langchain-google-genai 2.1.4__py3-none-any.whl → 2.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langchain-google-genai might be problematic. Click here for more details.
- langchain_google_genai/_common.py +5 -0
- langchain_google_genai/_function_utils.py +70 -0
- langchain_google_genai/chat_models.py +272 -76
- langchain_google_genai/embeddings.py +4 -1
- langchain_google_genai-2.1.6.dist-info/METADATA +260 -0
- {langchain_google_genai-2.1.4.dist-info → langchain_google_genai-2.1.6.dist-info}/RECORD +8 -8
- langchain_google_genai-2.1.4.dist-info/METADATA +0 -174
- {langchain_google_genai-2.1.4.dist-info → langchain_google_genai-2.1.6.dist-info}/LICENSE +0 -0
- {langchain_google_genai-2.1.4.dist-info → langchain_google_genai-2.1.6.dist-info}/WHEEL +0 -0
|
@@ -84,6 +84,11 @@ Supported examples:
|
|
|
84
84
|
default=None, description="Indicates the thinking budget in tokens."
|
|
85
85
|
)
|
|
86
86
|
|
|
87
|
+
include_thoughts: Optional[bool] = Field(
|
|
88
|
+
default=None,
|
|
89
|
+
description="Indicates whether to include thoughts in the response.",
|
|
90
|
+
)
|
|
91
|
+
|
|
87
92
|
safety_settings: Optional[Dict[HarmCategory, HarmBlockThreshold]] = None
|
|
88
93
|
"""The default safety settings to use for all generations.
|
|
89
94
|
|
|
@@ -30,6 +30,7 @@ from langchain_core.utils.function_calling import (
|
|
|
30
30
|
from langchain_core.utils.json_schema import dereference_refs
|
|
31
31
|
from pydantic import BaseModel
|
|
32
32
|
from pydantic.v1 import BaseModel as BaseModelV1
|
|
33
|
+
from typing_extensions import NotRequired
|
|
33
34
|
|
|
34
35
|
logger = logging.getLogger(__name__)
|
|
35
36
|
|
|
@@ -65,11 +66,15 @@ _GoogleSearchRetrievalLike = Union[
|
|
|
65
66
|
gapic.GoogleSearchRetrieval,
|
|
66
67
|
Dict[str, Any],
|
|
67
68
|
]
|
|
69
|
+
_GoogleSearchLike = Union[gapic.Tool.GoogleSearch, Dict[str, Any]]
|
|
70
|
+
_CodeExecutionLike = Union[gapic.CodeExecution, Dict[str, Any]]
|
|
68
71
|
|
|
69
72
|
|
|
70
73
|
class _ToolDict(TypedDict):
|
|
71
74
|
function_declarations: Sequence[_FunctionDeclarationLike]
|
|
72
75
|
google_search_retrieval: Optional[_GoogleSearchRetrievalLike]
|
|
76
|
+
google_search: NotRequired[_GoogleSearchLike]
|
|
77
|
+
code_execution: NotRequired[_CodeExecutionLike]
|
|
73
78
|
|
|
74
79
|
|
|
75
80
|
# Info: This means one tool=Sequence of FunctionDeclaration
|
|
@@ -158,6 +163,8 @@ def convert_to_genai_function_declarations(
|
|
|
158
163
|
for f in [
|
|
159
164
|
"function_declarations",
|
|
160
165
|
"google_search_retrieval",
|
|
166
|
+
"google_search",
|
|
167
|
+
"code_execution",
|
|
161
168
|
]
|
|
162
169
|
):
|
|
163
170
|
fd = _format_to_gapic_function_declaration(tool) # type: ignore[arg-type]
|
|
@@ -184,6 +191,12 @@ def convert_to_genai_function_declarations(
|
|
|
184
191
|
gapic_tool.google_search_retrieval = gapic.GoogleSearchRetrieval(
|
|
185
192
|
tool["google_search_retrieval"]
|
|
186
193
|
)
|
|
194
|
+
if "google_search" in tool:
|
|
195
|
+
gapic_tool.google_search = gapic.Tool.GoogleSearch(
|
|
196
|
+
tool["google_search"]
|
|
197
|
+
)
|
|
198
|
+
if "code_execution" in tool:
|
|
199
|
+
gapic_tool.code_execution = gapic.CodeExecution(tool["code_execution"])
|
|
187
200
|
else:
|
|
188
201
|
fd = _format_to_gapic_function_declaration(tool) # type: ignore[arg-type]
|
|
189
202
|
gapic_tool.function_declarations.append(fd)
|
|
@@ -520,3 +533,60 @@ def safe_import(module_name: str, attribute_name: str = "") -> bool:
|
|
|
520
533
|
return True
|
|
521
534
|
except ImportError:
|
|
522
535
|
return False
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
def replace_defs_in_schema(original_schema: dict, defs: Optional[dict] = None) -> dict:
|
|
539
|
+
"""Given an OpenAPI schema with a property '$defs' replaces all occurrences of
|
|
540
|
+
referenced items in the dictionary.
|
|
541
|
+
|
|
542
|
+
Args:
|
|
543
|
+
original_schema: Schema generated by `BaseModel.model_schema_json`
|
|
544
|
+
defs: Definitions for recursive calls.
|
|
545
|
+
|
|
546
|
+
Returns:
|
|
547
|
+
Schema with refs replaced.
|
|
548
|
+
"""
|
|
549
|
+
|
|
550
|
+
new_defs = defs or original_schema.get("$defs")
|
|
551
|
+
|
|
552
|
+
if new_defs is None or not isinstance(new_defs, dict):
|
|
553
|
+
return original_schema.copy()
|
|
554
|
+
|
|
555
|
+
resulting_schema = {}
|
|
556
|
+
|
|
557
|
+
for key, value in original_schema.items():
|
|
558
|
+
if key == "$defs":
|
|
559
|
+
continue
|
|
560
|
+
|
|
561
|
+
if not isinstance(value, dict):
|
|
562
|
+
resulting_schema[key] = value
|
|
563
|
+
else:
|
|
564
|
+
if "$ref" in value:
|
|
565
|
+
new_value = value.copy()
|
|
566
|
+
|
|
567
|
+
path = new_value.pop("$ref")
|
|
568
|
+
def_key = _get_def_key_from_schema_path(path)
|
|
569
|
+
new_item = new_defs.get(def_key)
|
|
570
|
+
|
|
571
|
+
assert isinstance(new_item, dict)
|
|
572
|
+
new_value.update(new_item)
|
|
573
|
+
|
|
574
|
+
resulting_schema[key] = replace_defs_in_schema(new_value, defs=new_defs)
|
|
575
|
+
else:
|
|
576
|
+
resulting_schema[key] = replace_defs_in_schema(value, defs=new_defs)
|
|
577
|
+
|
|
578
|
+
return resulting_schema
|
|
579
|
+
|
|
580
|
+
|
|
581
|
+
def _get_def_key_from_schema_path(schema_path: str) -> str:
|
|
582
|
+
error_message = f"Malformed schema reference path {schema_path}"
|
|
583
|
+
|
|
584
|
+
if not isinstance(schema_path, str) or not schema_path.startswith("#/$defs/"):
|
|
585
|
+
raise ValueError(error_message)
|
|
586
|
+
|
|
587
|
+
# Schema has to have only one extra level.
|
|
588
|
+
parts = schema_path.split("/")
|
|
589
|
+
if len(parts) != 3:
|
|
590
|
+
raise ValueError(error_message)
|
|
591
|
+
|
|
592
|
+
return parts[-1]
|
|
@@ -2,11 +2,13 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
import asyncio
|
|
4
4
|
import base64
|
|
5
|
+
import io
|
|
5
6
|
import json
|
|
6
7
|
import logging
|
|
7
8
|
import mimetypes
|
|
8
9
|
import uuid
|
|
9
10
|
import warnings
|
|
11
|
+
import wave
|
|
10
12
|
from difflib import get_close_matches
|
|
11
13
|
from operator import itemgetter
|
|
12
14
|
from typing import (
|
|
@@ -16,6 +18,7 @@ from typing import (
|
|
|
16
18
|
Dict,
|
|
17
19
|
Iterator,
|
|
18
20
|
List,
|
|
21
|
+
Literal,
|
|
19
22
|
Mapping,
|
|
20
23
|
Optional,
|
|
21
24
|
Sequence,
|
|
@@ -37,7 +40,9 @@ from google.ai.generativelanguage_v1beta.types import (
|
|
|
37
40
|
Blob,
|
|
38
41
|
Candidate,
|
|
39
42
|
CodeExecution,
|
|
43
|
+
CodeExecutionResult,
|
|
40
44
|
Content,
|
|
45
|
+
ExecutableCode,
|
|
41
46
|
FileData,
|
|
42
47
|
FunctionCall,
|
|
43
48
|
FunctionDeclaration,
|
|
@@ -69,6 +74,7 @@ from langchain_core.messages import (
|
|
|
69
74
|
)
|
|
70
75
|
from langchain_core.messages.ai import UsageMetadata
|
|
71
76
|
from langchain_core.messages.tool import invalid_tool_call, tool_call, tool_call_chunk
|
|
77
|
+
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
|
72
78
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
73
79
|
from langchain_core.output_parsers.openai_tools import (
|
|
74
80
|
JsonOutputKeyToolsParser,
|
|
@@ -79,7 +85,11 @@ from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResu
|
|
|
79
85
|
from langchain_core.runnables import Runnable, RunnableConfig, RunnablePassthrough
|
|
80
86
|
from langchain_core.tools import BaseTool
|
|
81
87
|
from langchain_core.utils import get_pydantic_field_names
|
|
82
|
-
from langchain_core.utils.function_calling import
|
|
88
|
+
from langchain_core.utils.function_calling import (
|
|
89
|
+
convert_to_json_schema,
|
|
90
|
+
convert_to_openai_tool,
|
|
91
|
+
)
|
|
92
|
+
from langchain_core.utils.pydantic import is_basemodel_subclass
|
|
83
93
|
from langchain_core.utils.utils import _build_model_kwargs
|
|
84
94
|
from pydantic import (
|
|
85
95
|
BaseModel,
|
|
@@ -88,6 +98,7 @@ from pydantic import (
|
|
|
88
98
|
SecretStr,
|
|
89
99
|
model_validator,
|
|
90
100
|
)
|
|
101
|
+
from pydantic.v1 import BaseModel as BaseModelV1
|
|
91
102
|
from tenacity import (
|
|
92
103
|
before_sleep_log,
|
|
93
104
|
retry,
|
|
@@ -104,12 +115,14 @@ from langchain_google_genai._common import (
|
|
|
104
115
|
get_client_info,
|
|
105
116
|
)
|
|
106
117
|
from langchain_google_genai._function_utils import (
|
|
118
|
+
_dict_to_gapic_schema,
|
|
107
119
|
_tool_choice_to_tool_config,
|
|
108
120
|
_ToolChoiceType,
|
|
109
121
|
_ToolConfigDict,
|
|
110
122
|
_ToolDict,
|
|
111
123
|
convert_to_genai_function_declarations,
|
|
112
124
|
is_basemodel_subclass_safe,
|
|
125
|
+
replace_defs_in_schema,
|
|
113
126
|
tool_to_dict,
|
|
114
127
|
)
|
|
115
128
|
from langchain_google_genai._image_utils import (
|
|
@@ -121,6 +134,7 @@ from . import _genai_extension as genaix
|
|
|
121
134
|
|
|
122
135
|
logger = logging.getLogger(__name__)
|
|
123
136
|
|
|
137
|
+
_allowed_params_prediction_service = ["request", "timeout", "metadata", "labels"]
|
|
124
138
|
|
|
125
139
|
_FunctionDeclarationType = Union[
|
|
126
140
|
FunctionDeclaration,
|
|
@@ -207,7 +221,14 @@ def _chat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
|
|
|
207
221
|
except Exception as e:
|
|
208
222
|
raise e
|
|
209
223
|
|
|
210
|
-
|
|
224
|
+
params = (
|
|
225
|
+
{k: v for k, v in kwargs.items() if k in _allowed_params_prediction_service}
|
|
226
|
+
if (request := kwargs.get("request"))
|
|
227
|
+
and hasattr(request, "model")
|
|
228
|
+
and "gemini" in request.model
|
|
229
|
+
else kwargs
|
|
230
|
+
)
|
|
231
|
+
return _chat_with_retry(**params)
|
|
211
232
|
|
|
212
233
|
|
|
213
234
|
async def _achat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
|
|
@@ -240,13 +261,37 @@ async def _achat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
|
|
|
240
261
|
except Exception as e:
|
|
241
262
|
raise e
|
|
242
263
|
|
|
243
|
-
|
|
264
|
+
params = (
|
|
265
|
+
{k: v for k, v in kwargs.items() if k in _allowed_params_prediction_service}
|
|
266
|
+
if (request := kwargs.get("request"))
|
|
267
|
+
and hasattr(request, "model")
|
|
268
|
+
and "gemini" in request.model
|
|
269
|
+
else kwargs
|
|
270
|
+
)
|
|
271
|
+
return await _achat_with_retry(**params)
|
|
244
272
|
|
|
245
273
|
|
|
246
274
|
def _is_lc_content_block(part: dict) -> bool:
|
|
247
275
|
return "type" in part
|
|
248
276
|
|
|
249
277
|
|
|
278
|
+
def _is_openai_image_block(block: dict) -> bool:
|
|
279
|
+
"""Check if the block contains image data in OpenAI Chat Completions format."""
|
|
280
|
+
if block.get("type") == "image_url":
|
|
281
|
+
if (
|
|
282
|
+
(set(block.keys()) <= {"type", "image_url", "detail"})
|
|
283
|
+
and (image_url := block.get("image_url"))
|
|
284
|
+
and isinstance(image_url, dict)
|
|
285
|
+
):
|
|
286
|
+
url = image_url.get("url")
|
|
287
|
+
if isinstance(url, str):
|
|
288
|
+
return True
|
|
289
|
+
else:
|
|
290
|
+
return False
|
|
291
|
+
|
|
292
|
+
return False
|
|
293
|
+
|
|
294
|
+
|
|
250
295
|
def _convert_to_parts(
|
|
251
296
|
raw_content: Union[str, Sequence[Union[str, dict]]],
|
|
252
297
|
) -> List[Part]:
|
|
@@ -314,6 +359,37 @@ def _convert_to_parts(
|
|
|
314
359
|
metadata = VideoMetadata(part["video_metadata"])
|
|
315
360
|
media_part.video_metadata = metadata
|
|
316
361
|
parts.append(media_part)
|
|
362
|
+
elif part["type"] == "executable_code":
|
|
363
|
+
if "executable_code" not in part or "language" not in part:
|
|
364
|
+
raise ValueError(
|
|
365
|
+
"Executable code part must have 'code' and 'language' "
|
|
366
|
+
f"keys, got {part}"
|
|
367
|
+
)
|
|
368
|
+
executable_code_part = Part(
|
|
369
|
+
executable_code=ExecutableCode(
|
|
370
|
+
language=part["language"], code=part["executable_code"]
|
|
371
|
+
)
|
|
372
|
+
)
|
|
373
|
+
parts.append(executable_code_part)
|
|
374
|
+
elif part["type"] == "code_execution_result":
|
|
375
|
+
if "code_execution_result" not in part:
|
|
376
|
+
raise ValueError(
|
|
377
|
+
"Code execution result part must have "
|
|
378
|
+
f"'code_execution_result', got {part}"
|
|
379
|
+
)
|
|
380
|
+
if "outcome" in part:
|
|
381
|
+
outcome = part["outcome"]
|
|
382
|
+
else:
|
|
383
|
+
# Backward compatibility
|
|
384
|
+
outcome = 1 # Default to success if not specified
|
|
385
|
+
code_execution_result_part = Part(
|
|
386
|
+
code_execution_result=CodeExecutionResult(
|
|
387
|
+
output=part["code_execution_result"], outcome=outcome
|
|
388
|
+
)
|
|
389
|
+
)
|
|
390
|
+
parts.append(code_execution_result_part)
|
|
391
|
+
elif part["type"] == "thinking":
|
|
392
|
+
parts.append(Part(text=part["thinking"], thought=True))
|
|
317
393
|
else:
|
|
318
394
|
raise ValueError(
|
|
319
395
|
f"Unrecognized message part type: {part['type']}. Only text, "
|
|
@@ -334,14 +410,28 @@ def _convert_to_parts(
|
|
|
334
410
|
return parts
|
|
335
411
|
|
|
336
412
|
|
|
337
|
-
def
|
|
413
|
+
def _convert_tool_message_to_parts(
|
|
338
414
|
message: ToolMessage | FunctionMessage, name: Optional[str] = None
|
|
339
|
-
) -> Part:
|
|
415
|
+
) -> list[Part]:
|
|
340
416
|
"""Converts a tool or function message to a google part."""
|
|
341
417
|
# Legacy agent stores tool name in message.additional_kwargs instead of message.name
|
|
342
418
|
name = message.name or name or message.additional_kwargs.get("name")
|
|
343
419
|
response: Any
|
|
344
|
-
|
|
420
|
+
parts: list[Part] = []
|
|
421
|
+
if isinstance(message.content, list):
|
|
422
|
+
media_blocks = []
|
|
423
|
+
other_blocks = []
|
|
424
|
+
for block in message.content:
|
|
425
|
+
if isinstance(block, dict) and (
|
|
426
|
+
is_data_content_block(block) or _is_openai_image_block(block)
|
|
427
|
+
):
|
|
428
|
+
media_blocks.append(block)
|
|
429
|
+
else:
|
|
430
|
+
other_blocks.append(block)
|
|
431
|
+
parts.extend(_convert_to_parts(media_blocks))
|
|
432
|
+
response = other_blocks
|
|
433
|
+
|
|
434
|
+
elif not isinstance(message.content, str):
|
|
345
435
|
response = message.content
|
|
346
436
|
else:
|
|
347
437
|
try:
|
|
@@ -356,7 +446,8 @@ def _convert_tool_message_to_part(
|
|
|
356
446
|
),
|
|
357
447
|
)
|
|
358
448
|
)
|
|
359
|
-
|
|
449
|
+
parts.append(part)
|
|
450
|
+
return parts
|
|
360
451
|
|
|
361
452
|
|
|
362
453
|
def _get_ai_message_tool_messages_parts(
|
|
@@ -374,8 +465,10 @@ def _get_ai_message_tool_messages_parts(
|
|
|
374
465
|
break
|
|
375
466
|
if message.tool_call_id in tool_calls_ids:
|
|
376
467
|
tool_call = tool_calls_ids[message.tool_call_id]
|
|
377
|
-
|
|
378
|
-
|
|
468
|
+
message_parts = _convert_tool_message_to_parts(
|
|
469
|
+
message, name=tool_call.get("name")
|
|
470
|
+
)
|
|
471
|
+
parts.extend(message_parts)
|
|
379
472
|
# remove the id from the dict, so that we do not iterate over it again
|
|
380
473
|
tool_calls_ids.pop(message.tool_call_id)
|
|
381
474
|
return parts
|
|
@@ -442,7 +535,7 @@ def _parse_chat_history(
|
|
|
442
535
|
system_instruction = None
|
|
443
536
|
elif isinstance(message, FunctionMessage):
|
|
444
537
|
role = "user"
|
|
445
|
-
parts =
|
|
538
|
+
parts = _convert_tool_message_to_parts(message)
|
|
446
539
|
else:
|
|
447
540
|
raise ValueError(
|
|
448
541
|
f"Unexpected message with type {type(message)} at the position {i}."
|
|
@@ -452,33 +545,54 @@ def _parse_chat_history(
|
|
|
452
545
|
return system_instruction, messages
|
|
453
546
|
|
|
454
547
|
|
|
548
|
+
# Helper function to append content consistently
|
|
549
|
+
def _append_to_content(
|
|
550
|
+
current_content: Union[str, List[Any], None], new_item: Any
|
|
551
|
+
) -> Union[str, List[Any]]:
|
|
552
|
+
"""Appends a new item to the content, handling different initial content types."""
|
|
553
|
+
if current_content is None and isinstance(new_item, str):
|
|
554
|
+
return new_item
|
|
555
|
+
elif current_content is None:
|
|
556
|
+
return [new_item]
|
|
557
|
+
elif isinstance(current_content, str):
|
|
558
|
+
return [current_content, new_item]
|
|
559
|
+
elif isinstance(current_content, list):
|
|
560
|
+
current_content.append(new_item)
|
|
561
|
+
return current_content
|
|
562
|
+
else:
|
|
563
|
+
# This case should ideally not be reached with proper type checking,
|
|
564
|
+
# but it catches any unexpected types that might slip through.
|
|
565
|
+
raise TypeError(f"Unexpected content type: {type(current_content)}")
|
|
566
|
+
|
|
567
|
+
|
|
455
568
|
def _parse_response_candidate(
|
|
456
569
|
response_candidate: Candidate, streaming: bool = False
|
|
457
570
|
) -> AIMessage:
|
|
458
571
|
content: Union[None, str, List[Union[str, dict]]] = None
|
|
459
|
-
additional_kwargs = {}
|
|
572
|
+
additional_kwargs: Dict[str, Any] = {}
|
|
460
573
|
tool_calls = []
|
|
461
574
|
invalid_tool_calls = []
|
|
462
575
|
tool_call_chunks = []
|
|
463
576
|
|
|
464
577
|
for part in response_candidate.content.parts:
|
|
578
|
+
text: Optional[str] = None
|
|
465
579
|
try:
|
|
466
|
-
text
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
580
|
+
if hasattr(part, "text") and part.text is not None:
|
|
581
|
+
text = part.text
|
|
582
|
+
# Remove erroneous newline character if present
|
|
583
|
+
if not streaming:
|
|
584
|
+
text = text.rstrip("\n")
|
|
470
585
|
except AttributeError:
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
if
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
raise Exception("Unexpected content type")
|
|
586
|
+
pass
|
|
587
|
+
|
|
588
|
+
if hasattr(part, "thought") and part.thought:
|
|
589
|
+
thinking_message = {
|
|
590
|
+
"type": "thinking",
|
|
591
|
+
"thinking": part.text,
|
|
592
|
+
}
|
|
593
|
+
content = _append_to_content(content, thinking_message)
|
|
594
|
+
elif text is not None and text:
|
|
595
|
+
content = _append_to_content(content, text)
|
|
482
596
|
|
|
483
597
|
if hasattr(part, "executable_code") and part.executable_code is not None:
|
|
484
598
|
if part.executable_code.code and part.executable_code.language:
|
|
@@ -487,14 +601,7 @@ def _parse_response_candidate(
|
|
|
487
601
|
"executable_code": part.executable_code.code,
|
|
488
602
|
"language": part.executable_code.language,
|
|
489
603
|
}
|
|
490
|
-
|
|
491
|
-
content = [code_message]
|
|
492
|
-
elif isinstance(content, str):
|
|
493
|
-
content = [content, code_message]
|
|
494
|
-
elif isinstance(content, list):
|
|
495
|
-
content.append(code_message)
|
|
496
|
-
else:
|
|
497
|
-
raise Exception("Unexpected content type")
|
|
604
|
+
content = _append_to_content(content, code_message)
|
|
498
605
|
|
|
499
606
|
if (
|
|
500
607
|
hasattr(part, "code_execution_result")
|
|
@@ -504,20 +611,25 @@ def _parse_response_candidate(
|
|
|
504
611
|
execution_result = {
|
|
505
612
|
"type": "code_execution_result",
|
|
506
613
|
"code_execution_result": part.code_execution_result.output,
|
|
614
|
+
"outcome": part.code_execution_result.outcome,
|
|
507
615
|
}
|
|
616
|
+
content = _append_to_content(content, execution_result)
|
|
508
617
|
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
618
|
+
if part.inline_data.mime_type.startswith("audio/"):
|
|
619
|
+
buffer = io.BytesIO()
|
|
620
|
+
|
|
621
|
+
with wave.open(buffer, "wb") as wf:
|
|
622
|
+
wf.setnchannels(1)
|
|
623
|
+
wf.setsampwidth(2)
|
|
624
|
+
# TODO: Read Sample Rate from MIME content type.
|
|
625
|
+
wf.setframerate(24000)
|
|
626
|
+
wf.writeframes(part.inline_data.data)
|
|
627
|
+
|
|
628
|
+
additional_kwargs["audio"] = buffer.getvalue()
|
|
517
629
|
|
|
518
630
|
if part.inline_data.mime_type.startswith("image/"):
|
|
519
631
|
image_format = part.inline_data.mime_type[6:]
|
|
520
|
-
|
|
632
|
+
image_message = {
|
|
521
633
|
"type": "image_url",
|
|
522
634
|
"image_url": {
|
|
523
635
|
"url": image_bytes_to_b64_string(
|
|
@@ -525,15 +637,7 @@ def _parse_response_candidate(
|
|
|
525
637
|
)
|
|
526
638
|
},
|
|
527
639
|
}
|
|
528
|
-
|
|
529
|
-
if not content:
|
|
530
|
-
content = [message]
|
|
531
|
-
elif isinstance(content, str) and message:
|
|
532
|
-
content = [content, message]
|
|
533
|
-
elif isinstance(content, list) and message:
|
|
534
|
-
content.append(message)
|
|
535
|
-
elif message:
|
|
536
|
-
raise Exception("Unexpected content type")
|
|
640
|
+
content = _append_to_content(content, image_message)
|
|
537
641
|
|
|
538
642
|
if part.function_call:
|
|
539
643
|
function_call = {"name": part.function_call.name}
|
|
@@ -658,6 +762,13 @@ def _response_to_result(
|
|
|
658
762
|
proto.Message.to_dict(safety_rating, use_integers_for_enums=False)
|
|
659
763
|
for safety_rating in candidate.safety_ratings
|
|
660
764
|
]
|
|
765
|
+
try:
|
|
766
|
+
if candidate.grounding_metadata:
|
|
767
|
+
generation_info["grounding_metadata"] = proto.Message.to_dict(
|
|
768
|
+
candidate.grounding_metadata
|
|
769
|
+
)
|
|
770
|
+
except AttributeError:
|
|
771
|
+
pass
|
|
661
772
|
message = _parse_response_candidate(candidate, streaming=stream)
|
|
662
773
|
message.usage_metadata = lc_usage
|
|
663
774
|
if stream:
|
|
@@ -712,7 +823,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
712
823
|
|
|
713
824
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
714
825
|
|
|
715
|
-
llm = ChatGoogleGenerativeAI(model="gemini-
|
|
826
|
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001")
|
|
716
827
|
llm.invoke("Write me a ballad about LangChain")
|
|
717
828
|
|
|
718
829
|
Invoke:
|
|
@@ -797,7 +908,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
797
908
|
file = client.files.get(name=file.name)
|
|
798
909
|
|
|
799
910
|
# Create cache
|
|
800
|
-
model = 'models/gemini-1.5-flash-
|
|
911
|
+
model = 'models/gemini-1.5-flash-latest'
|
|
801
912
|
cache = client.caches.create(
|
|
802
913
|
model=model,
|
|
803
914
|
config=types.CreateCachedContentConfig(
|
|
@@ -853,7 +964,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
853
964
|
],
|
|
854
965
|
)
|
|
855
966
|
]
|
|
856
|
-
model = "gemini-1.5-flash-
|
|
967
|
+
model = "gemini-1.5-flash-latest"
|
|
857
968
|
cache = client.caches.create(
|
|
858
969
|
model=model,
|
|
859
970
|
config=CreateCachedContentConfig(
|
|
@@ -1019,6 +1130,21 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1019
1130
|
Gemini does not support system messages; any unsupported messages will
|
|
1020
1131
|
raise an error."""
|
|
1021
1132
|
|
|
1133
|
+
response_mime_type: Optional[str] = None
|
|
1134
|
+
"""Optional. Output response mimetype of the generated candidate text. Only
|
|
1135
|
+
supported in Gemini 1.5 and later models. Supported mimetype:
|
|
1136
|
+
* "text/plain": (default) Text output.
|
|
1137
|
+
* "application/json": JSON response in the candidates.
|
|
1138
|
+
* "text/x.enum": Enum in plain text.
|
|
1139
|
+
The model also needs to be prompted to output the appropriate response
|
|
1140
|
+
type, otherwise the behavior is undefined. This is a preview feature.
|
|
1141
|
+
"""
|
|
1142
|
+
|
|
1143
|
+
response_schema: Optional[Dict[str, Any]] = None
|
|
1144
|
+
""" Optional. Enforce an schema to the output.
|
|
1145
|
+
The format of the dictionary should follow Open API schema.
|
|
1146
|
+
"""
|
|
1147
|
+
|
|
1022
1148
|
cached_content: Optional[str] = None
|
|
1023
1149
|
"""The name of the cached content used as context to serve the prediction.
|
|
1024
1150
|
|
|
@@ -1034,7 +1160,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1034
1160
|
"""Needed for arg validation."""
|
|
1035
1161
|
# Get all valid field names, including aliases
|
|
1036
1162
|
valid_fields = set()
|
|
1037
|
-
for field_name, field_info in self.model_fields.items():
|
|
1163
|
+
for field_name, field_info in self.__class__.model_fields.items():
|
|
1038
1164
|
valid_fields.add(field_name)
|
|
1039
1165
|
if hasattr(field_info, "alias") and field_info.alias is not None:
|
|
1040
1166
|
valid_fields.add(field_info.alias)
|
|
@@ -1160,6 +1286,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1160
1286
|
"safety_settings": self.safety_settings,
|
|
1161
1287
|
"response_modalities": self.response_modalities,
|
|
1162
1288
|
"thinking_budget": self.thinking_budget,
|
|
1289
|
+
"include_thoughts": self.include_thoughts,
|
|
1163
1290
|
}
|
|
1164
1291
|
|
|
1165
1292
|
def invoke(
|
|
@@ -1225,6 +1352,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1225
1352
|
self,
|
|
1226
1353
|
stop: Optional[List[str]],
|
|
1227
1354
|
generation_config: Optional[Dict[str, Any]] = None,
|
|
1355
|
+
**kwargs: Any,
|
|
1228
1356
|
) -> GenerationConfig:
|
|
1229
1357
|
gen_config = {
|
|
1230
1358
|
k: v
|
|
@@ -1236,14 +1364,43 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1236
1364
|
"top_k": self.top_k,
|
|
1237
1365
|
"top_p": self.top_p,
|
|
1238
1366
|
"response_modalities": self.response_modalities,
|
|
1239
|
-
"thinking_config":
|
|
1240
|
-
|
|
1367
|
+
"thinking_config": (
|
|
1368
|
+
(
|
|
1369
|
+
{"thinking_budget": self.thinking_budget}
|
|
1370
|
+
if self.thinking_budget is not None
|
|
1371
|
+
else {}
|
|
1372
|
+
)
|
|
1373
|
+
| (
|
|
1374
|
+
{"include_thoughts": self.include_thoughts}
|
|
1375
|
+
if self.include_thoughts is not None
|
|
1376
|
+
else {}
|
|
1377
|
+
)
|
|
1378
|
+
)
|
|
1379
|
+
if self.thinking_budget is not None or self.include_thoughts is not None
|
|
1241
1380
|
else None,
|
|
1242
1381
|
}.items()
|
|
1243
1382
|
if v is not None
|
|
1244
1383
|
}
|
|
1245
1384
|
if generation_config:
|
|
1246
1385
|
gen_config = {**gen_config, **generation_config}
|
|
1386
|
+
|
|
1387
|
+
response_mime_type = kwargs.get("response_mime_type", self.response_mime_type)
|
|
1388
|
+
if response_mime_type is not None:
|
|
1389
|
+
gen_config["response_mime_type"] = response_mime_type
|
|
1390
|
+
|
|
1391
|
+
response_schema = kwargs.get("response_schema", self.response_schema)
|
|
1392
|
+
if response_schema is not None:
|
|
1393
|
+
allowed_mime_types = ("application/json", "text/x.enum")
|
|
1394
|
+
if response_mime_type not in allowed_mime_types:
|
|
1395
|
+
error_message = (
|
|
1396
|
+
"`response_schema` is only supported when "
|
|
1397
|
+
f"`response_mime_type` is set to one of {allowed_mime_types}"
|
|
1398
|
+
)
|
|
1399
|
+
raise ValueError(error_message)
|
|
1400
|
+
|
|
1401
|
+
gapic_response_schema = _dict_to_gapic_schema(response_schema)
|
|
1402
|
+
if gapic_response_schema is not None:
|
|
1403
|
+
gen_config["response_schema"] = gapic_response_schema
|
|
1247
1404
|
return GenerationConfig(**gen_config)
|
|
1248
1405
|
|
|
1249
1406
|
def _generate(
|
|
@@ -1271,6 +1428,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1271
1428
|
generation_config=generation_config,
|
|
1272
1429
|
cached_content=cached_content or self.cached_content,
|
|
1273
1430
|
tool_choice=tool_choice,
|
|
1431
|
+
**kwargs,
|
|
1274
1432
|
)
|
|
1275
1433
|
response: GenerateContentResponse = _chat_with_retry(
|
|
1276
1434
|
request=request,
|
|
@@ -1320,6 +1478,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1320
1478
|
generation_config=generation_config,
|
|
1321
1479
|
cached_content=cached_content or self.cached_content,
|
|
1322
1480
|
tool_choice=tool_choice,
|
|
1481
|
+
**kwargs,
|
|
1323
1482
|
)
|
|
1324
1483
|
response: GenerateContentResponse = await _achat_with_retry(
|
|
1325
1484
|
request=request,
|
|
@@ -1354,6 +1513,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1354
1513
|
generation_config=generation_config,
|
|
1355
1514
|
cached_content=cached_content or self.cached_content,
|
|
1356
1515
|
tool_choice=tool_choice,
|
|
1516
|
+
**kwargs,
|
|
1357
1517
|
)
|
|
1358
1518
|
response: GenerateContentResponse = _chat_with_retry(
|
|
1359
1519
|
request=request,
|
|
@@ -1432,6 +1592,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1432
1592
|
generation_config=generation_config,
|
|
1433
1593
|
cached_content=cached_content or self.cached_content,
|
|
1434
1594
|
tool_choice=tool_choice,
|
|
1595
|
+
**kwargs,
|
|
1435
1596
|
)
|
|
1436
1597
|
prev_usage_metadata: UsageMetadata | None = None
|
|
1437
1598
|
async for chunk in await _achat_with_retry(
|
|
@@ -1479,6 +1640,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1479
1640
|
tool_choice: Optional[Union[_ToolChoiceType, bool]] = None,
|
|
1480
1641
|
generation_config: Optional[Dict[str, Any]] = None,
|
|
1481
1642
|
cached_content: Optional[str] = None,
|
|
1643
|
+
**kwargs: Any,
|
|
1482
1644
|
) -> Tuple[GenerateContentRequest, Dict[str, Any]]:
|
|
1483
1645
|
if tool_choice and tool_config:
|
|
1484
1646
|
raise ValueError(
|
|
@@ -1550,7 +1712,9 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1550
1712
|
tool_config=formatted_tool_config,
|
|
1551
1713
|
safety_settings=formatted_safety_settings,
|
|
1552
1714
|
generation_config=self._prepare_params(
|
|
1553
|
-
stop,
|
|
1715
|
+
stop,
|
|
1716
|
+
generation_config=generation_config,
|
|
1717
|
+
**kwargs,
|
|
1554
1718
|
),
|
|
1555
1719
|
cached_content=cached_content,
|
|
1556
1720
|
)
|
|
@@ -1578,33 +1742,65 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1578
1742
|
def with_structured_output(
|
|
1579
1743
|
self,
|
|
1580
1744
|
schema: Union[Dict, Type[BaseModel]],
|
|
1745
|
+
method: Optional[Literal["function_calling", "json_mode"]] = "function_calling",
|
|
1581
1746
|
*,
|
|
1582
1747
|
include_raw: bool = False,
|
|
1583
1748
|
**kwargs: Any,
|
|
1584
1749
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
1585
|
-
_ = kwargs.pop("method", None)
|
|
1586
1750
|
_ = kwargs.pop("strict", None)
|
|
1587
1751
|
if kwargs:
|
|
1588
1752
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
1589
|
-
|
|
1590
|
-
|
|
1591
|
-
|
|
1592
|
-
|
|
1593
|
-
)
|
|
1594
|
-
|
|
1595
|
-
|
|
1596
|
-
|
|
1597
|
-
|
|
1598
|
-
|
|
1599
|
-
|
|
1600
|
-
|
|
1753
|
+
|
|
1754
|
+
parser: OutputParserLike
|
|
1755
|
+
|
|
1756
|
+
if method == "json_mode":
|
|
1757
|
+
if isinstance(schema, type) and is_basemodel_subclass(schema):
|
|
1758
|
+
if issubclass(schema, BaseModelV1):
|
|
1759
|
+
schema_json = schema.schema()
|
|
1760
|
+
else:
|
|
1761
|
+
schema_json = schema.model_json_schema()
|
|
1762
|
+
parser = PydanticOutputParser(pydantic_object=schema)
|
|
1763
|
+
else:
|
|
1764
|
+
if is_typeddict(schema):
|
|
1765
|
+
schema_json = convert_to_json_schema(schema)
|
|
1766
|
+
elif isinstance(schema, dict):
|
|
1767
|
+
schema_json = schema
|
|
1768
|
+
else:
|
|
1769
|
+
raise ValueError(f"Unsupported schema type {type(schema)}")
|
|
1770
|
+
parser = JsonOutputParser()
|
|
1771
|
+
|
|
1772
|
+
# Resolve refs in schema because they are not supported
|
|
1773
|
+
# by the Gemini API.
|
|
1774
|
+
schema_json = replace_defs_in_schema(schema_json)
|
|
1775
|
+
|
|
1776
|
+
llm = self.bind(
|
|
1777
|
+
response_mime_type="application/json",
|
|
1778
|
+
response_schema=schema_json,
|
|
1601
1779
|
ls_structured_output_format={
|
|
1602
|
-
"kwargs": {"method":
|
|
1603
|
-
"schema":
|
|
1780
|
+
"kwargs": {"method": method},
|
|
1781
|
+
"schema": schema_json,
|
|
1604
1782
|
},
|
|
1605
1783
|
)
|
|
1606
|
-
|
|
1607
|
-
|
|
1784
|
+
else:
|
|
1785
|
+
tool_name = _get_tool_name(schema) # type: ignore[arg-type]
|
|
1786
|
+
if isinstance(schema, type) and is_basemodel_subclass_safe(schema):
|
|
1787
|
+
parser = PydanticToolsParser(tools=[schema], first_tool_only=True)
|
|
1788
|
+
else:
|
|
1789
|
+
parser = JsonOutputKeyToolsParser(
|
|
1790
|
+
key_name=tool_name, first_tool_only=True
|
|
1791
|
+
)
|
|
1792
|
+
tool_choice = tool_name if self._supports_tool_choice else None
|
|
1793
|
+
try:
|
|
1794
|
+
llm = self.bind_tools(
|
|
1795
|
+
[schema],
|
|
1796
|
+
tool_choice=tool_choice,
|
|
1797
|
+
ls_structured_output_format={
|
|
1798
|
+
"kwargs": {"method": "function_calling"},
|
|
1799
|
+
"schema": convert_to_openai_tool(schema),
|
|
1800
|
+
},
|
|
1801
|
+
)
|
|
1802
|
+
except Exception:
|
|
1803
|
+
llm = self.bind_tools([schema], tool_choice=tool_choice)
|
|
1608
1804
|
if include_raw:
|
|
1609
1805
|
parser_with_fallback = RunnablePassthrough.assign(
|
|
1610
1806
|
parsed=itemgetter("raw") | parser, parsing_error=lambda _: None
|
|
@@ -98,6 +98,7 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
98
98
|
api_key=google_api_key,
|
|
99
99
|
client_info=client_info,
|
|
100
100
|
client_options=self.client_options,
|
|
101
|
+
transport=self.transport,
|
|
101
102
|
)
|
|
102
103
|
return self
|
|
103
104
|
|
|
@@ -253,7 +254,9 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
253
254
|
Returns:
|
|
254
255
|
Embedding for the text.
|
|
255
256
|
"""
|
|
256
|
-
|
|
257
|
+
task_type_to_use = task_type if task_type else self.task_type
|
|
258
|
+
if task_type_to_use is None:
|
|
259
|
+
task_type_to_use = "RETRIEVAL_QUERY" # Default to RETRIEVAL_QUERY
|
|
257
260
|
try:
|
|
258
261
|
request: EmbedContentRequest = self._prepare_request(
|
|
259
262
|
text=text,
|
|
@@ -0,0 +1,260 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: langchain-google-genai
|
|
3
|
+
Version: 2.1.6
|
|
4
|
+
Summary: An integration package connecting Google's genai package and LangChain
|
|
5
|
+
Home-page: https://github.com/langchain-ai/langchain-google
|
|
6
|
+
License: MIT
|
|
7
|
+
Requires-Python: >=3.9,<4.0
|
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
+
Requires-Dist: filetype (>=1.2.0,<2.0.0)
|
|
15
|
+
Requires-Dist: google-ai-generativelanguage (>=0.6.18,<0.7.0)
|
|
16
|
+
Requires-Dist: langchain-core (>=0.3.66,<0.4.0)
|
|
17
|
+
Requires-Dist: pydantic (>=2,<3)
|
|
18
|
+
Project-URL: Repository, https://github.com/langchain-ai/langchain-google
|
|
19
|
+
Project-URL: Source Code, https://github.com/langchain-ai/langchain-google/tree/main/libs/genai
|
|
20
|
+
Description-Content-Type: text/markdown
|
|
21
|
+
|
|
22
|
+
# langchain-google-genai
|
|
23
|
+
|
|
24
|
+
**LangChain integration for Google Gemini models using the `generative-ai` SDK**
|
|
25
|
+
|
|
26
|
+
This package enables seamless access to Google Gemini's chat, vision, embeddings, and retrieval-augmented generation (RAG) features within the LangChain ecosystem.
|
|
27
|
+
|
|
28
|
+
---
|
|
29
|
+
|
|
30
|
+
## Table of Contents
|
|
31
|
+
|
|
32
|
+
- [Overview](#overview)
|
|
33
|
+
- [Installation](#installation)
|
|
34
|
+
- [Quickstart](#quickstart)
|
|
35
|
+
- [Chat Models](#chat-models)
|
|
36
|
+
- [Multimodal Inputs](#multimodal-inputs)
|
|
37
|
+
- [Multimodal Outputs](#multimodal-outputs)
|
|
38
|
+
- [Multimodal Outputs in Chains](#multimodal-outputs-in-chains)
|
|
39
|
+
- [Thinking Support](#thinking-support)
|
|
40
|
+
- [Embeddings](#embeddings)
|
|
41
|
+
- [Semantic Retrieval (RAG)](#semantic-retrieval-rag)
|
|
42
|
+
|
|
43
|
+
---
|
|
44
|
+
|
|
45
|
+
## Overview
|
|
46
|
+
|
|
47
|
+
This package provides LangChain support for Google Gemini models (via the official [Google Generative AI SDK](https://googleapis.github.io/python-genai/)). It supports:
|
|
48
|
+
|
|
49
|
+
- Text and vision-based chat models
|
|
50
|
+
- Embeddings for semantic search
|
|
51
|
+
- Multimodal inputs and outputs
|
|
52
|
+
- Retrieval-Augmented Generation (RAG)
|
|
53
|
+
- Thought tracing with reasoning tokens
|
|
54
|
+
|
|
55
|
+
---
|
|
56
|
+
|
|
57
|
+
## Installation
|
|
58
|
+
|
|
59
|
+
```bash
|
|
60
|
+
pip install -U langchain-google-genai
|
|
61
|
+
````
|
|
62
|
+
|
|
63
|
+
---
|
|
64
|
+
|
|
65
|
+
## Quickstart
|
|
66
|
+
|
|
67
|
+
Set up your environment variable with your Gemini API key:
|
|
68
|
+
|
|
69
|
+
```bash
|
|
70
|
+
export GOOGLE_API_KEY=your-api-key
|
|
71
|
+
```
|
|
72
|
+
|
|
73
|
+
Then use the `ChatGoogleGenerativeAI` interface:
|
|
74
|
+
|
|
75
|
+
```python
|
|
76
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
77
|
+
|
|
78
|
+
llm = ChatGoogleGenerativeAI(model="gemini-pro")
|
|
79
|
+
response = llm.invoke("Sing a ballad of LangChain.")
|
|
80
|
+
print(response.content)
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## Chat Models
|
|
86
|
+
|
|
87
|
+
The main interface for Gemini chat models is `ChatGoogleGenerativeAI`.
|
|
88
|
+
|
|
89
|
+
### Multimodal Inputs
|
|
90
|
+
|
|
91
|
+
Gemini vision models support image inputs in single messages.
|
|
92
|
+
|
|
93
|
+
```python
|
|
94
|
+
from langchain_core.messages import HumanMessage
|
|
95
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
96
|
+
|
|
97
|
+
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
|
|
98
|
+
|
|
99
|
+
message = HumanMessage(
|
|
100
|
+
content=[
|
|
101
|
+
{"type": "text", "text": "What's in this image?"},
|
|
102
|
+
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
|
|
103
|
+
]
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
response = llm.invoke([message])
|
|
107
|
+
print(response.content)
|
|
108
|
+
```
|
|
109
|
+
|
|
110
|
+
✅ `image_url` can be:
|
|
111
|
+
|
|
112
|
+
* A public image URL
|
|
113
|
+
* A Google Cloud Storage path (`gcs://...`)
|
|
114
|
+
* A base64-encoded image (e.g., `data:image/png;base64,...`)
|
|
115
|
+
|
|
116
|
+
---
|
|
117
|
+
|
|
118
|
+
### Multimodal Outputs
|
|
119
|
+
|
|
120
|
+
The Gemini 2.0 Flash Experimental model supports both text and inline image outputs.
|
|
121
|
+
|
|
122
|
+
```python
|
|
123
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
124
|
+
|
|
125
|
+
llm = ChatGoogleGenerativeAI(model="models/gemini-2.0-flash-exp-image-generation")
|
|
126
|
+
|
|
127
|
+
response = llm.invoke(
|
|
128
|
+
"Generate an image of a cat and say meow",
|
|
129
|
+
generation_config=dict(response_modalities=["TEXT", "IMAGE"]),
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
image_base64 = response.content[0].get("image_url").get("url").split(",")[-1]
|
|
133
|
+
meow_text = response.content[1]
|
|
134
|
+
print(meow_text)
|
|
135
|
+
```
|
|
136
|
+
|
|
137
|
+
---
|
|
138
|
+
|
|
139
|
+
### Audio Output
|
|
140
|
+
|
|
141
|
+
```
|
|
142
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
143
|
+
|
|
144
|
+
llm = ChatGoogleGenerativeAI(model="models/gemini-2.5-flash-preview-tts")
|
|
145
|
+
# example
|
|
146
|
+
response = llm.invoke(
|
|
147
|
+
"Please say The quick brown fox jumps over the lazy dog",
|
|
148
|
+
generation_config=dict(response_modalities=["AUDIO"]),
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
# Base64 encoded binary data of the image
|
|
152
|
+
wav_data = response.additional_kwargs.get("audio")
|
|
153
|
+
with open("output.wav", "wb") as f:
|
|
154
|
+
f.write(wav_data)
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
---
|
|
158
|
+
|
|
159
|
+
### Multimodal Outputs in Chains
|
|
160
|
+
|
|
161
|
+
You can use Gemini models in a LangChain chain:
|
|
162
|
+
|
|
163
|
+
```python
|
|
164
|
+
from langchain_core.runnables import RunnablePassthrough
|
|
165
|
+
from langchain_core.prompts import ChatPromptTemplate
|
|
166
|
+
from langchain_google_genai import ChatGoogleGenerativeAI, Modality
|
|
167
|
+
|
|
168
|
+
llm = ChatGoogleGenerativeAI(
|
|
169
|
+
model="models/gemini-2.0-flash-exp-image-generation",
|
|
170
|
+
response_modalities=[Modality.TEXT, Modality.IMAGE],
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
prompt = ChatPromptTemplate.from_messages([
|
|
174
|
+
("human", "Generate an image of {animal} and tell me the sound it makes.")
|
|
175
|
+
])
|
|
176
|
+
|
|
177
|
+
chain = {"animal": RunnablePassthrough()} | prompt | llm
|
|
178
|
+
response = chain.invoke("cat")
|
|
179
|
+
```
|
|
180
|
+
|
|
181
|
+
---
|
|
182
|
+
|
|
183
|
+
### Thinking Support
|
|
184
|
+
|
|
185
|
+
Gemini 2.5 Flash Preview supports internal reasoning ("thoughts").
|
|
186
|
+
|
|
187
|
+
```python
|
|
188
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
189
|
+
|
|
190
|
+
llm = ChatGoogleGenerativeAI(
|
|
191
|
+
model="models/gemini-2.5-flash-preview-04-17",
|
|
192
|
+
thinking_budget=1024
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
response = llm.invoke("How many O's are in Google? How did you verify your answer?")
|
|
196
|
+
reasoning_score = response.usage_metadata["output_token_details"]["reasoning"]
|
|
197
|
+
|
|
198
|
+
print("Response:", response.content)
|
|
199
|
+
print("Reasoning tokens used:", reasoning_score)
|
|
200
|
+
```
|
|
201
|
+
|
|
202
|
+
---
|
|
203
|
+
|
|
204
|
+
## Embeddings
|
|
205
|
+
|
|
206
|
+
You can use Gemini embeddings in LangChain:
|
|
207
|
+
|
|
208
|
+
```python
|
|
209
|
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
210
|
+
|
|
211
|
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
212
|
+
vector = embeddings.embed_query("hello, world!")
|
|
213
|
+
print(vector)
|
|
214
|
+
```
|
|
215
|
+
|
|
216
|
+
---
|
|
217
|
+
|
|
218
|
+
## Semantic Retrieval (RAG)
|
|
219
|
+
|
|
220
|
+
Use Gemini with RAG to retrieve relevant documents from your knowledge base.
|
|
221
|
+
|
|
222
|
+
```python
|
|
223
|
+
from langchain_google_genai.vectorstores import GoogleVectorStore
|
|
224
|
+
from langchain_text_splitters import CharacterTextSplitter
|
|
225
|
+
from langchain_community.document_loaders import DirectoryLoader
|
|
226
|
+
|
|
227
|
+
# Create a corpus (collection of documents)
|
|
228
|
+
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
|
|
229
|
+
|
|
230
|
+
# Create a document under that corpus
|
|
231
|
+
document_store = GoogleVectorStore.create_document(
|
|
232
|
+
corpus_id=corpus_store.corpus_id, display_name="My Document"
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
# Load and upload documents
|
|
236
|
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
237
|
+
for file in DirectoryLoader(path="data/").load():
|
|
238
|
+
chunks = text_splitter.split_documents([file])
|
|
239
|
+
document_store.add_documents(chunks)
|
|
240
|
+
|
|
241
|
+
# Query the document corpus
|
|
242
|
+
aqa = corpus_store.as_aqa()
|
|
243
|
+
response = aqa.invoke("What is the meaning of life?")
|
|
244
|
+
|
|
245
|
+
print("Answer:", response.answer)
|
|
246
|
+
print("Passages:", response.attributed_passages)
|
|
247
|
+
print("Answerable probability:", response.answerable_probability)
|
|
248
|
+
```
|
|
249
|
+
|
|
250
|
+
---
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
## Resources
|
|
254
|
+
|
|
255
|
+
* [LangChain Documentation](https://docs.langchain.com/)
|
|
256
|
+
* [Google Generative AI SDK](https://googleapis.github.io/python-genai/)
|
|
257
|
+
* [Gemini Model Documentation](https://ai.google.dev/)
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
|
|
@@ -1,16 +1,16 @@
|
|
|
1
1
|
langchain_google_genai/__init__.py,sha256=IsTvA3UcECLDckt3zWxK6u-n3MEa5KeEQpqsS-Z8shM,2784
|
|
2
|
-
langchain_google_genai/_common.py,sha256=
|
|
2
|
+
langchain_google_genai/_common.py,sha256=TeAmAwcRPk_dTXiIQQubamHAhuKNb_XsWy7yllkKW4w,5936
|
|
3
3
|
langchain_google_genai/_enums.py,sha256=Zj3BXXLlkm_UybegCi6fLsfFhriJCt_LAJvgatgPWQ0,252
|
|
4
|
-
langchain_google_genai/_function_utils.py,sha256=
|
|
4
|
+
langchain_google_genai/_function_utils.py,sha256=CkQyxfUVGqHfmZQwf4JtMXBsS9SOzk99Pa2TytnuLbE,21648
|
|
5
5
|
langchain_google_genai/_genai_extension.py,sha256=81a4ly5ZHlqMf37uJfdB8K41qE6J5ujLnbUypIfFf2o,20775
|
|
6
6
|
langchain_google_genai/_image_utils.py,sha256=tPrQyMvVmO8xkuow1SvA91omxUEv9ZUy1EMHNGjMAKY,5202
|
|
7
|
-
langchain_google_genai/chat_models.py,sha256=
|
|
8
|
-
langchain_google_genai/embeddings.py,sha256=
|
|
7
|
+
langchain_google_genai/chat_models.py,sha256=WUt41wshRAKS1p7NjGCod_q3Vhry7CWIrXTFEPvqc-E,73558
|
|
8
|
+
langchain_google_genai/embeddings.py,sha256=IwM6PBnuweABvYmzjgShOxrVffKbQnnIzPfKBFf8xms,10636
|
|
9
9
|
langchain_google_genai/genai_aqa.py,sha256=qB6h3-BSXqe0YLR3eeVllYzmNKK6ofI6xJLdBahUVZo,4300
|
|
10
10
|
langchain_google_genai/google_vector_store.py,sha256=4wvhIiOmc3Fo046FyafPmT9NBCLek-9bgluvuTfrbpQ,16148
|
|
11
11
|
langchain_google_genai/llms.py,sha256=ASjrEk2T_1hUXVNJlfPB8PKC4PbhPe00H3_UHunMc_Q,5334
|
|
12
12
|
langchain_google_genai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
|
-
langchain_google_genai-2.1.
|
|
14
|
-
langchain_google_genai-2.1.
|
|
15
|
-
langchain_google_genai-2.1.
|
|
16
|
-
langchain_google_genai-2.1.
|
|
13
|
+
langchain_google_genai-2.1.6.dist-info/LICENSE,sha256=DppmdYJVSc1jd0aio6ptnMUn5tIHrdAhQ12SclEBfBg,1072
|
|
14
|
+
langchain_google_genai-2.1.6.dist-info/METADATA,sha256=An9rP3RLphq82natJt0lhu4sjG-OKx2g-I1bx4YfN_Q,6995
|
|
15
|
+
langchain_google_genai-2.1.6.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
|
16
|
+
langchain_google_genai-2.1.6.dist-info/RECORD,,
|
|
@@ -1,174 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: langchain-google-genai
|
|
3
|
-
Version: 2.1.4
|
|
4
|
-
Summary: An integration package connecting Google's genai package and LangChain
|
|
5
|
-
Home-page: https://github.com/langchain-ai/langchain-google
|
|
6
|
-
License: MIT
|
|
7
|
-
Requires-Python: >=3.9,<4.0
|
|
8
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
9
|
-
Classifier: Programming Language :: Python :: 3
|
|
10
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
12
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
-
Requires-Dist: filetype (>=1.2.0,<2.0.0)
|
|
15
|
-
Requires-Dist: google-ai-generativelanguage (>=0.6.18,<0.7.0)
|
|
16
|
-
Requires-Dist: langchain-core (>=0.3.52,<0.4.0)
|
|
17
|
-
Requires-Dist: pydantic (>=2,<3)
|
|
18
|
-
Project-URL: Repository, https://github.com/langchain-ai/langchain-google
|
|
19
|
-
Project-URL: Source Code, https://github.com/langchain-ai/langchain-google/tree/main/libs/genai
|
|
20
|
-
Description-Content-Type: text/markdown
|
|
21
|
-
|
|
22
|
-
# langchain-google-genai
|
|
23
|
-
|
|
24
|
-
This package contains the LangChain integrations for Gemini through their generative-ai SDK.
|
|
25
|
-
|
|
26
|
-
## Installation
|
|
27
|
-
|
|
28
|
-
```bash
|
|
29
|
-
pip install -U langchain-google-genai
|
|
30
|
-
```
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
## Chat Models
|
|
34
|
-
|
|
35
|
-
This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
|
|
36
|
-
|
|
37
|
-
To use, install the requirements, and configure your environment.
|
|
38
|
-
|
|
39
|
-
```bash
|
|
40
|
-
export GOOGLE_API_KEY=your-api-key
|
|
41
|
-
```
|
|
42
|
-
|
|
43
|
-
Then initialize
|
|
44
|
-
|
|
45
|
-
```python
|
|
46
|
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
47
|
-
|
|
48
|
-
llm = ChatGoogleGenerativeAI(model="gemini-pro")
|
|
49
|
-
llm.invoke("Sing a ballad of LangChain.")
|
|
50
|
-
```
|
|
51
|
-
|
|
52
|
-
#### Multimodal inputs
|
|
53
|
-
|
|
54
|
-
Gemini vision model supports image inputs when providing a single chat message. Example:
|
|
55
|
-
|
|
56
|
-
```
|
|
57
|
-
from langchain_core.messages import HumanMessage
|
|
58
|
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
59
|
-
|
|
60
|
-
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
|
|
61
|
-
# example
|
|
62
|
-
message = HumanMessage(
|
|
63
|
-
content=[
|
|
64
|
-
{
|
|
65
|
-
"type": "text",
|
|
66
|
-
"text": "What's in this image?",
|
|
67
|
-
}, # You can optionally provide text parts
|
|
68
|
-
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
|
|
69
|
-
]
|
|
70
|
-
)
|
|
71
|
-
llm.invoke([message])
|
|
72
|
-
```
|
|
73
|
-
|
|
74
|
-
The value of `image_url` can be any of the following:
|
|
75
|
-
|
|
76
|
-
- A public image URL
|
|
77
|
-
- An accessible gcs file (e.g., "gcs://path/to/file.png")
|
|
78
|
-
- A base64 encoded image (e.g., ``)
|
|
79
|
-
|
|
80
|
-
#### Multimodal outputs
|
|
81
|
-
|
|
82
|
-
Gemini 2.0 Flash Experimental model supports text output with inline images
|
|
83
|
-
|
|
84
|
-
```
|
|
85
|
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
86
|
-
|
|
87
|
-
llm = ChatGoogleGenerativeAI(model="models/gemini-2.0-flash-exp-image-generation")
|
|
88
|
-
# example
|
|
89
|
-
response = llm.invoke(
|
|
90
|
-
"Generate an image of a cat and say meow",
|
|
91
|
-
generation_config=dict(response_modalities=["TEXT", "IMAGE"]),
|
|
92
|
-
)
|
|
93
|
-
|
|
94
|
-
# Base64 encoded binary data of the image
|
|
95
|
-
image_base64 = response.content[0].get("image_url").get("url").split(",")[-1]
|
|
96
|
-
meow_str = response.content[1]
|
|
97
|
-
```
|
|
98
|
-
|
|
99
|
-
#### Multimodal Outputs in Chains
|
|
100
|
-
|
|
101
|
-
```
|
|
102
|
-
from langchain_core.runnables import RunnablePassthrough
|
|
103
|
-
from langchain_core.prompts import ChatPromptTemplate
|
|
104
|
-
|
|
105
|
-
from langchain_google_genai import ChatGoogleGenerativeAI, Modality
|
|
106
|
-
|
|
107
|
-
llm = ChatGoogleGenerativeAI(
|
|
108
|
-
model="models/gemini-2.0-flash-exp-image-generation",
|
|
109
|
-
response_modalities=[Modality.TEXT, Modality.IMAGE],
|
|
110
|
-
)
|
|
111
|
-
|
|
112
|
-
prompt = ChatPromptTemplate(
|
|
113
|
-
[("human", "Generate an image of {animal} and tell me the sound of the animal")]
|
|
114
|
-
)
|
|
115
|
-
chain = {"animal": RunnablePassthrough()} | prompt | llm
|
|
116
|
-
res = chain.invoke("cat")
|
|
117
|
-
```
|
|
118
|
-
|
|
119
|
-
#### Thinking support
|
|
120
|
-
|
|
121
|
-
Gemini 2.5 Flash model supports reasoning through their thoughts
|
|
122
|
-
|
|
123
|
-
```
|
|
124
|
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
125
|
-
|
|
126
|
-
llm = ChatGoogleGenerativeAI(model="models/gemini-2.5-flash-preview-04-17", thinking_budget=1024)
|
|
127
|
-
|
|
128
|
-
response = llm.invoke(
|
|
129
|
-
"How many O's are in Google? Please tell me how you double checked the result"
|
|
130
|
-
)
|
|
131
|
-
|
|
132
|
-
assert response.usage_metadata["output_token_details"]["reasoning"] > 0
|
|
133
|
-
```
|
|
134
|
-
|
|
135
|
-
## Embeddings
|
|
136
|
-
|
|
137
|
-
This package also adds support for google's embeddings models.
|
|
138
|
-
|
|
139
|
-
```
|
|
140
|
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
141
|
-
|
|
142
|
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
143
|
-
embeddings.embed_query("hello, world!")
|
|
144
|
-
```
|
|
145
|
-
|
|
146
|
-
## Semantic Retrieval
|
|
147
|
-
|
|
148
|
-
Enables retrieval augmented generation (RAG) in your application.
|
|
149
|
-
|
|
150
|
-
```
|
|
151
|
-
# Create a new store for housing your documents.
|
|
152
|
-
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
|
|
153
|
-
|
|
154
|
-
# Create a new document under the above corpus.
|
|
155
|
-
document_store = GoogleVectorStore.create_document(
|
|
156
|
-
corpus_id=corpus_store.corpus_id, display_name="My Document"
|
|
157
|
-
)
|
|
158
|
-
|
|
159
|
-
# Upload some texts to the document.
|
|
160
|
-
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
161
|
-
for file in DirectoryLoader(path="data/").load():
|
|
162
|
-
documents = text_splitter.split_documents([file])
|
|
163
|
-
document_store.add_documents(documents)
|
|
164
|
-
|
|
165
|
-
# Talk to your entire corpus with possibly many documents.
|
|
166
|
-
aqa = corpus_store.as_aqa()
|
|
167
|
-
answer = aqa.invoke("What is the meaning of life?")
|
|
168
|
-
|
|
169
|
-
# Read the response along with the attributed passages and answerability.
|
|
170
|
-
print(response.answer)
|
|
171
|
-
print(response.attributed_passages)
|
|
172
|
-
print(response.answerable_probability)
|
|
173
|
-
```
|
|
174
|
-
|
|
File without changes
|
|
File without changes
|