langchain-google-genai 2.1.4__py3-none-any.whl → 2.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of langchain-google-genai might be problematic. Click here for more details.

@@ -84,6 +84,11 @@ Supported examples:
84
84
  default=None, description="Indicates the thinking budget in tokens."
85
85
  )
86
86
 
87
+ include_thoughts: Optional[bool] = Field(
88
+ default=None,
89
+ description="Indicates whether to include thoughts in the response.",
90
+ )
91
+
87
92
  safety_settings: Optional[Dict[HarmCategory, HarmBlockThreshold]] = None
88
93
  """The default safety settings to use for all generations.
89
94
 
@@ -30,6 +30,7 @@ from langchain_core.utils.function_calling import (
30
30
  from langchain_core.utils.json_schema import dereference_refs
31
31
  from pydantic import BaseModel
32
32
  from pydantic.v1 import BaseModel as BaseModelV1
33
+ from typing_extensions import NotRequired
33
34
 
34
35
  logger = logging.getLogger(__name__)
35
36
 
@@ -65,11 +66,15 @@ _GoogleSearchRetrievalLike = Union[
65
66
  gapic.GoogleSearchRetrieval,
66
67
  Dict[str, Any],
67
68
  ]
69
+ _GoogleSearchLike = Union[gapic.Tool.GoogleSearch, Dict[str, Any]]
70
+ _CodeExecutionLike = Union[gapic.CodeExecution, Dict[str, Any]]
68
71
 
69
72
 
70
73
  class _ToolDict(TypedDict):
71
74
  function_declarations: Sequence[_FunctionDeclarationLike]
72
75
  google_search_retrieval: Optional[_GoogleSearchRetrievalLike]
76
+ google_search: NotRequired[_GoogleSearchLike]
77
+ code_execution: NotRequired[_CodeExecutionLike]
73
78
 
74
79
 
75
80
  # Info: This means one tool=Sequence of FunctionDeclaration
@@ -158,6 +163,8 @@ def convert_to_genai_function_declarations(
158
163
  for f in [
159
164
  "function_declarations",
160
165
  "google_search_retrieval",
166
+ "google_search",
167
+ "code_execution",
161
168
  ]
162
169
  ):
163
170
  fd = _format_to_gapic_function_declaration(tool) # type: ignore[arg-type]
@@ -184,6 +191,12 @@ def convert_to_genai_function_declarations(
184
191
  gapic_tool.google_search_retrieval = gapic.GoogleSearchRetrieval(
185
192
  tool["google_search_retrieval"]
186
193
  )
194
+ if "google_search" in tool:
195
+ gapic_tool.google_search = gapic.Tool.GoogleSearch(
196
+ tool["google_search"]
197
+ )
198
+ if "code_execution" in tool:
199
+ gapic_tool.code_execution = gapic.CodeExecution(tool["code_execution"])
187
200
  else:
188
201
  fd = _format_to_gapic_function_declaration(tool) # type: ignore[arg-type]
189
202
  gapic_tool.function_declarations.append(fd)
@@ -520,3 +533,60 @@ def safe_import(module_name: str, attribute_name: str = "") -> bool:
520
533
  return True
521
534
  except ImportError:
522
535
  return False
536
+
537
+
538
+ def replace_defs_in_schema(original_schema: dict, defs: Optional[dict] = None) -> dict:
539
+ """Given an OpenAPI schema with a property '$defs' replaces all occurrences of
540
+ referenced items in the dictionary.
541
+
542
+ Args:
543
+ original_schema: Schema generated by `BaseModel.model_schema_json`
544
+ defs: Definitions for recursive calls.
545
+
546
+ Returns:
547
+ Schema with refs replaced.
548
+ """
549
+
550
+ new_defs = defs or original_schema.get("$defs")
551
+
552
+ if new_defs is None or not isinstance(new_defs, dict):
553
+ return original_schema.copy()
554
+
555
+ resulting_schema = {}
556
+
557
+ for key, value in original_schema.items():
558
+ if key == "$defs":
559
+ continue
560
+
561
+ if not isinstance(value, dict):
562
+ resulting_schema[key] = value
563
+ else:
564
+ if "$ref" in value:
565
+ new_value = value.copy()
566
+
567
+ path = new_value.pop("$ref")
568
+ def_key = _get_def_key_from_schema_path(path)
569
+ new_item = new_defs.get(def_key)
570
+
571
+ assert isinstance(new_item, dict)
572
+ new_value.update(new_item)
573
+
574
+ resulting_schema[key] = replace_defs_in_schema(new_value, defs=new_defs)
575
+ else:
576
+ resulting_schema[key] = replace_defs_in_schema(value, defs=new_defs)
577
+
578
+ return resulting_schema
579
+
580
+
581
+ def _get_def_key_from_schema_path(schema_path: str) -> str:
582
+ error_message = f"Malformed schema reference path {schema_path}"
583
+
584
+ if not isinstance(schema_path, str) or not schema_path.startswith("#/$defs/"):
585
+ raise ValueError(error_message)
586
+
587
+ # Schema has to have only one extra level.
588
+ parts = schema_path.split("/")
589
+ if len(parts) != 3:
590
+ raise ValueError(error_message)
591
+
592
+ return parts[-1]
@@ -2,11 +2,13 @@ from __future__ import annotations
2
2
 
3
3
  import asyncio
4
4
  import base64
5
+ import io
5
6
  import json
6
7
  import logging
7
8
  import mimetypes
8
9
  import uuid
9
10
  import warnings
11
+ import wave
10
12
  from difflib import get_close_matches
11
13
  from operator import itemgetter
12
14
  from typing import (
@@ -16,6 +18,7 @@ from typing import (
16
18
  Dict,
17
19
  Iterator,
18
20
  List,
21
+ Literal,
19
22
  Mapping,
20
23
  Optional,
21
24
  Sequence,
@@ -37,7 +40,9 @@ from google.ai.generativelanguage_v1beta.types import (
37
40
  Blob,
38
41
  Candidate,
39
42
  CodeExecution,
43
+ CodeExecutionResult,
40
44
  Content,
45
+ ExecutableCode,
41
46
  FileData,
42
47
  FunctionCall,
43
48
  FunctionDeclaration,
@@ -69,6 +74,7 @@ from langchain_core.messages import (
69
74
  )
70
75
  from langchain_core.messages.ai import UsageMetadata
71
76
  from langchain_core.messages.tool import invalid_tool_call, tool_call, tool_call_chunk
77
+ from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
72
78
  from langchain_core.output_parsers.base import OutputParserLike
73
79
  from langchain_core.output_parsers.openai_tools import (
74
80
  JsonOutputKeyToolsParser,
@@ -79,7 +85,11 @@ from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResu
79
85
  from langchain_core.runnables import Runnable, RunnableConfig, RunnablePassthrough
80
86
  from langchain_core.tools import BaseTool
81
87
  from langchain_core.utils import get_pydantic_field_names
82
- from langchain_core.utils.function_calling import convert_to_openai_tool
88
+ from langchain_core.utils.function_calling import (
89
+ convert_to_json_schema,
90
+ convert_to_openai_tool,
91
+ )
92
+ from langchain_core.utils.pydantic import is_basemodel_subclass
83
93
  from langchain_core.utils.utils import _build_model_kwargs
84
94
  from pydantic import (
85
95
  BaseModel,
@@ -88,6 +98,7 @@ from pydantic import (
88
98
  SecretStr,
89
99
  model_validator,
90
100
  )
101
+ from pydantic.v1 import BaseModel as BaseModelV1
91
102
  from tenacity import (
92
103
  before_sleep_log,
93
104
  retry,
@@ -104,12 +115,14 @@ from langchain_google_genai._common import (
104
115
  get_client_info,
105
116
  )
106
117
  from langchain_google_genai._function_utils import (
118
+ _dict_to_gapic_schema,
107
119
  _tool_choice_to_tool_config,
108
120
  _ToolChoiceType,
109
121
  _ToolConfigDict,
110
122
  _ToolDict,
111
123
  convert_to_genai_function_declarations,
112
124
  is_basemodel_subclass_safe,
125
+ replace_defs_in_schema,
113
126
  tool_to_dict,
114
127
  )
115
128
  from langchain_google_genai._image_utils import (
@@ -121,6 +134,7 @@ from . import _genai_extension as genaix
121
134
 
122
135
  logger = logging.getLogger(__name__)
123
136
 
137
+ _allowed_params_prediction_service = ["request", "timeout", "metadata", "labels"]
124
138
 
125
139
  _FunctionDeclarationType = Union[
126
140
  FunctionDeclaration,
@@ -207,7 +221,14 @@ def _chat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
207
221
  except Exception as e:
208
222
  raise e
209
223
 
210
- return _chat_with_retry(**kwargs)
224
+ params = (
225
+ {k: v for k, v in kwargs.items() if k in _allowed_params_prediction_service}
226
+ if (request := kwargs.get("request"))
227
+ and hasattr(request, "model")
228
+ and "gemini" in request.model
229
+ else kwargs
230
+ )
231
+ return _chat_with_retry(**params)
211
232
 
212
233
 
213
234
  async def _achat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
@@ -240,13 +261,37 @@ async def _achat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
240
261
  except Exception as e:
241
262
  raise e
242
263
 
243
- return await _achat_with_retry(**kwargs)
264
+ params = (
265
+ {k: v for k, v in kwargs.items() if k in _allowed_params_prediction_service}
266
+ if (request := kwargs.get("request"))
267
+ and hasattr(request, "model")
268
+ and "gemini" in request.model
269
+ else kwargs
270
+ )
271
+ return await _achat_with_retry(**params)
244
272
 
245
273
 
246
274
  def _is_lc_content_block(part: dict) -> bool:
247
275
  return "type" in part
248
276
 
249
277
 
278
+ def _is_openai_image_block(block: dict) -> bool:
279
+ """Check if the block contains image data in OpenAI Chat Completions format."""
280
+ if block.get("type") == "image_url":
281
+ if (
282
+ (set(block.keys()) <= {"type", "image_url", "detail"})
283
+ and (image_url := block.get("image_url"))
284
+ and isinstance(image_url, dict)
285
+ ):
286
+ url = image_url.get("url")
287
+ if isinstance(url, str):
288
+ return True
289
+ else:
290
+ return False
291
+
292
+ return False
293
+
294
+
250
295
  def _convert_to_parts(
251
296
  raw_content: Union[str, Sequence[Union[str, dict]]],
252
297
  ) -> List[Part]:
@@ -314,6 +359,37 @@ def _convert_to_parts(
314
359
  metadata = VideoMetadata(part["video_metadata"])
315
360
  media_part.video_metadata = metadata
316
361
  parts.append(media_part)
362
+ elif part["type"] == "executable_code":
363
+ if "executable_code" not in part or "language" not in part:
364
+ raise ValueError(
365
+ "Executable code part must have 'code' and 'language' "
366
+ f"keys, got {part}"
367
+ )
368
+ executable_code_part = Part(
369
+ executable_code=ExecutableCode(
370
+ language=part["language"], code=part["executable_code"]
371
+ )
372
+ )
373
+ parts.append(executable_code_part)
374
+ elif part["type"] == "code_execution_result":
375
+ if "code_execution_result" not in part:
376
+ raise ValueError(
377
+ "Code execution result part must have "
378
+ f"'code_execution_result', got {part}"
379
+ )
380
+ if "outcome" in part:
381
+ outcome = part["outcome"]
382
+ else:
383
+ # Backward compatibility
384
+ outcome = 1 # Default to success if not specified
385
+ code_execution_result_part = Part(
386
+ code_execution_result=CodeExecutionResult(
387
+ output=part["code_execution_result"], outcome=outcome
388
+ )
389
+ )
390
+ parts.append(code_execution_result_part)
391
+ elif part["type"] == "thinking":
392
+ parts.append(Part(text=part["thinking"], thought=True))
317
393
  else:
318
394
  raise ValueError(
319
395
  f"Unrecognized message part type: {part['type']}. Only text, "
@@ -334,14 +410,28 @@ def _convert_to_parts(
334
410
  return parts
335
411
 
336
412
 
337
- def _convert_tool_message_to_part(
413
+ def _convert_tool_message_to_parts(
338
414
  message: ToolMessage | FunctionMessage, name: Optional[str] = None
339
- ) -> Part:
415
+ ) -> list[Part]:
340
416
  """Converts a tool or function message to a google part."""
341
417
  # Legacy agent stores tool name in message.additional_kwargs instead of message.name
342
418
  name = message.name or name or message.additional_kwargs.get("name")
343
419
  response: Any
344
- if not isinstance(message.content, str):
420
+ parts: list[Part] = []
421
+ if isinstance(message.content, list):
422
+ media_blocks = []
423
+ other_blocks = []
424
+ for block in message.content:
425
+ if isinstance(block, dict) and (
426
+ is_data_content_block(block) or _is_openai_image_block(block)
427
+ ):
428
+ media_blocks.append(block)
429
+ else:
430
+ other_blocks.append(block)
431
+ parts.extend(_convert_to_parts(media_blocks))
432
+ response = other_blocks
433
+
434
+ elif not isinstance(message.content, str):
345
435
  response = message.content
346
436
  else:
347
437
  try:
@@ -356,7 +446,8 @@ def _convert_tool_message_to_part(
356
446
  ),
357
447
  )
358
448
  )
359
- return part
449
+ parts.append(part)
450
+ return parts
360
451
 
361
452
 
362
453
  def _get_ai_message_tool_messages_parts(
@@ -374,8 +465,10 @@ def _get_ai_message_tool_messages_parts(
374
465
  break
375
466
  if message.tool_call_id in tool_calls_ids:
376
467
  tool_call = tool_calls_ids[message.tool_call_id]
377
- part = _convert_tool_message_to_part(message, name=tool_call.get("name"))
378
- parts.append(part)
468
+ message_parts = _convert_tool_message_to_parts(
469
+ message, name=tool_call.get("name")
470
+ )
471
+ parts.extend(message_parts)
379
472
  # remove the id from the dict, so that we do not iterate over it again
380
473
  tool_calls_ids.pop(message.tool_call_id)
381
474
  return parts
@@ -442,7 +535,7 @@ def _parse_chat_history(
442
535
  system_instruction = None
443
536
  elif isinstance(message, FunctionMessage):
444
537
  role = "user"
445
- parts = [_convert_tool_message_to_part(message)]
538
+ parts = _convert_tool_message_to_parts(message)
446
539
  else:
447
540
  raise ValueError(
448
541
  f"Unexpected message with type {type(message)} at the position {i}."
@@ -452,33 +545,54 @@ def _parse_chat_history(
452
545
  return system_instruction, messages
453
546
 
454
547
 
548
+ # Helper function to append content consistently
549
+ def _append_to_content(
550
+ current_content: Union[str, List[Any], None], new_item: Any
551
+ ) -> Union[str, List[Any]]:
552
+ """Appends a new item to the content, handling different initial content types."""
553
+ if current_content is None and isinstance(new_item, str):
554
+ return new_item
555
+ elif current_content is None:
556
+ return [new_item]
557
+ elif isinstance(current_content, str):
558
+ return [current_content, new_item]
559
+ elif isinstance(current_content, list):
560
+ current_content.append(new_item)
561
+ return current_content
562
+ else:
563
+ # This case should ideally not be reached with proper type checking,
564
+ # but it catches any unexpected types that might slip through.
565
+ raise TypeError(f"Unexpected content type: {type(current_content)}")
566
+
567
+
455
568
  def _parse_response_candidate(
456
569
  response_candidate: Candidate, streaming: bool = False
457
570
  ) -> AIMessage:
458
571
  content: Union[None, str, List[Union[str, dict]]] = None
459
- additional_kwargs = {}
572
+ additional_kwargs: Dict[str, Any] = {}
460
573
  tool_calls = []
461
574
  invalid_tool_calls = []
462
575
  tool_call_chunks = []
463
576
 
464
577
  for part in response_candidate.content.parts:
578
+ text: Optional[str] = None
465
579
  try:
466
- text: Optional[str] = part.text
467
- # Remove erroneous newline character if present
468
- if not streaming and text is not None:
469
- text = text.rstrip("\n")
580
+ if hasattr(part, "text") and part.text is not None:
581
+ text = part.text
582
+ # Remove erroneous newline character if present
583
+ if not streaming:
584
+ text = text.rstrip("\n")
470
585
  except AttributeError:
471
- text = None
472
-
473
- if text is not None:
474
- if not content:
475
- content = text
476
- elif isinstance(content, str) and text:
477
- content = [content, text]
478
- elif isinstance(content, list) and text:
479
- content.append(text)
480
- elif text:
481
- raise Exception("Unexpected content type")
586
+ pass
587
+
588
+ if hasattr(part, "thought") and part.thought:
589
+ thinking_message = {
590
+ "type": "thinking",
591
+ "thinking": part.text,
592
+ }
593
+ content = _append_to_content(content, thinking_message)
594
+ elif text is not None and text:
595
+ content = _append_to_content(content, text)
482
596
 
483
597
  if hasattr(part, "executable_code") and part.executable_code is not None:
484
598
  if part.executable_code.code and part.executable_code.language:
@@ -487,14 +601,7 @@ def _parse_response_candidate(
487
601
  "executable_code": part.executable_code.code,
488
602
  "language": part.executable_code.language,
489
603
  }
490
- if not content:
491
- content = [code_message]
492
- elif isinstance(content, str):
493
- content = [content, code_message]
494
- elif isinstance(content, list):
495
- content.append(code_message)
496
- else:
497
- raise Exception("Unexpected content type")
604
+ content = _append_to_content(content, code_message)
498
605
 
499
606
  if (
500
607
  hasattr(part, "code_execution_result")
@@ -504,20 +611,25 @@ def _parse_response_candidate(
504
611
  execution_result = {
505
612
  "type": "code_execution_result",
506
613
  "code_execution_result": part.code_execution_result.output,
614
+ "outcome": part.code_execution_result.outcome,
507
615
  }
616
+ content = _append_to_content(content, execution_result)
508
617
 
509
- if not content:
510
- content = [execution_result]
511
- elif isinstance(content, str):
512
- content = [content, execution_result]
513
- elif isinstance(content, list):
514
- content.append(execution_result)
515
- else:
516
- raise Exception("Unexpected content type")
618
+ if part.inline_data.mime_type.startswith("audio/"):
619
+ buffer = io.BytesIO()
620
+
621
+ with wave.open(buffer, "wb") as wf:
622
+ wf.setnchannels(1)
623
+ wf.setsampwidth(2)
624
+ # TODO: Read Sample Rate from MIME content type.
625
+ wf.setframerate(24000)
626
+ wf.writeframes(part.inline_data.data)
627
+
628
+ additional_kwargs["audio"] = buffer.getvalue()
517
629
 
518
630
  if part.inline_data.mime_type.startswith("image/"):
519
631
  image_format = part.inline_data.mime_type[6:]
520
- message = {
632
+ image_message = {
521
633
  "type": "image_url",
522
634
  "image_url": {
523
635
  "url": image_bytes_to_b64_string(
@@ -525,15 +637,7 @@ def _parse_response_candidate(
525
637
  )
526
638
  },
527
639
  }
528
-
529
- if not content:
530
- content = [message]
531
- elif isinstance(content, str) and message:
532
- content = [content, message]
533
- elif isinstance(content, list) and message:
534
- content.append(message)
535
- elif message:
536
- raise Exception("Unexpected content type")
640
+ content = _append_to_content(content, image_message)
537
641
 
538
642
  if part.function_call:
539
643
  function_call = {"name": part.function_call.name}
@@ -658,6 +762,13 @@ def _response_to_result(
658
762
  proto.Message.to_dict(safety_rating, use_integers_for_enums=False)
659
763
  for safety_rating in candidate.safety_ratings
660
764
  ]
765
+ try:
766
+ if candidate.grounding_metadata:
767
+ generation_info["grounding_metadata"] = proto.Message.to_dict(
768
+ candidate.grounding_metadata
769
+ )
770
+ except AttributeError:
771
+ pass
661
772
  message = _parse_response_candidate(candidate, streaming=stream)
662
773
  message.usage_metadata = lc_usage
663
774
  if stream:
@@ -712,7 +823,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
712
823
 
713
824
  from langchain_google_genai import ChatGoogleGenerativeAI
714
825
 
715
- llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro")
826
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001")
716
827
  llm.invoke("Write me a ballad about LangChain")
717
828
 
718
829
  Invoke:
@@ -797,7 +908,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
797
908
  file = client.files.get(name=file.name)
798
909
 
799
910
  # Create cache
800
- model = 'models/gemini-1.5-flash-001'
911
+ model = 'models/gemini-1.5-flash-latest'
801
912
  cache = client.caches.create(
802
913
  model=model,
803
914
  config=types.CreateCachedContentConfig(
@@ -853,7 +964,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
853
964
  ],
854
965
  )
855
966
  ]
856
- model = "gemini-1.5-flash-001"
967
+ model = "gemini-1.5-flash-latest"
857
968
  cache = client.caches.create(
858
969
  model=model,
859
970
  config=CreateCachedContentConfig(
@@ -1019,6 +1130,21 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1019
1130
  Gemini does not support system messages; any unsupported messages will
1020
1131
  raise an error."""
1021
1132
 
1133
+ response_mime_type: Optional[str] = None
1134
+ """Optional. Output response mimetype of the generated candidate text. Only
1135
+ supported in Gemini 1.5 and later models. Supported mimetype:
1136
+ * "text/plain": (default) Text output.
1137
+ * "application/json": JSON response in the candidates.
1138
+ * "text/x.enum": Enum in plain text.
1139
+ The model also needs to be prompted to output the appropriate response
1140
+ type, otherwise the behavior is undefined. This is a preview feature.
1141
+ """
1142
+
1143
+ response_schema: Optional[Dict[str, Any]] = None
1144
+ """ Optional. Enforce an schema to the output.
1145
+ The format of the dictionary should follow Open API schema.
1146
+ """
1147
+
1022
1148
  cached_content: Optional[str] = None
1023
1149
  """The name of the cached content used as context to serve the prediction.
1024
1150
 
@@ -1034,7 +1160,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1034
1160
  """Needed for arg validation."""
1035
1161
  # Get all valid field names, including aliases
1036
1162
  valid_fields = set()
1037
- for field_name, field_info in self.model_fields.items():
1163
+ for field_name, field_info in self.__class__.model_fields.items():
1038
1164
  valid_fields.add(field_name)
1039
1165
  if hasattr(field_info, "alias") and field_info.alias is not None:
1040
1166
  valid_fields.add(field_info.alias)
@@ -1160,6 +1286,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1160
1286
  "safety_settings": self.safety_settings,
1161
1287
  "response_modalities": self.response_modalities,
1162
1288
  "thinking_budget": self.thinking_budget,
1289
+ "include_thoughts": self.include_thoughts,
1163
1290
  }
1164
1291
 
1165
1292
  def invoke(
@@ -1225,6 +1352,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1225
1352
  self,
1226
1353
  stop: Optional[List[str]],
1227
1354
  generation_config: Optional[Dict[str, Any]] = None,
1355
+ **kwargs: Any,
1228
1356
  ) -> GenerationConfig:
1229
1357
  gen_config = {
1230
1358
  k: v
@@ -1236,14 +1364,43 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1236
1364
  "top_k": self.top_k,
1237
1365
  "top_p": self.top_p,
1238
1366
  "response_modalities": self.response_modalities,
1239
- "thinking_config": {"thinking_budget": self.thinking_budget}
1240
- if self.thinking_budget is not None
1367
+ "thinking_config": (
1368
+ (
1369
+ {"thinking_budget": self.thinking_budget}
1370
+ if self.thinking_budget is not None
1371
+ else {}
1372
+ )
1373
+ | (
1374
+ {"include_thoughts": self.include_thoughts}
1375
+ if self.include_thoughts is not None
1376
+ else {}
1377
+ )
1378
+ )
1379
+ if self.thinking_budget is not None or self.include_thoughts is not None
1241
1380
  else None,
1242
1381
  }.items()
1243
1382
  if v is not None
1244
1383
  }
1245
1384
  if generation_config:
1246
1385
  gen_config = {**gen_config, **generation_config}
1386
+
1387
+ response_mime_type = kwargs.get("response_mime_type", self.response_mime_type)
1388
+ if response_mime_type is not None:
1389
+ gen_config["response_mime_type"] = response_mime_type
1390
+
1391
+ response_schema = kwargs.get("response_schema", self.response_schema)
1392
+ if response_schema is not None:
1393
+ allowed_mime_types = ("application/json", "text/x.enum")
1394
+ if response_mime_type not in allowed_mime_types:
1395
+ error_message = (
1396
+ "`response_schema` is only supported when "
1397
+ f"`response_mime_type` is set to one of {allowed_mime_types}"
1398
+ )
1399
+ raise ValueError(error_message)
1400
+
1401
+ gapic_response_schema = _dict_to_gapic_schema(response_schema)
1402
+ if gapic_response_schema is not None:
1403
+ gen_config["response_schema"] = gapic_response_schema
1247
1404
  return GenerationConfig(**gen_config)
1248
1405
 
1249
1406
  def _generate(
@@ -1271,6 +1428,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1271
1428
  generation_config=generation_config,
1272
1429
  cached_content=cached_content or self.cached_content,
1273
1430
  tool_choice=tool_choice,
1431
+ **kwargs,
1274
1432
  )
1275
1433
  response: GenerateContentResponse = _chat_with_retry(
1276
1434
  request=request,
@@ -1320,6 +1478,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1320
1478
  generation_config=generation_config,
1321
1479
  cached_content=cached_content or self.cached_content,
1322
1480
  tool_choice=tool_choice,
1481
+ **kwargs,
1323
1482
  )
1324
1483
  response: GenerateContentResponse = await _achat_with_retry(
1325
1484
  request=request,
@@ -1354,6 +1513,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1354
1513
  generation_config=generation_config,
1355
1514
  cached_content=cached_content or self.cached_content,
1356
1515
  tool_choice=tool_choice,
1516
+ **kwargs,
1357
1517
  )
1358
1518
  response: GenerateContentResponse = _chat_with_retry(
1359
1519
  request=request,
@@ -1432,6 +1592,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1432
1592
  generation_config=generation_config,
1433
1593
  cached_content=cached_content or self.cached_content,
1434
1594
  tool_choice=tool_choice,
1595
+ **kwargs,
1435
1596
  )
1436
1597
  prev_usage_metadata: UsageMetadata | None = None
1437
1598
  async for chunk in await _achat_with_retry(
@@ -1479,6 +1640,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1479
1640
  tool_choice: Optional[Union[_ToolChoiceType, bool]] = None,
1480
1641
  generation_config: Optional[Dict[str, Any]] = None,
1481
1642
  cached_content: Optional[str] = None,
1643
+ **kwargs: Any,
1482
1644
  ) -> Tuple[GenerateContentRequest, Dict[str, Any]]:
1483
1645
  if tool_choice and tool_config:
1484
1646
  raise ValueError(
@@ -1550,7 +1712,9 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1550
1712
  tool_config=formatted_tool_config,
1551
1713
  safety_settings=formatted_safety_settings,
1552
1714
  generation_config=self._prepare_params(
1553
- stop, generation_config=generation_config
1715
+ stop,
1716
+ generation_config=generation_config,
1717
+ **kwargs,
1554
1718
  ),
1555
1719
  cached_content=cached_content,
1556
1720
  )
@@ -1578,33 +1742,65 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
1578
1742
  def with_structured_output(
1579
1743
  self,
1580
1744
  schema: Union[Dict, Type[BaseModel]],
1745
+ method: Optional[Literal["function_calling", "json_mode"]] = "function_calling",
1581
1746
  *,
1582
1747
  include_raw: bool = False,
1583
1748
  **kwargs: Any,
1584
1749
  ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
1585
- _ = kwargs.pop("method", None)
1586
1750
  _ = kwargs.pop("strict", None)
1587
1751
  if kwargs:
1588
1752
  raise ValueError(f"Received unsupported arguments {kwargs}")
1589
- tool_name = _get_tool_name(schema) # type: ignore[arg-type]
1590
- if isinstance(schema, type) and is_basemodel_subclass_safe(schema):
1591
- parser: OutputParserLike = PydanticToolsParser(
1592
- tools=[schema], first_tool_only=True
1593
- )
1594
- else:
1595
- parser = JsonOutputKeyToolsParser(key_name=tool_name, first_tool_only=True)
1596
- tool_choice = tool_name if self._supports_tool_choice else None
1597
- try:
1598
- llm = self.bind_tools(
1599
- [schema],
1600
- tool_choice=tool_choice,
1753
+
1754
+ parser: OutputParserLike
1755
+
1756
+ if method == "json_mode":
1757
+ if isinstance(schema, type) and is_basemodel_subclass(schema):
1758
+ if issubclass(schema, BaseModelV1):
1759
+ schema_json = schema.schema()
1760
+ else:
1761
+ schema_json = schema.model_json_schema()
1762
+ parser = PydanticOutputParser(pydantic_object=schema)
1763
+ else:
1764
+ if is_typeddict(schema):
1765
+ schema_json = convert_to_json_schema(schema)
1766
+ elif isinstance(schema, dict):
1767
+ schema_json = schema
1768
+ else:
1769
+ raise ValueError(f"Unsupported schema type {type(schema)}")
1770
+ parser = JsonOutputParser()
1771
+
1772
+ # Resolve refs in schema because they are not supported
1773
+ # by the Gemini API.
1774
+ schema_json = replace_defs_in_schema(schema_json)
1775
+
1776
+ llm = self.bind(
1777
+ response_mime_type="application/json",
1778
+ response_schema=schema_json,
1601
1779
  ls_structured_output_format={
1602
- "kwargs": {"method": "function_calling"},
1603
- "schema": convert_to_openai_tool(schema),
1780
+ "kwargs": {"method": method},
1781
+ "schema": schema_json,
1604
1782
  },
1605
1783
  )
1606
- except Exception:
1607
- llm = self.bind_tools([schema], tool_choice=tool_choice)
1784
+ else:
1785
+ tool_name = _get_tool_name(schema) # type: ignore[arg-type]
1786
+ if isinstance(schema, type) and is_basemodel_subclass_safe(schema):
1787
+ parser = PydanticToolsParser(tools=[schema], first_tool_only=True)
1788
+ else:
1789
+ parser = JsonOutputKeyToolsParser(
1790
+ key_name=tool_name, first_tool_only=True
1791
+ )
1792
+ tool_choice = tool_name if self._supports_tool_choice else None
1793
+ try:
1794
+ llm = self.bind_tools(
1795
+ [schema],
1796
+ tool_choice=tool_choice,
1797
+ ls_structured_output_format={
1798
+ "kwargs": {"method": "function_calling"},
1799
+ "schema": convert_to_openai_tool(schema),
1800
+ },
1801
+ )
1802
+ except Exception:
1803
+ llm = self.bind_tools([schema], tool_choice=tool_choice)
1608
1804
  if include_raw:
1609
1805
  parser_with_fallback = RunnablePassthrough.assign(
1610
1806
  parsed=itemgetter("raw") | parser, parsing_error=lambda _: None
@@ -98,6 +98,7 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
98
98
  api_key=google_api_key,
99
99
  client_info=client_info,
100
100
  client_options=self.client_options,
101
+ transport=self.transport,
101
102
  )
102
103
  return self
103
104
 
@@ -253,7 +254,9 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
253
254
  Returns:
254
255
  Embedding for the text.
255
256
  """
256
- task_type = self.task_type or "RETRIEVAL_QUERY"
257
+ task_type_to_use = task_type if task_type else self.task_type
258
+ if task_type_to_use is None:
259
+ task_type_to_use = "RETRIEVAL_QUERY" # Default to RETRIEVAL_QUERY
257
260
  try:
258
261
  request: EmbedContentRequest = self._prepare_request(
259
262
  text=text,
@@ -0,0 +1,260 @@
1
+ Metadata-Version: 2.1
2
+ Name: langchain-google-genai
3
+ Version: 2.1.6
4
+ Summary: An integration package connecting Google's genai package and LangChain
5
+ Home-page: https://github.com/langchain-ai/langchain-google
6
+ License: MIT
7
+ Requires-Python: >=3.9,<4.0
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Requires-Dist: filetype (>=1.2.0,<2.0.0)
15
+ Requires-Dist: google-ai-generativelanguage (>=0.6.18,<0.7.0)
16
+ Requires-Dist: langchain-core (>=0.3.66,<0.4.0)
17
+ Requires-Dist: pydantic (>=2,<3)
18
+ Project-URL: Repository, https://github.com/langchain-ai/langchain-google
19
+ Project-URL: Source Code, https://github.com/langchain-ai/langchain-google/tree/main/libs/genai
20
+ Description-Content-Type: text/markdown
21
+
22
+ # langchain-google-genai
23
+
24
+ **LangChain integration for Google Gemini models using the `generative-ai` SDK**
25
+
26
+ This package enables seamless access to Google Gemini's chat, vision, embeddings, and retrieval-augmented generation (RAG) features within the LangChain ecosystem.
27
+
28
+ ---
29
+
30
+ ## Table of Contents
31
+
32
+ - [Overview](#overview)
33
+ - [Installation](#installation)
34
+ - [Quickstart](#quickstart)
35
+ - [Chat Models](#chat-models)
36
+ - [Multimodal Inputs](#multimodal-inputs)
37
+ - [Multimodal Outputs](#multimodal-outputs)
38
+ - [Multimodal Outputs in Chains](#multimodal-outputs-in-chains)
39
+ - [Thinking Support](#thinking-support)
40
+ - [Embeddings](#embeddings)
41
+ - [Semantic Retrieval (RAG)](#semantic-retrieval-rag)
42
+
43
+ ---
44
+
45
+ ## Overview
46
+
47
+ This package provides LangChain support for Google Gemini models (via the official [Google Generative AI SDK](https://googleapis.github.io/python-genai/)). It supports:
48
+
49
+ - Text and vision-based chat models
50
+ - Embeddings for semantic search
51
+ - Multimodal inputs and outputs
52
+ - Retrieval-Augmented Generation (RAG)
53
+ - Thought tracing with reasoning tokens
54
+
55
+ ---
56
+
57
+ ## Installation
58
+
59
+ ```bash
60
+ pip install -U langchain-google-genai
61
+ ````
62
+
63
+ ---
64
+
65
+ ## Quickstart
66
+
67
+ Set up your environment variable with your Gemini API key:
68
+
69
+ ```bash
70
+ export GOOGLE_API_KEY=your-api-key
71
+ ```
72
+
73
+ Then use the `ChatGoogleGenerativeAI` interface:
74
+
75
+ ```python
76
+ from langchain_google_genai import ChatGoogleGenerativeAI
77
+
78
+ llm = ChatGoogleGenerativeAI(model="gemini-pro")
79
+ response = llm.invoke("Sing a ballad of LangChain.")
80
+ print(response.content)
81
+ ```
82
+
83
+ ---
84
+
85
+ ## Chat Models
86
+
87
+ The main interface for Gemini chat models is `ChatGoogleGenerativeAI`.
88
+
89
+ ### Multimodal Inputs
90
+
91
+ Gemini vision models support image inputs in single messages.
92
+
93
+ ```python
94
+ from langchain_core.messages import HumanMessage
95
+ from langchain_google_genai import ChatGoogleGenerativeAI
96
+
97
+ llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
98
+
99
+ message = HumanMessage(
100
+ content=[
101
+ {"type": "text", "text": "What's in this image?"},
102
+ {"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
103
+ ]
104
+ )
105
+
106
+ response = llm.invoke([message])
107
+ print(response.content)
108
+ ```
109
+
110
+ ✅ `image_url` can be:
111
+
112
+ * A public image URL
113
+ * A Google Cloud Storage path (`gcs://...`)
114
+ * A base64-encoded image (e.g., `data:image/png;base64,...`)
115
+
116
+ ---
117
+
118
+ ### Multimodal Outputs
119
+
120
+ The Gemini 2.0 Flash Experimental model supports both text and inline image outputs.
121
+
122
+ ```python
123
+ from langchain_google_genai import ChatGoogleGenerativeAI
124
+
125
+ llm = ChatGoogleGenerativeAI(model="models/gemini-2.0-flash-exp-image-generation")
126
+
127
+ response = llm.invoke(
128
+ "Generate an image of a cat and say meow",
129
+ generation_config=dict(response_modalities=["TEXT", "IMAGE"]),
130
+ )
131
+
132
+ image_base64 = response.content[0].get("image_url").get("url").split(",")[-1]
133
+ meow_text = response.content[1]
134
+ print(meow_text)
135
+ ```
136
+
137
+ ---
138
+
139
+ ### Audio Output
140
+
141
+ ```
142
+ from langchain_google_genai import ChatGoogleGenerativeAI
143
+
144
+ llm = ChatGoogleGenerativeAI(model="models/gemini-2.5-flash-preview-tts")
145
+ # example
146
+ response = llm.invoke(
147
+ "Please say The quick brown fox jumps over the lazy dog",
148
+ generation_config=dict(response_modalities=["AUDIO"]),
149
+ )
150
+
151
+ # Base64 encoded binary data of the image
152
+ wav_data = response.additional_kwargs.get("audio")
153
+ with open("output.wav", "wb") as f:
154
+ f.write(wav_data)
155
+ ```
156
+
157
+ ---
158
+
159
+ ### Multimodal Outputs in Chains
160
+
161
+ You can use Gemini models in a LangChain chain:
162
+
163
+ ```python
164
+ from langchain_core.runnables import RunnablePassthrough
165
+ from langchain_core.prompts import ChatPromptTemplate
166
+ from langchain_google_genai import ChatGoogleGenerativeAI, Modality
167
+
168
+ llm = ChatGoogleGenerativeAI(
169
+ model="models/gemini-2.0-flash-exp-image-generation",
170
+ response_modalities=[Modality.TEXT, Modality.IMAGE],
171
+ )
172
+
173
+ prompt = ChatPromptTemplate.from_messages([
174
+ ("human", "Generate an image of {animal} and tell me the sound it makes.")
175
+ ])
176
+
177
+ chain = {"animal": RunnablePassthrough()} | prompt | llm
178
+ response = chain.invoke("cat")
179
+ ```
180
+
181
+ ---
182
+
183
+ ### Thinking Support
184
+
185
+ Gemini 2.5 Flash Preview supports internal reasoning ("thoughts").
186
+
187
+ ```python
188
+ from langchain_google_genai import ChatGoogleGenerativeAI
189
+
190
+ llm = ChatGoogleGenerativeAI(
191
+ model="models/gemini-2.5-flash-preview-04-17",
192
+ thinking_budget=1024
193
+ )
194
+
195
+ response = llm.invoke("How many O's are in Google? How did you verify your answer?")
196
+ reasoning_score = response.usage_metadata["output_token_details"]["reasoning"]
197
+
198
+ print("Response:", response.content)
199
+ print("Reasoning tokens used:", reasoning_score)
200
+ ```
201
+
202
+ ---
203
+
204
+ ## Embeddings
205
+
206
+ You can use Gemini embeddings in LangChain:
207
+
208
+ ```python
209
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
210
+
211
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
212
+ vector = embeddings.embed_query("hello, world!")
213
+ print(vector)
214
+ ```
215
+
216
+ ---
217
+
218
+ ## Semantic Retrieval (RAG)
219
+
220
+ Use Gemini with RAG to retrieve relevant documents from your knowledge base.
221
+
222
+ ```python
223
+ from langchain_google_genai.vectorstores import GoogleVectorStore
224
+ from langchain_text_splitters import CharacterTextSplitter
225
+ from langchain_community.document_loaders import DirectoryLoader
226
+
227
+ # Create a corpus (collection of documents)
228
+ corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
229
+
230
+ # Create a document under that corpus
231
+ document_store = GoogleVectorStore.create_document(
232
+ corpus_id=corpus_store.corpus_id, display_name="My Document"
233
+ )
234
+
235
+ # Load and upload documents
236
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
237
+ for file in DirectoryLoader(path="data/").load():
238
+ chunks = text_splitter.split_documents([file])
239
+ document_store.add_documents(chunks)
240
+
241
+ # Query the document corpus
242
+ aqa = corpus_store.as_aqa()
243
+ response = aqa.invoke("What is the meaning of life?")
244
+
245
+ print("Answer:", response.answer)
246
+ print("Passages:", response.attributed_passages)
247
+ print("Answerable probability:", response.answerable_probability)
248
+ ```
249
+
250
+ ---
251
+
252
+
253
+ ## Resources
254
+
255
+ * [LangChain Documentation](https://docs.langchain.com/)
256
+ * [Google Generative AI SDK](https://googleapis.github.io/python-genai/)
257
+ * [Gemini Model Documentation](https://ai.google.dev/)
258
+
259
+
260
+
@@ -1,16 +1,16 @@
1
1
  langchain_google_genai/__init__.py,sha256=IsTvA3UcECLDckt3zWxK6u-n3MEa5KeEQpqsS-Z8shM,2784
2
- langchain_google_genai/_common.py,sha256=BwEKrMqa4-yp8H57HTZJdDjEUZcGq9MSxT9bXtzQ6Yg,5783
2
+ langchain_google_genai/_common.py,sha256=TeAmAwcRPk_dTXiIQQubamHAhuKNb_XsWy7yllkKW4w,5936
3
3
  langchain_google_genai/_enums.py,sha256=Zj3BXXLlkm_UybegCi6fLsfFhriJCt_LAJvgatgPWQ0,252
4
- langchain_google_genai/_function_utils.py,sha256=KO5KGNcPZo17qksQNYBsLRWjms8zOKcNhGRIuSHeyFU,19257
4
+ langchain_google_genai/_function_utils.py,sha256=CkQyxfUVGqHfmZQwf4JtMXBsS9SOzk99Pa2TytnuLbE,21648
5
5
  langchain_google_genai/_genai_extension.py,sha256=81a4ly5ZHlqMf37uJfdB8K41qE6J5ujLnbUypIfFf2o,20775
6
6
  langchain_google_genai/_image_utils.py,sha256=tPrQyMvVmO8xkuow1SvA91omxUEv9ZUy1EMHNGjMAKY,5202
7
- langchain_google_genai/chat_models.py,sha256=SbIQkJnmNtvZxaiKUiT7VIniHNIrp8YXUXIk25zcWic,65478
8
- langchain_google_genai/embeddings.py,sha256=syN-GXcLAeuHEnF8Yqp2AQPD7rKEaR9l29jSLmt9dwM,10468
7
+ langchain_google_genai/chat_models.py,sha256=WUt41wshRAKS1p7NjGCod_q3Vhry7CWIrXTFEPvqc-E,73558
8
+ langchain_google_genai/embeddings.py,sha256=IwM6PBnuweABvYmzjgShOxrVffKbQnnIzPfKBFf8xms,10636
9
9
  langchain_google_genai/genai_aqa.py,sha256=qB6h3-BSXqe0YLR3eeVllYzmNKK6ofI6xJLdBahUVZo,4300
10
10
  langchain_google_genai/google_vector_store.py,sha256=4wvhIiOmc3Fo046FyafPmT9NBCLek-9bgluvuTfrbpQ,16148
11
11
  langchain_google_genai/llms.py,sha256=ASjrEk2T_1hUXVNJlfPB8PKC4PbhPe00H3_UHunMc_Q,5334
12
12
  langchain_google_genai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- langchain_google_genai-2.1.4.dist-info/LICENSE,sha256=DppmdYJVSc1jd0aio6ptnMUn5tIHrdAhQ12SclEBfBg,1072
14
- langchain_google_genai-2.1.4.dist-info/METADATA,sha256=TlT4wlGgAZtj9P1-FUElJsEiEoqFnrAeCoddDsmZZYw,5165
15
- langchain_google_genai-2.1.4.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
16
- langchain_google_genai-2.1.4.dist-info/RECORD,,
13
+ langchain_google_genai-2.1.6.dist-info/LICENSE,sha256=DppmdYJVSc1jd0aio6ptnMUn5tIHrdAhQ12SclEBfBg,1072
14
+ langchain_google_genai-2.1.6.dist-info/METADATA,sha256=An9rP3RLphq82natJt0lhu4sjG-OKx2g-I1bx4YfN_Q,6995
15
+ langchain_google_genai-2.1.6.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
16
+ langchain_google_genai-2.1.6.dist-info/RECORD,,
@@ -1,174 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: langchain-google-genai
3
- Version: 2.1.4
4
- Summary: An integration package connecting Google's genai package and LangChain
5
- Home-page: https://github.com/langchain-ai/langchain-google
6
- License: MIT
7
- Requires-Python: >=3.9,<4.0
8
- Classifier: License :: OSI Approved :: MIT License
9
- Classifier: Programming Language :: Python :: 3
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: Programming Language :: Python :: 3.12
14
- Requires-Dist: filetype (>=1.2.0,<2.0.0)
15
- Requires-Dist: google-ai-generativelanguage (>=0.6.18,<0.7.0)
16
- Requires-Dist: langchain-core (>=0.3.52,<0.4.0)
17
- Requires-Dist: pydantic (>=2,<3)
18
- Project-URL: Repository, https://github.com/langchain-ai/langchain-google
19
- Project-URL: Source Code, https://github.com/langchain-ai/langchain-google/tree/main/libs/genai
20
- Description-Content-Type: text/markdown
21
-
22
- # langchain-google-genai
23
-
24
- This package contains the LangChain integrations for Gemini through their generative-ai SDK.
25
-
26
- ## Installation
27
-
28
- ```bash
29
- pip install -U langchain-google-genai
30
- ```
31
-
32
-
33
- ## Chat Models
34
-
35
- This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
36
-
37
- To use, install the requirements, and configure your environment.
38
-
39
- ```bash
40
- export GOOGLE_API_KEY=your-api-key
41
- ```
42
-
43
- Then initialize
44
-
45
- ```python
46
- from langchain_google_genai import ChatGoogleGenerativeAI
47
-
48
- llm = ChatGoogleGenerativeAI(model="gemini-pro")
49
- llm.invoke("Sing a ballad of LangChain.")
50
- ```
51
-
52
- #### Multimodal inputs
53
-
54
- Gemini vision model supports image inputs when providing a single chat message. Example:
55
-
56
- ```
57
- from langchain_core.messages import HumanMessage
58
- from langchain_google_genai import ChatGoogleGenerativeAI
59
-
60
- llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
61
- # example
62
- message = HumanMessage(
63
- content=[
64
- {
65
- "type": "text",
66
- "text": "What's in this image?",
67
- }, # You can optionally provide text parts
68
- {"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
69
- ]
70
- )
71
- llm.invoke([message])
72
- ```
73
-
74
- The value of `image_url` can be any of the following:
75
-
76
- - A public image URL
77
- - An accessible gcs file (e.g., "gcs://path/to/file.png")
78
- - A base64 encoded image (e.g., ``)
79
-
80
- #### Multimodal outputs
81
-
82
- Gemini 2.0 Flash Experimental model supports text output with inline images
83
-
84
- ```
85
- from langchain_google_genai import ChatGoogleGenerativeAI
86
-
87
- llm = ChatGoogleGenerativeAI(model="models/gemini-2.0-flash-exp-image-generation")
88
- # example
89
- response = llm.invoke(
90
- "Generate an image of a cat and say meow",
91
- generation_config=dict(response_modalities=["TEXT", "IMAGE"]),
92
- )
93
-
94
- # Base64 encoded binary data of the image
95
- image_base64 = response.content[0].get("image_url").get("url").split(",")[-1]
96
- meow_str = response.content[1]
97
- ```
98
-
99
- #### Multimodal Outputs in Chains
100
-
101
- ```
102
- from langchain_core.runnables import RunnablePassthrough
103
- from langchain_core.prompts import ChatPromptTemplate
104
-
105
- from langchain_google_genai import ChatGoogleGenerativeAI, Modality
106
-
107
- llm = ChatGoogleGenerativeAI(
108
- model="models/gemini-2.0-flash-exp-image-generation",
109
- response_modalities=[Modality.TEXT, Modality.IMAGE],
110
- )
111
-
112
- prompt = ChatPromptTemplate(
113
- [("human", "Generate an image of {animal} and tell me the sound of the animal")]
114
- )
115
- chain = {"animal": RunnablePassthrough()} | prompt | llm
116
- res = chain.invoke("cat")
117
- ```
118
-
119
- #### Thinking support
120
-
121
- Gemini 2.5 Flash model supports reasoning through their thoughts
122
-
123
- ```
124
- from langchain_google_genai import ChatGoogleGenerativeAI
125
-
126
- llm = ChatGoogleGenerativeAI(model="models/gemini-2.5-flash-preview-04-17", thinking_budget=1024)
127
-
128
- response = llm.invoke(
129
- "How many O's are in Google? Please tell me how you double checked the result"
130
- )
131
-
132
- assert response.usage_metadata["output_token_details"]["reasoning"] > 0
133
- ```
134
-
135
- ## Embeddings
136
-
137
- This package also adds support for google's embeddings models.
138
-
139
- ```
140
- from langchain_google_genai import GoogleGenerativeAIEmbeddings
141
-
142
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
143
- embeddings.embed_query("hello, world!")
144
- ```
145
-
146
- ## Semantic Retrieval
147
-
148
- Enables retrieval augmented generation (RAG) in your application.
149
-
150
- ```
151
- # Create a new store for housing your documents.
152
- corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
153
-
154
- # Create a new document under the above corpus.
155
- document_store = GoogleVectorStore.create_document(
156
- corpus_id=corpus_store.corpus_id, display_name="My Document"
157
- )
158
-
159
- # Upload some texts to the document.
160
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
161
- for file in DirectoryLoader(path="data/").load():
162
- documents = text_splitter.split_documents([file])
163
- document_store.add_documents(documents)
164
-
165
- # Talk to your entire corpus with possibly many documents.
166
- aqa = corpus_store.as_aqa()
167
- answer = aqa.invoke("What is the meaning of life?")
168
-
169
- # Read the response along with the attributed passages and answerability.
170
- print(response.answer)
171
- print(response.attributed_passages)
172
- print(response.answerable_probability)
173
- ```
174
-