwargs,
389
468
  }
390
469
 
391
- if tools:
470
+ if tools := kwargs.get("tools"):
392
471
  params["tools"] = tools
393
472
 
394
473
  return params
@@ -747,3 +826,348 @@ class ChatOllama(BaseChatModel):
747
826
  """ # noqa: E501
748
827
  formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
749
828
  return super().bind(tools=formatted_tools, **kwargs)
829
+
830
+ def with_structured_output(
831
+ self,
832
+ schema: Union[Dict, type],
833
+ *,
834
+ method: Literal[
835
+ "function_calling", "json_mode", "json_schema"
836
+ ] = "function_calling",
837
+ include_raw: bool = False,
838
+ **kwargs: Any,
839
+ ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
840
+ """Model wrapper that returns outputs formatted to match the given schema.
841
+
842
+ Args:
843
+ schema:
844
+ The output schema. Can be passed in as:
845
+
846
+ - a Pydantic class,
847
+ - a JSON schema
848
+ - a TypedDict class
849
+ - an OpenAI function/tool schema.
850
+
851
+ If ``schema`` is a Pydantic class then the model output will be a
852
+ Pydantic instance of that class, and the model-generated fields will be
853
+ validated by the Pydantic class. Otherwise the model output will be a
854
+ dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
855
+ for more on how to properly specify types and descriptions of
856
+ schema fields when specifying a Pydantic or TypedDict class.
857
+
858
+ method: The method for steering model generation, one of:
859
+
860
+ - "function_calling":
861
+ Uses Ollama's tool-calling API
862
+ - "json_schema":
863
+ Uses Ollama's structured output API: https://ollama.com/blog/structured-outputs
864
+ - "json_mode":
865
+ Specifies ``format="json"``. Note that if using JSON mode then you
866
+ must include instructions for formatting the output into the
867
+ desired schema into the model call.
868
+
869
+ include_raw:
870
+ If False then only the parsed structured output is returned. If
871
+ an error occurs during model output parsing it will be raised. If True
872
+ then both the raw model response (a BaseMessage) and the parsed model
873
+ response will be returned. If an error occurs during output parsing it
874
+ will be caught and returned as well. The final output is always a dict
875
+ with keys "raw", "parsed", and "parsing_error".
876
+
877
+ kwargs: Additional keyword args aren't supported.
878
+
879
+ Returns:
880
+ A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
881
+
882
+ | If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
883
+
884
+ | If ``include_raw`` is True, then Runnable outputs a dict with keys:
885
+
886
+ - "raw": BaseMessage
887
+ - "parsed": None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
888
+ - "parsing_error": Optional[BaseException]
889
+
890
+ .. versionchanged:: 0.2.2
891
+
892
+ Added support for structured output API via ``format`` parameter.
893
+
894
+ .. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=False
895
+
896
+ .. code-block:: python
897
+
898
+ from typing import Optional
899
+
900
+ from langchain_ollama import ChatOllama
901
+ from pydantic import BaseModel, Field
902
+
903
+
904
+ class AnswerWithJustification(BaseModel):
905
+ '''An answer to the user question along with justification for the answer.'''
906
+
907
+ answer: str
908
+ justification: Optional[str] = Field(
909
+ default=..., description="A justification for the answer."
910
+ )
911
+
912
+
913
+ llm = ChatOllama(model="llama3.1", temperature=0)
914
+ structured_llm = llm.with_structured_output(
915
+ AnswerWithJustification
916
+ )
917
+
918
+ structured_llm.invoke(
919
+ "What weighs more a pound of bricks or a pound of feathers"
920
+ )
921
+
922
+ # -> AnswerWithJustification(
923
+ # answer='They weigh the same',
924
+ # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
925
+ # )
926
+
927
+ .. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=True
928
+
929
+ .. code-block:: python
930
+
931
+ from langchain_ollama import ChatOllama
932
+ from pydantic import BaseModel
933
+
934
+
935
+ class AnswerWithJustification(BaseModel):
936
+ '''An answer to the user question along with justification for the answer.'''
937
+
938
+ answer: str
939
+ justification: str
940
+
941
+
942
+ llm = ChatOllama(model="llama3.1", temperature=0)
943
+ structured_llm = llm.with_structured_output(
944
+ AnswerWithJustification, include_raw=True
945
+ )
946
+
947
+ structured_llm.invoke(
948
+ "What weighs more a pound of bricks or a pound of feathers"
949
+ )
950
+ # -> {
951
+ # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
952
+ # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
953
+ # 'parsing_error': None
954
+ # }
955
+
956
+ .. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=False
957
+
958
+ .. code-block:: python
959
+
960
+ from typing import Optional
961
+
962
+ from langchain_ollama import ChatOllama
963
+ from pydantic import BaseModel, Field
964
+
965
+
966
+ class AnswerWithJustification(BaseModel):
967
+ '''An answer to the user question along with justification for the answer.'''
968
+
969
+ answer: str
970
+ justification: Optional[str] = Field(
971
+ default=..., description="A justification for the answer."
972
+ )
973
+
974
+
975
+ llm = ChatOllama(model="llama3.1", temperature=0)
976
+ structured_llm = llm.with_structured_output(
977
+ AnswerWithJustification, method="json_schema"
978
+ )
979
+
980
+ structured_llm.invoke(
981
+ "What weighs more a pound of bricks or a pound of feathers"
982
+ )
983
+
984
+ # -> AnswerWithJustification(
985
+ # answer='They weigh the same',
986
+ # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
987
+ # )
988
+
989
+ .. dropdown:: Example: schema=TypedDict class, method="function_calling", include_raw=False
990
+
991
+ .. code-block:: python
992
+
993
+ # IMPORTANT: If you are using Python <=3.8, you need to import Annotated
994
+ # from typing_extensions, not from typing.
995
+ from typing_extensions import Annotated, TypedDict
996
+
997
+ from langchain_ollama import ChatOllama
998
+
999
+
1000
+ class AnswerWithJustification(TypedDict):
1001
+ '''An answer to the user question along with justification for the answer.'''
1002
+
1003
+ answer: str
1004
+ justification: Annotated[
1005
+ Optional[str], None, "A justification for the answer."
1006
+ ]
1007
+
1008
+
1009
+ llm = ChatOllama(model="llama3.1", temperature=0)
1010
+ structured_llm = llm.with_structured_output(AnswerWithJustification)
1011
+
1012
+ structured_llm.invoke(
1013
+ "What weighs more a pound of bricks or a pound of feathers"
1014
+ )
1015
+ # -> {
1016
+ # 'answer': 'They weigh the same',
1017
+ # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
1018
+ # }
1019
+
1020
+ .. dropdown:: Example: schema=OpenAI function schema, method="function_calling", include_raw=False
1021
+
1022
+ .. code-block:: python
1023
+
1024
+ from langchain_ollama import ChatOllama
1025
+
1026
+ oai_schema = {
1027
+ 'name': 'AnswerWithJustification',
1028
+ 'description': 'An answer to the user question along with justification for the answer.',
1029
+ 'parameters': {
1030
+ 'type': 'object',
1031
+ 'properties': {
1032
+ 'answer': {'type': 'string'},
1033
+ 'justification': {'description': 'A justification for the answer.', 'type': 'string'}
1034
+ },
1035
+ 'required': ['answer']
1036
+ }
1037
+ }
1038
+
1039
+ llm = ChatOllama(model="llama3.1", temperature=0)
1040
+ structured_llm = llm.with_structured_output(oai_schema)
1041
+
1042
+ structured_llm.invoke(
1043
+ "What weighs more a pound of bricks or a pound of feathers"
1044
+ )
1045
+ # -> {
1046
+ # 'answer': 'They weigh the same',
1047
+ # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
1048
+ # }
1049
+
1050
+ .. dropdown:: Example: schema=Pydantic class, method="json_mode", include_raw=True
1051
+
1052
+ .. code-block::
1053
+
1054
+ from langchain_ollama import ChatOllama
1055
+ from pydantic import BaseModel
1056
+
1057
+ class AnswerWithJustification(BaseModel):
1058
+ answer: str
1059
+ justification: str
1060
+
1061
+ llm = ChatOllama(model="llama3.1", temperature=0)
1062
+ structured_llm = llm.with_structured_output(
1063
+ AnswerWithJustification,
1064
+ method="json_mode",
1065
+ include_raw=True
1066
+ )
1067
+
1068
+ structured_llm.invoke(
1069
+ "Answer the following question. "
1070
+ "Make sure to return a JSON blob with keys 'answer' and 'justification'.\\n\\n"
1071
+ "What's heavier a pound of bricks or a pound of feathers?"
1072
+ )
1073
+ # -> {
1074
+ # 'raw': AIMessage(content='{\\n "answer": "They are both the same weight.",\\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \\n}'),
1075
+ # 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
1076
+ # 'parsing_error': None
1077
+ # }
1078
+ """ # noqa: E501, D301
1079
+ if kwargs:
1080
+ raise ValueError(f"Received unsupported arguments {kwargs}")
1081
+ is_pydantic_schema = _is_pydantic_class(schema)
1082
+ if method == "function_calling":
1083
+ if schema is None:
1084
+ raise ValueError(
1085
+ "schema must be specified when method is not 'json_mode'. "
1086
+ "Received None."
1087
+ )
1088
+ formatted_tool = convert_to_openai_tool(schema)
1089
+ tool_name = formatted_tool["function"]["name"]
1090
+ llm = self.bind_tools(
1091
+ [schema],
1092
+ tool_choice=tool_name,
1093
+ structured_output_format={
1094
+ "kwargs": {"method": method},
1095
+ "schema": formatted_tool,
1096
+ },
1097
+ )
1098
+ if is_pydantic_schema:
1099
+ output_parser: Runnable = PydanticToolsParser(
1100
+ tools=[schema], # type: ignore[list-item]
1101
+ first_tool_only=True,
1102
+ )
1103
+ else:
1104
+ output_parser = JsonOutputKeyToolsParser(
1105
+ key_name=tool_name, first_tool_only=True
1106
+ )
1107
+ elif method == "json_mode":
1108
+ llm = self.bind(
1109
+ format="json",
1110
+ structured_output_format={
1111
+ "kwargs": {"method": method},
1112
+ "schema": schema,
1113
+ },
1114
+ )
1115
+ output_parser = (
1116
+ PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type]
1117
+ if is_pydantic_schema
1118
+ else JsonOutputParser()
1119
+ )
1120
+ elif method == "json_schema":
1121
+ if schema is None:
1122
+ raise ValueError(
1123
+ "schema must be specified when method is not 'json_mode'. "
1124
+ "Received None."
1125
+ )
1126
+ if is_pydantic_schema:
1127
+ schema = cast(TypeBaseModel, schema)
1128
+ llm = self.bind(
1129
+ format=schema.model_json_schema(),
1130
+ structured_output_format={
1131
+ "kwargs": {"method": method},
1132
+ "schema": schema,
1133
+ },
1134
+ )
1135
+ output_parser = PydanticOutputParser(pydantic_object=schema)
1136
+ else:
1137
+ if is_typeddict(schema):
1138
+ schema = cast(type, schema)
1139
+ response_format = convert_any_typed_dicts_to_pydantic(
1140
+ schema, visited={}
1141
+ ).schema() # type: ignore[attr-defined]
1142
+ if "required" not in response_format:
1143
+ response_format["required"] = list(
1144
+ response_format["properties"].keys()
1145
+ )
1146
+ else:
1147
+ # is JSON schema
1148
+ response_format = schema
1149
+ llm = self.bind(
1150
+ format=response_format,
1151
+ structured_output_format={
1152
+ "kwargs": {"method": method},
1153
+ "schema": response_format,
1154
+ },
1155
+ )
1156
+ output_parser = JsonOutputParser()
1157
+ else:
1158
+ raise ValueError(
1159
+ f"Unrecognized method argument. Expected one of 'function_calling', "
1160
+ f"'json_schema', or 'json_mode'. Received: '{method}'"
1161
+ )
1162
+
1163
+ if include_raw:
1164
+ parser_assign = RunnablePassthrough.assign(
1165
+ parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
1166
+ )
1167
+ parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
1168
+ parser_with_fallback = parser_assign.with_fallbacks(
1169
+ [parser_none], exception_key="parsing_error"
1170
+ )
1171
+ return RunnableMap(raw=llm) | parser_with_fallback
1172
+ else:
1173
+ return llm | output_parser
@@ -1,9 +1,6 @@
1
1
  """Ollama embeddings models."""
2
2
 
3
- from typing import (
4
- List,
5
- Optional,
6
- )
3
+ from typing import Any, Dict, List, Optional
7
4
 
8
5
  from langchain_core.embeddings import Embeddings
9
6
  from ollama import AsyncClient, Client
@@ -144,10 +141,89 @@ class OllamaEmbeddings(BaseModel, Embeddings):
144
141
  The async client to use for making requests.
145
142
  """
146
143
 
144
+ mirostat: Optional[int] = None
145
+ """Enable Mirostat sampling for controlling perplexity.
146
+ (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
147
+
148
+ mirostat_eta: Optional[float] = None
149
+ """Influences how quickly the algorithm responds to feedback
150
+ from the generated text. A lower learning rate will result in
151
+ slower adjustments, while a higher learning rate will make
152
+ the algorithm more responsive. (Default: 0.1)"""
153
+
154
+ mirostat_tau: Optional[float] = None
155
+ """Controls the balance between coherence and diversity
156
+ of the output. A lower value will result in more focused and
157
+ coherent text. (Default: 5.0)"""
158
+
159
+ num_ctx: Optional[int] = None
160
+ """Sets the size of the context window used to generate the
161
+ next token. (Default: 2048) """
162
+
163
+ num_gpu: Optional[int] = None
164
+ """The number of GPUs to use. On macOS it defaults to 1 to
165
+ enable metal support, 0 to disable."""
166
+
167
+ num_thread: Optional[int] = None
168
+ """Sets the number of threads to use during computation.
169
+ By default, Ollama will detect this for optimal performance.
170
+ It is recommended to set this value to the number of physical
171
+ CPU cores your system has (as opposed to the logical number of cores)."""
172
+
173
+ repeat_last_n: Optional[int] = None
174
+ """Sets how far back for the model to look back to prevent
175
+ repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
176
+
177
+ repeat_penalty: Optional[float] = None
178
+ """Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
179
+ will penalize repetitions more strongly, while a lower value (e.g., 0.9)
180
+ will be more lenient. (Default: 1.1)"""
181
+
182
+ temperature: Optional[float] = None
183
+ """The temperature of the model. Increasing the temperature will
184
+ make the model answer more creatively. (Default: 0.8)"""
185
+
186
+ stop: Optional[List[str]] = None
187
+ """Sets the stop tokens to use."""
188
+
189
+ tfs_z: Optional[float] = None
190
+ """Tail free sampling is used to reduce the impact of less probable
191
+ tokens from the output. A higher value (e.g., 2.0) will reduce the
192
+ impact more, while a value of 1.0 disables this setting. (default: 1)"""
193
+
194
+ top_k: Optional[int] = None
195
+ """Reduces the probability of generating nonsense. A higher value (e.g. 100)
196
+ will give more diverse answers, while a lower value (e.g. 10)
197
+ will be more conservative. (Default: 40)"""
198
+
199
+ top_p: Optional[float] = None
200
+ """Works together with top-k. A higher value (e.g., 0.95) will lead
201
+ to more diverse text, while a lower value (e.g., 0.5) will
202
+ generate more focused and conservative text. (Default: 0.9)"""
203
+
147
204
  model_config = ConfigDict(
148
205
  extra="forbid",
149
206
  )
150
207
 
208
+ @property
209
+ def _default_params(self) -> Dict[str, Any]:
210
+ """Get the default parameters for calling Ollama."""
211
+ return {
212
+ "mirostat": self.mirostat,
213
+ "mirostat_eta": self.mirostat_eta,
214
+ "mirostat_tau": self.mirostat_tau,
215
+ "num_ctx": self.num_ctx,
216
+ "num_gpu": self.num_gpu,
217
+ "num_thread": self.num_thread,
218
+ "repeat_last_n": self.repeat_last_n,
219
+ "repeat_penalty": self.repeat_penalty,
220
+ "temperature": self.temperature,
221
+ "stop": self.stop,
222
+ "tfs_z": self.tfs_z,
223
+ "top_k": self.top_k,
224
+ "top_p": self.top_p,
225
+ }
226
+
151
227
  @model_validator(mode="after")
152
228
  def _set_clients(self) -> Self:
153
229
  """Set clients to use for ollama."""
@@ -158,7 +234,9 @@ class OllamaEmbeddings(BaseModel, Embeddings):
158
234
 
159
235
  def embed_documents(self, texts: List[str]) -> List[List[float]]:
160
236
  """Embed search docs."""
161
- embedded_docs = self._client.embed(self.model, texts)["embeddings"]
237
+ embedded_docs = self._client.embed(
238
+ self.model, texts, options=self._default_params
239
+ )["embeddings"]
162
240
  return embedded_docs
163
241
 
164
242
  def embed_query(self, text: str) -> List[float]:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langchain-ollama
3
- Version: 0.2.2rc1
3
+ Version: 0.2.3
4
4
  Summary: An integration package connecting Ollama and LangChain
5
5
  Home-page: https://github.com/langchain-ai/langchain
6
6
  License: MIT
@@ -11,8 +11,9 @@ Classifier: Programming Language :: Python :: 3.9
11
11
  Classifier: Programming Language :: Python :: 3.10
12
12
  Classifier: Programming Language :: Python :: 3.11
13
13
  Classifier: Programming Language :: Python :: 3.12
14
- Requires-Dist: langchain-core (>=0.3.20,<0.4.0)
15
- Requires-Dist: ollama (>=0.3.0,<1)
14
+ Classifier: Programming Language :: Python :: 3.13
15
+ Requires-Dist: langchain-core (>=0.3.33,<0.4.0)
16
+ Requires-Dist: ollama (>=0.4.4,<1)
16
17
  Project-URL: Repository, https://github.com/langchain-ai/langchain
17
18
  Project-URL: Release Notes, https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-ollama%3D%3D0%22&expanded=true
18
19
  Project-URL: Source Code, https://github.com/langchain-ai/langchain/tree/master/libs/partners/ollama
@@ -0,0 +1,9 @@
1
+ langchain_ollama/__init__.py,sha256=SxPRrWcPayJpbwhheTtlqCaPp9ffiAAgZMM5Wc1yYpM,634
2
+ langchain_ollama/chat_models.py,sha256=YDaHyz5t4EfQrMIGJsNFdiPH9LJUOBdrBjlr0qAC8GM,48172
3
+ langchain_ollama/embeddings.py,sha256=rZLgMvuEVqMRo1kPr9pPPrGVpEOes76cwzkXJRged_4,8397
4
+ langchain_ollama/llms.py,sha256=ojnYU0efhN10xhUINu1dCR2Erw79J_mYS6_l45J7Vls,12778
5
+ langchain_ollama/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ langchain_ollama-0.2.3.dist-info/LICENSE,sha256=2btS8uNUDWD_UNjw9ba6ZJt_00aUjEw9CGyK-xIHY8c,1072
7
+ langchain_ollama-0.2.3.dist-info/METADATA,sha256=BZ3HPeJJiDPaEhUjJIC-3SmIhQuNs6r97LS7EOVoPsE,1876
8
+ langchain_ollama-0.2.3.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
9
+ langchain_ollama-0.2.3.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.8.1
2
+ Generator: poetry-core 1.9.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,9 +0,0 @@
1
- langchain_ollama/__init__.py,sha256=SxPRrWcPayJpbwhheTtlqCaPp9ffiAAgZMM5Wc1yYpM,634
2
- langchain_ollama/chat_models.py,sha256=BS28WEnDBq0aUrlOyABbcMkvIk4C-oV_Zj6bnhQoJkM,29902
3
- langchain_ollama/embeddings.py,sha256=svqdPF44qX5qbFpZmLiXrzTC-AldmMlZRS5wBfY-EmA,5056
4
- langchain_ollama/llms.py,sha256=ojnYU0efhN10xhUINu1dCR2Erw79J_mYS6_l45J7Vls,12778
5
- langchain_ollama/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- langchain_ollama-0.2.2rc1.dist-info/LICENSE,sha256=2btS8uNUDWD_UNjw9ba6ZJt_00aUjEw9CGyK-xIHY8c,1072
7
- langchain_ollama-0.2.2rc1.dist-info/METADATA,sha256=E9wttWytUkVCrJtbUjYA0nMxIt8tTkZOQZDFCU6Z_nc,1828
8
- langchain_ollama-0.2.2rc1.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
9
- langchain_ollama-0.2.2rc1.dist-info/RECORD,,