langchain-mcp-tools 0.0.14__py3-none-any.whl → 0.0.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -37,7 +37,13 @@ require context managers while enabling parallel initialization.
37
37
  The key aspects are:
38
38
 
39
39
  1. Core Challenge:
40
- - Async resources management for `stdio_client` and `ClientSession` seems
40
+
41
+ A key requirement for parallel initialization is that each server must be
42
+ initialized in its own dedicated task - there's no way around this as far as
43
+ I know. However, this poses a challenge when combined with
44
+ `asynccontextmanager`.
45
+
46
+ - Resources management for `stdio_client` and `ClientSession` seems
41
47
  to require relying exclusively on `asynccontextmanager` for cleanup,
42
48
  with no manual cleanup options
43
49
  (based on [the mcp python-sdk impl as of Jan 14, 2025](https://github.com/modelcontextprotocol/python-sdk/tree/99727a9/src/mcp/client))
@@ -48,10 +54,6 @@ The key aspects are:
48
54
  - Need to ensure proper cleanup later in the same task that created them
49
55
 
50
56
  2. Solution Strategy:
51
- A key requirement for parallel initialization is that each server must be
52
- initialized in its own dedicated task - there's no way around this as far
53
- as I understand. However, this creates a challenge since we also need to
54
- maintain long-lived sessions and handle cleanup properly.
55
57
 
56
58
  The key insight is to keep the initialization tasks alive throughout the
57
59
  session lifetime, rather than letting them complete after initialization.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: langchain-mcp-tools
3
- Version: 0.0.14
3
+ Version: 0.0.16
4
4
  Summary: Model Context Protocol (MCP) To LangChain Tools Conversion Utility
5
5
  Project-URL: Bug Tracker, https://github.com/hideya/langchain-mcp-tools-py/issues
6
6
  Project-URL: Source Code, https://github.com/hideya/langchain-mcp-tools-py
@@ -18,8 +18,6 @@ Requires-Dist: mcp>=1.2.0
18
18
  Requires-Dist: pyjson5>=1.6.8
19
19
  Requires-Dist: pympler>=1.1
20
20
  Requires-Dist: python-dotenv>=1.0.1
21
- Requires-Dist: pytest>=8.3.4
22
- Requires-Dist: pytest-asyncio>=0.25.2
23
21
  Provides-Extra: dev
24
22
  Requires-Dist: twine>=6.0.1; extra == "dev"
25
23
 
@@ -108,7 +106,7 @@ Currently, only text results of tool calls are supported.
108
106
  ## Technical Details
109
107
 
110
108
  It was very tricky (for me) to get the parallel MCP server initialization
111
- to work successfully...
109
+ to work, including successful final resource cleanup...
112
110
 
113
111
  I'm new to Python, so it is very possible that my ignorance is playing
114
112
  a big role here...
@@ -119,7 +117,13 @@ Any comments pointing out something I am missing would be greatly appreciated!
119
117
  [(comment here)](https://github.com/hideya/langchain-mcp-tools-ts/issues)
120
118
 
121
119
  1. Core Challenge:
122
- - Async resources management for `stdio_client` and `ClientSession` seems
120
+
121
+ A key requirement for parallel initialization is that each server must be
122
+ initialized in its own dedicated task - there's no way around this as far as
123
+ I know. However, this poses a challenge when combined with
124
+ `asynccontextmanager`.
125
+
126
+ - Resources management for `stdio_client` and `ClientSession` seems
123
127
  to require relying exclusively on `asynccontextmanager` for cleanup,
124
128
  with no manual cleanup options
125
129
  (based on [the mcp python-sdk impl as of Jan 14, 2025](https://github.com/modelcontextprotocol/python-sdk/tree/99727a9/src/mcp/client))
@@ -131,11 +135,6 @@ Any comments pointing out something I am missing would be greatly appreciated!
131
135
 
132
136
  2. Solution Strategy:
133
137
 
134
- A key requirement for parallel initialization is that each server must be
135
- initialized in its own dedicated task - there's no way around this as far
136
- as I understand. However, this creates a challenge since we also need to
137
- maintain long-lived sessions and handle cleanup properly.
138
-
139
138
  The key insight is to keep the initialization tasks alive throughout the
140
139
  session lifetime, rather than letting them complete after initialization.
141
140
 
@@ -0,0 +1,8 @@
1
+ langchain_mcp_tools/__init__.py,sha256=Xtv2VphhrWB_KlxTIofHZqtCIGtNEl0MxugnrNXTERA,94
2
+ langchain_mcp_tools/langchain_mcp_tools.py,sha256=EJgm28o2M3mBsFkeDtpw6hooSE1oWwjFJYhRfirxCgE,10511
3
+ langchain_mcp_tools/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ langchain_mcp_tools-0.0.16.dist-info/LICENSE,sha256=CRC91e8v116gCpnp7h49oIa6_zjhxqnHFTREeoZFJwA,1072
5
+ langchain_mcp_tools-0.0.16.dist-info/METADATA,sha256=S7Ii62KuH2HTe1eg3eqSqfpUWWagTKz0diIn3Wdc-Ns,6876
6
+ langchain_mcp_tools-0.0.16.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
7
+ langchain_mcp_tools-0.0.16.dist-info/top_level.txt,sha256=aR_9V2A1Yt-Bca60KmndmGLUWb2wiM5IOG-Gkaf1dxY,20
8
+ langchain_mcp_tools-0.0.16.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- langchain_mcp_tools/__init__.py,sha256=Xtv2VphhrWB_KlxTIofHZqtCIGtNEl0MxugnrNXTERA,94
2
- langchain_mcp_tools/langchain_mcp_tools.py,sha256=LptcccMFDM9t9ZYPOGvNuTBW7JFPP8Nhv3JwLr0Mits,10561
3
- langchain_mcp_tools/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- langchain_mcp_tools-0.0.14.dist-info/LICENSE,sha256=CRC91e8v116gCpnp7h49oIa6_zjhxqnHFTREeoZFJwA,1072
5
- langchain_mcp_tools-0.0.14.dist-info/METADATA,sha256=XNhz-pzd91ROR5Av0wjJ4qvB3dGcLST_ruBUKprJhrE,6962
6
- langchain_mcp_tools-0.0.14.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
7
- langchain_mcp_tools-0.0.14.dist-info/top_level.txt,sha256=aR_9V2A1Yt-Bca60KmndmGLUWb2wiM5IOG-Gkaf1dxY,20
8
- langchain_mcp_tools-0.0.14.dist-info/RECORD,,