langchain-dev-utils 1.3.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langchain_dev_utils/__init__.py +1 -0
- langchain_dev_utils/_utils.py +131 -0
- langchain_dev_utils/agents/__init__.py +4 -0
- langchain_dev_utils/agents/factory.py +99 -0
- langchain_dev_utils/agents/file_system.py +252 -0
- langchain_dev_utils/agents/middleware/__init__.py +21 -0
- langchain_dev_utils/agents/middleware/format_prompt.py +66 -0
- langchain_dev_utils/agents/middleware/handoffs.py +214 -0
- langchain_dev_utils/agents/middleware/model_fallback.py +49 -0
- langchain_dev_utils/agents/middleware/model_router.py +200 -0
- langchain_dev_utils/agents/middleware/plan.py +367 -0
- langchain_dev_utils/agents/middleware/summarization.py +85 -0
- langchain_dev_utils/agents/middleware/tool_call_repair.py +96 -0
- langchain_dev_utils/agents/middleware/tool_emulator.py +60 -0
- langchain_dev_utils/agents/middleware/tool_selection.py +82 -0
- langchain_dev_utils/agents/plan.py +188 -0
- langchain_dev_utils/agents/wrap.py +324 -0
- langchain_dev_utils/chat_models/__init__.py +11 -0
- langchain_dev_utils/chat_models/adapters/__init__.py +3 -0
- langchain_dev_utils/chat_models/adapters/create_utils.py +53 -0
- langchain_dev_utils/chat_models/adapters/openai_compatible.py +715 -0
- langchain_dev_utils/chat_models/adapters/register_profiles.py +15 -0
- langchain_dev_utils/chat_models/base.py +282 -0
- langchain_dev_utils/chat_models/types.py +27 -0
- langchain_dev_utils/embeddings/__init__.py +11 -0
- langchain_dev_utils/embeddings/adapters/__init__.py +3 -0
- langchain_dev_utils/embeddings/adapters/create_utils.py +45 -0
- langchain_dev_utils/embeddings/adapters/openai_compatible.py +91 -0
- langchain_dev_utils/embeddings/base.py +234 -0
- langchain_dev_utils/message_convert/__init__.py +15 -0
- langchain_dev_utils/message_convert/content.py +201 -0
- langchain_dev_utils/message_convert/format.py +69 -0
- langchain_dev_utils/pipeline/__init__.py +7 -0
- langchain_dev_utils/pipeline/parallel.py +135 -0
- langchain_dev_utils/pipeline/sequential.py +101 -0
- langchain_dev_utils/pipeline/types.py +3 -0
- langchain_dev_utils/py.typed +0 -0
- langchain_dev_utils/tool_calling/__init__.py +14 -0
- langchain_dev_utils/tool_calling/human_in_the_loop.py +284 -0
- langchain_dev_utils/tool_calling/utils.py +81 -0
- langchain_dev_utils-1.3.7.dist-info/METADATA +103 -0
- langchain_dev_utils-1.3.7.dist-info/RECORD +44 -0
- langchain_dev_utils-1.3.7.dist-info/WHEEL +4 -0
- langchain_dev_utils-1.3.7.dist-info/licenses/LICENSE +21 -0
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
from typing import Any, Awaitable, Callable, Literal, cast
|
|
2
|
+
|
|
3
|
+
from langchain.agents import AgentState
|
|
4
|
+
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
|
|
5
|
+
from langchain.agents.middleware.types import ModelCallResult
|
|
6
|
+
from langchain.tools import BaseTool, ToolRuntime, tool
|
|
7
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
|
8
|
+
from langchain_core.messages import SystemMessage, ToolMessage
|
|
9
|
+
from langgraph.types import Command
|
|
10
|
+
from typing_extensions import NotRequired, Optional, TypedDict
|
|
11
|
+
|
|
12
|
+
from langchain_dev_utils.chat_models import load_chat_model
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class MultiAgentState(AgentState):
|
|
16
|
+
active_agent: NotRequired[str]
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class AgentConfig(TypedDict):
|
|
20
|
+
model: NotRequired[str | BaseChatModel]
|
|
21
|
+
prompt: str | SystemMessage
|
|
22
|
+
tools: NotRequired[list[BaseTool | dict[str, Any]]]
|
|
23
|
+
default: NotRequired[bool]
|
|
24
|
+
handoffs: list[str] | Literal["all"]
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def _create_handoffs_tool(agent_name: str, tool_description: Optional[str] = None):
|
|
28
|
+
"""Create a tool for handoffs to a specified agent.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
agent_name (str): The name of the agent to transfer to.
|
|
32
|
+
|
|
33
|
+
Returns:
|
|
34
|
+
BaseTool: A tool instance for handoffs to the specified agent.
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
tool_name = f"transfer_to_{agent_name}"
|
|
38
|
+
if not tool_name.endswith("_agent"):
|
|
39
|
+
tool_name += "_agent"
|
|
40
|
+
if tool_description is None:
|
|
41
|
+
tool_description = f"Transfer to the {agent_name}"
|
|
42
|
+
|
|
43
|
+
@tool(name_or_callable=tool_name, description=tool_description)
|
|
44
|
+
def handoffs_tool(runtime: ToolRuntime) -> Command:
|
|
45
|
+
return Command(
|
|
46
|
+
update={
|
|
47
|
+
"messages": [
|
|
48
|
+
ToolMessage(
|
|
49
|
+
content=f"Transferred to {agent_name}",
|
|
50
|
+
tool_call_id=runtime.tool_call_id,
|
|
51
|
+
)
|
|
52
|
+
],
|
|
53
|
+
"active_agent": agent_name,
|
|
54
|
+
}
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
return handoffs_tool
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def _get_default_active_agent(state: dict[str, AgentConfig]) -> Optional[str]:
|
|
61
|
+
for agent_name, config in state.items():
|
|
62
|
+
if config.get("default", False):
|
|
63
|
+
return agent_name
|
|
64
|
+
return None
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def _transform_agent_config(
|
|
68
|
+
config: dict[str, AgentConfig],
|
|
69
|
+
handoffs_tools: list[BaseTool],
|
|
70
|
+
) -> dict[str, AgentConfig]:
|
|
71
|
+
"""Transform the agent config to add handoffs tools.
|
|
72
|
+
|
|
73
|
+
Args:
|
|
74
|
+
config (dict[str, AgentConfig]): The agent config.
|
|
75
|
+
handoffs_tools (list[BaseTool]): The list of handoffs tools.
|
|
76
|
+
|
|
77
|
+
Returns:
|
|
78
|
+
dict[str, AgentConfig]: The transformed agent config.
|
|
79
|
+
"""
|
|
80
|
+
|
|
81
|
+
new_config = {}
|
|
82
|
+
for agent_name, _cfg in config.items():
|
|
83
|
+
new_config[agent_name] = {}
|
|
84
|
+
|
|
85
|
+
if "model" in _cfg:
|
|
86
|
+
new_config[agent_name]["model"] = _cfg["model"]
|
|
87
|
+
if "prompt" in _cfg:
|
|
88
|
+
new_config[agent_name]["prompt"] = _cfg["prompt"]
|
|
89
|
+
if "default" in _cfg:
|
|
90
|
+
new_config[agent_name]["default"] = _cfg["default"]
|
|
91
|
+
if "tools" in _cfg:
|
|
92
|
+
new_config[agent_name]["tools"] = _cfg["tools"]
|
|
93
|
+
|
|
94
|
+
handoffs = _cfg.get("handoffs", [])
|
|
95
|
+
if handoffs == "all":
|
|
96
|
+
handoff_tools = [
|
|
97
|
+
handoff_tool
|
|
98
|
+
for handoff_tool in handoffs_tools
|
|
99
|
+
if handoff_tool.name != f"transfer_to_{agent_name}"
|
|
100
|
+
]
|
|
101
|
+
else:
|
|
102
|
+
if not isinstance(handoffs, list):
|
|
103
|
+
raise ValueError(
|
|
104
|
+
f"handoffs for agent {agent_name} must be a list of agent names or 'all'"
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
handoff_tools = [
|
|
108
|
+
handoff_tool
|
|
109
|
+
for handoff_tool in handoffs_tools
|
|
110
|
+
if handoff_tool.name
|
|
111
|
+
in [
|
|
112
|
+
f"transfer_to_{_handoff_agent_name}"
|
|
113
|
+
for _handoff_agent_name in handoffs
|
|
114
|
+
]
|
|
115
|
+
]
|
|
116
|
+
|
|
117
|
+
new_config[agent_name]["tools"] = [
|
|
118
|
+
*new_config[agent_name].get("tools", []),
|
|
119
|
+
*handoff_tools,
|
|
120
|
+
]
|
|
121
|
+
return new_config
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
class HandoffAgentMiddleware(AgentMiddleware):
|
|
125
|
+
"""Agent middleware for switching between multiple agents.
|
|
126
|
+
This middleware dynamically replaces model call parameters based on the currently active agent configuration, enabling seamless switching between different agents.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
agents_config (dict[str, AgentConfig]): A dictionary of agent configurations.
|
|
130
|
+
custom_handoffs_tool_descriptions (Optional[dict[str, str]]): A dictionary of custom tool descriptions for handoffs tools. Defaults to None.
|
|
131
|
+
handoffs_tool_overrides (Optional[dict[str, BaseTool]]): A dictionary of handoffs tools to override. Defaults to None.
|
|
132
|
+
|
|
133
|
+
Examples:
|
|
134
|
+
```python
|
|
135
|
+
from langchain_dev_utils.agents.middleware import HandoffAgentMiddleware
|
|
136
|
+
middleware = HandoffAgentMiddleware(agents_config)
|
|
137
|
+
```
|
|
138
|
+
"""
|
|
139
|
+
|
|
140
|
+
state_schema = MultiAgentState
|
|
141
|
+
|
|
142
|
+
def __init__(
|
|
143
|
+
self,
|
|
144
|
+
agents_config: dict[str, AgentConfig],
|
|
145
|
+
custom_handoffs_tool_descriptions: Optional[dict[str, str]] = None,
|
|
146
|
+
handoffs_tool_overrides: Optional[dict[str, BaseTool]] = None,
|
|
147
|
+
) -> None:
|
|
148
|
+
default_agent_name = _get_default_active_agent(agents_config)
|
|
149
|
+
if default_agent_name is None:
|
|
150
|
+
raise ValueError(
|
|
151
|
+
"No default agent found, you must set one by set default=True"
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
if custom_handoffs_tool_descriptions is None:
|
|
155
|
+
custom_handoffs_tool_descriptions = {}
|
|
156
|
+
|
|
157
|
+
if handoffs_tool_overrides is None:
|
|
158
|
+
handoffs_tool_overrides = {}
|
|
159
|
+
|
|
160
|
+
handoffs_tools = []
|
|
161
|
+
for agent_name in agents_config.keys():
|
|
162
|
+
if not handoffs_tool_overrides.get(agent_name):
|
|
163
|
+
handoffs_tools.append(
|
|
164
|
+
_create_handoffs_tool(
|
|
165
|
+
agent_name,
|
|
166
|
+
custom_handoffs_tool_descriptions.get(agent_name),
|
|
167
|
+
)
|
|
168
|
+
)
|
|
169
|
+
else:
|
|
170
|
+
handoffs_tools.append(
|
|
171
|
+
cast(BaseTool, handoffs_tool_overrides.get(agent_name))
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
self.default_agent_name = default_agent_name
|
|
175
|
+
self.agents_config = _transform_agent_config(
|
|
176
|
+
agents_config,
|
|
177
|
+
handoffs_tools,
|
|
178
|
+
)
|
|
179
|
+
self.tools = handoffs_tools
|
|
180
|
+
|
|
181
|
+
def _get_override_request(self, request: ModelRequest) -> ModelRequest:
|
|
182
|
+
active_agent_name = request.state.get("active_agent", self.default_agent_name)
|
|
183
|
+
|
|
184
|
+
_config = self.agents_config[active_agent_name]
|
|
185
|
+
|
|
186
|
+
params = {}
|
|
187
|
+
if _config.get("model"):
|
|
188
|
+
model = _config.get("model")
|
|
189
|
+
if isinstance(model, str):
|
|
190
|
+
model = load_chat_model(model)
|
|
191
|
+
params["model"] = model
|
|
192
|
+
if _config.get("prompt"):
|
|
193
|
+
params["system_prompt"] = _config.get("prompt")
|
|
194
|
+
if _config.get("tools"):
|
|
195
|
+
params["tools"] = _config.get("tools")
|
|
196
|
+
|
|
197
|
+
if params:
|
|
198
|
+
return request.override(**params)
|
|
199
|
+
else:
|
|
200
|
+
return request
|
|
201
|
+
|
|
202
|
+
def wrap_model_call(
|
|
203
|
+
self, request: ModelRequest, handler: Callable[[ModelRequest], ModelResponse]
|
|
204
|
+
) -> ModelCallResult:
|
|
205
|
+
override_request = self._get_override_request(request)
|
|
206
|
+
return handler(override_request)
|
|
207
|
+
|
|
208
|
+
async def awrap_model_call(
|
|
209
|
+
self,
|
|
210
|
+
request: ModelRequest,
|
|
211
|
+
handler: Callable[[ModelRequest], Awaitable[ModelResponse]],
|
|
212
|
+
) -> ModelCallResult:
|
|
213
|
+
override_request = self._get_override_request(request)
|
|
214
|
+
return await handler(override_request)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
from langchain.agents.middleware.model_fallback import (
|
|
2
|
+
ModelFallbackMiddleware as _ModelFallbackMiddleware,
|
|
3
|
+
)
|
|
4
|
+
|
|
5
|
+
from langchain_dev_utils.chat_models.base import load_chat_model
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class ModelFallbackMiddleware(_ModelFallbackMiddleware):
|
|
9
|
+
"""Automatic fallback to alternative models on errors.
|
|
10
|
+
|
|
11
|
+
Retries failed model calls with alternative models in sequence until
|
|
12
|
+
success or all models exhausted. Primary model specified in create_agent().
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
first_model: The first model to try on error. Must be a string identifier.
|
|
16
|
+
additional_models: Additional models to try in sequence on error.
|
|
17
|
+
|
|
18
|
+
Example:
|
|
19
|
+
```python
|
|
20
|
+
from langchain_dev_utils.agents.middleware import ModelFallbackMiddleware
|
|
21
|
+
from langchain_dev_utils.agents import create_agent
|
|
22
|
+
|
|
23
|
+
fallback = ModelFallbackMiddleware(
|
|
24
|
+
"vllm:qwen3-8b", ## Try first on error
|
|
25
|
+
"vllm:gpt-oss-20b", #Then this
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
agent = create_agent(
|
|
29
|
+
model="vllm:qwen3-4b", #Primary model
|
|
30
|
+
middleware=[fallback],
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
# If primary fails: tries qwen3-8b, then gpt-oss-20b
|
|
34
|
+
result = await agent.invoke({"messages": [HumanMessage("Hello")]})
|
|
35
|
+
```
|
|
36
|
+
"""
|
|
37
|
+
|
|
38
|
+
def __init__(
|
|
39
|
+
self,
|
|
40
|
+
first_model: str,
|
|
41
|
+
*additional_models: str,
|
|
42
|
+
) -> None:
|
|
43
|
+
first_chat_model = load_chat_model(first_model)
|
|
44
|
+
|
|
45
|
+
additional_chat_models = [load_chat_model(model) for model in additional_models]
|
|
46
|
+
super().__init__(
|
|
47
|
+
first_chat_model,
|
|
48
|
+
*additional_chat_models,
|
|
49
|
+
)
|
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
from typing import Annotated, Any, Awaitable, Callable, NotRequired, Optional, cast
|
|
2
|
+
|
|
3
|
+
from langchain.agents import AgentState
|
|
4
|
+
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
|
|
5
|
+
from langchain.agents.middleware.types import ModelCallResult, OmitFromInput
|
|
6
|
+
from langchain_core.language_models import BaseChatModel
|
|
7
|
+
from langchain_core.messages import AnyMessage, SystemMessage
|
|
8
|
+
from langchain_core.tools import BaseTool
|
|
9
|
+
from langgraph.runtime import Runtime
|
|
10
|
+
from pydantic import BaseModel, Field
|
|
11
|
+
from typing_extensions import TypedDict
|
|
12
|
+
|
|
13
|
+
from langchain_dev_utils.chat_models import load_chat_model
|
|
14
|
+
from langchain_dev_utils.message_convert import format_sequence
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class ModelDict(TypedDict):
|
|
18
|
+
model_name: str
|
|
19
|
+
model_description: str
|
|
20
|
+
tools: NotRequired[list[BaseTool | dict[str, Any]]]
|
|
21
|
+
model_kwargs: NotRequired[dict[str, Any]]
|
|
22
|
+
model_instance: NotRequired[BaseChatModel]
|
|
23
|
+
model_system_prompt: NotRequired[str]
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class SelectModel(BaseModel):
|
|
27
|
+
"""Tool for model selection - Must call this tool to return the finally selected model"""
|
|
28
|
+
|
|
29
|
+
model_name: str = Field(
|
|
30
|
+
...,
|
|
31
|
+
description="Selected model name (must be the full model name, for example, openai:gpt-4o)",
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
_ROUTER_MODEL_PROMPT = """
|
|
36
|
+
# Role Description
|
|
37
|
+
You are an intelligent routing model, specializing in analyzing task requirements and matching appropriate AI models.
|
|
38
|
+
|
|
39
|
+
# Available Model List
|
|
40
|
+
{model_card}
|
|
41
|
+
|
|
42
|
+
# Core Responsibilities
|
|
43
|
+
1. **Task Analysis**: Deeply understand the type, complexity, and special needs of the user's task
|
|
44
|
+
2. **Model Matching**: Select the most appropriate model based on the task characteristics
|
|
45
|
+
3. **Tool Call**: **Must call SelectModel tool** to return the final selection
|
|
46
|
+
|
|
47
|
+
# ⚠️ Important Instructions
|
|
48
|
+
**After completing the analysis, you must immediately call the SelectModel tool to return the model selection result.**
|
|
49
|
+
**This is the only way to output, and you are forbidden to return the result in any other form.**
|
|
50
|
+
|
|
51
|
+
# Selection Standards
|
|
52
|
+
- Consider the type of the task (dialogue, inference, creation, analysis, etc.)
|
|
53
|
+
- Evaluate the complexity of the task
|
|
54
|
+
- Match the professional ability and applicable scenario of the model
|
|
55
|
+
- Ensure that the model's ability matches the task requirements to a high degree
|
|
56
|
+
|
|
57
|
+
# Execution Process
|
|
58
|
+
1. Analyze user task requirements
|
|
59
|
+
2. Compare the capabilities of available models
|
|
60
|
+
3. Call **SelectModel tool** to submit selection
|
|
61
|
+
4. Task completion
|
|
62
|
+
|
|
63
|
+
Strictly adhere to tool call requirements!
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class ModelRouterState(AgentState):
|
|
68
|
+
router_model_selection: Annotated[str, OmitFromInput]
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
class ModelRouterMiddleware(AgentMiddleware):
|
|
72
|
+
"""Model routing middleware that automatically selects the most suitable model
|
|
73
|
+
based on input content.
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
router_model: Model identifier used for routing selection, it can be a
|
|
77
|
+
model name or a BaseChatModel instance
|
|
78
|
+
model_list: List of available routing models, each containing model_name,
|
|
79
|
+
model_description, tools(Optional), model_kwargs(Optional),
|
|
80
|
+
model_instance(Optional), model_system_prompt(Optional)
|
|
81
|
+
router_prompt: Routing prompt template, uses default template if None
|
|
82
|
+
|
|
83
|
+
Examples:
|
|
84
|
+
```python
|
|
85
|
+
from langchain_dev_utils.agents.middleware import ModelRouterMiddleware
|
|
86
|
+
middleware = ModelRouterMiddleware(
|
|
87
|
+
router_model="vllm:qwen3-4b",
|
|
88
|
+
model_list=model_list
|
|
89
|
+
)
|
|
90
|
+
```
|
|
91
|
+
"""
|
|
92
|
+
|
|
93
|
+
state_schema = ModelRouterState
|
|
94
|
+
|
|
95
|
+
def __init__(
|
|
96
|
+
self,
|
|
97
|
+
router_model: str | BaseChatModel,
|
|
98
|
+
model_list: list[ModelDict],
|
|
99
|
+
router_prompt: Optional[str] = None,
|
|
100
|
+
) -> None:
|
|
101
|
+
super().__init__()
|
|
102
|
+
if isinstance(router_model, BaseChatModel):
|
|
103
|
+
self.router_model = router_model.with_structured_output(SelectModel)
|
|
104
|
+
else:
|
|
105
|
+
self.router_model = load_chat_model(router_model).with_structured_output(
|
|
106
|
+
SelectModel
|
|
107
|
+
)
|
|
108
|
+
self.model_list = model_list
|
|
109
|
+
|
|
110
|
+
if router_prompt is None:
|
|
111
|
+
router_prompt = _ROUTER_MODEL_PROMPT.format(
|
|
112
|
+
model_card=format_sequence(
|
|
113
|
+
[
|
|
114
|
+
f"model_name:\n {model['model_name']}\n model_description:\n {model['model_description']}"
|
|
115
|
+
for model in model_list
|
|
116
|
+
],
|
|
117
|
+
with_num=True,
|
|
118
|
+
)
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
self.router_prompt = router_prompt
|
|
122
|
+
|
|
123
|
+
def _select_model(self, messages: list[AnyMessage]):
|
|
124
|
+
response = cast(
|
|
125
|
+
SelectModel,
|
|
126
|
+
self.router_model.invoke(
|
|
127
|
+
[SystemMessage(content=self.router_prompt), *messages]
|
|
128
|
+
),
|
|
129
|
+
)
|
|
130
|
+
return response.model_name if response is not None else "default-model"
|
|
131
|
+
|
|
132
|
+
async def _aselect_model(self, messages: list[AnyMessage]):
|
|
133
|
+
response = cast(
|
|
134
|
+
SelectModel,
|
|
135
|
+
await self.router_model.ainvoke(
|
|
136
|
+
[SystemMessage(content=self.router_prompt), *messages]
|
|
137
|
+
),
|
|
138
|
+
)
|
|
139
|
+
return response.model_name if response is not None else "default-model"
|
|
140
|
+
|
|
141
|
+
def before_agent(
|
|
142
|
+
self, state: ModelRouterState, runtime: Runtime
|
|
143
|
+
) -> dict[str, Any] | None:
|
|
144
|
+
model_name = self._select_model(state["messages"])
|
|
145
|
+
return {"router_model_selection": model_name}
|
|
146
|
+
|
|
147
|
+
async def abefore_agent(
|
|
148
|
+
self, state: ModelRouterState, runtime: Runtime
|
|
149
|
+
) -> dict[str, Any] | None:
|
|
150
|
+
model_name = await self._aselect_model(state["messages"])
|
|
151
|
+
return {"router_model_selection": model_name}
|
|
152
|
+
|
|
153
|
+
def _get_override_request(self, request: ModelRequest) -> ModelRequest:
|
|
154
|
+
model_dict = {
|
|
155
|
+
item["model_name"]: {
|
|
156
|
+
"tools": item.get("tools", None),
|
|
157
|
+
"kwargs": item.get("model_kwargs", None),
|
|
158
|
+
"system_prompt": item.get("model_system_prompt", None),
|
|
159
|
+
"model_instance": item.get("model_instance", None),
|
|
160
|
+
}
|
|
161
|
+
for item in self.model_list
|
|
162
|
+
}
|
|
163
|
+
select_model_name = request.state.get("router_model_selection", "default-model")
|
|
164
|
+
|
|
165
|
+
override_kwargs = {}
|
|
166
|
+
if select_model_name != "default-model" and select_model_name in model_dict:
|
|
167
|
+
model_values = model_dict.get(select_model_name, {})
|
|
168
|
+
if model_values["model_instance"] is not None:
|
|
169
|
+
model = model_values["model_instance"]
|
|
170
|
+
else:
|
|
171
|
+
if model_values["kwargs"] is not None:
|
|
172
|
+
model = load_chat_model(select_model_name, **model_values["kwargs"])
|
|
173
|
+
else:
|
|
174
|
+
model = load_chat_model(select_model_name)
|
|
175
|
+
override_kwargs["model"] = model
|
|
176
|
+
if model_values["tools"] is not None:
|
|
177
|
+
override_kwargs["tools"] = model_values["tools"]
|
|
178
|
+
if model_values["system_prompt"] is not None:
|
|
179
|
+
override_kwargs["system_message"] = SystemMessage(
|
|
180
|
+
content=model_values["system_prompt"]
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
if override_kwargs:
|
|
184
|
+
return request.override(**override_kwargs)
|
|
185
|
+
else:
|
|
186
|
+
return request
|
|
187
|
+
|
|
188
|
+
def wrap_model_call(
|
|
189
|
+
self, request: ModelRequest, handler: Callable[[ModelRequest], ModelResponse]
|
|
190
|
+
) -> ModelCallResult:
|
|
191
|
+
override_request = self._get_override_request(request)
|
|
192
|
+
return handler(override_request)
|
|
193
|
+
|
|
194
|
+
async def awrap_model_call(
|
|
195
|
+
self,
|
|
196
|
+
request: ModelRequest,
|
|
197
|
+
handler: Callable[[ModelRequest], Awaitable[ModelResponse]],
|
|
198
|
+
) -> ModelCallResult:
|
|
199
|
+
override_request = self._get_override_request(request)
|
|
200
|
+
return await handler(override_request)
|