langchain-dev-utils 1.3.3__py3-none-any.whl → 1.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1 +1 @@
1
- __version__ = "1.3.3"
1
+ __version__ = "1.3.5"
@@ -1,5 +1,5 @@
1
1
  from importlib import util
2
- from typing import Literal
2
+ from typing import Literal, Optional
3
3
 
4
4
  from pydantic import BaseModel
5
5
 
@@ -41,3 +41,86 @@ def _get_base_url_field_name(model_cls: type[BaseModel]) -> str | None:
41
41
  return "api_base"
42
42
 
43
43
  return None
44
+
45
+
46
+ def _validate_base_url(base_url: Optional[str] = None) -> None:
47
+ """Validate base URL format.
48
+
49
+ Args:
50
+ base_url: Base URL to validate
51
+
52
+ Raises:
53
+ ValueError: If base URL is not a valid HTTP or HTTPS URL
54
+ """
55
+ if base_url is None:
56
+ return
57
+
58
+ from urllib.parse import urlparse
59
+
60
+ parsed = urlparse(base_url.strip())
61
+
62
+ if not parsed.scheme or not parsed.netloc:
63
+ raise ValueError(
64
+ f"base_url must be a valid HTTP or HTTPS URL. Received: {base_url}"
65
+ )
66
+
67
+ if parsed.scheme not in ("http", "https"):
68
+ raise ValueError(
69
+ f"base_url must use HTTP or HTTPS protocol. Received: {parsed.scheme}"
70
+ )
71
+
72
+
73
+ def _validate_model_cls_name(model_cls_name: str) -> None:
74
+ """Validate model class name follows Python naming conventions.
75
+
76
+ Args:
77
+ model_cls_name: Class name to validate
78
+
79
+ Raises:
80
+ ValueError: If class name is invalid
81
+ """
82
+ if not model_cls_name:
83
+ raise ValueError("model_cls_name cannot be empty")
84
+
85
+ if not model_cls_name[0].isalpha():
86
+ raise ValueError(
87
+ f"model_cls_name must start with a letter. Received: {model_cls_name}"
88
+ )
89
+
90
+ if not all(c.isalnum() or c == "_" for c in model_cls_name):
91
+ raise ValueError(
92
+ f"model_cls_name can only contain letters, numbers, and underscores. Received: {model_cls_name}"
93
+ )
94
+
95
+ if model_cls_name[0].islower():
96
+ raise ValueError(
97
+ f"model_cls_name should start with an uppercase letter (PEP 8). Received: {model_cls_name}"
98
+ )
99
+
100
+
101
+ def _validate_provider_name(provider_name: str) -> None:
102
+ """Validate provider name follows Python naming conventions.
103
+
104
+ Args:
105
+ provider_name: Provider name to validate
106
+
107
+ Raises:
108
+ ValueError: If provider name is invalid
109
+ """
110
+ if not provider_name:
111
+ raise ValueError("provider_name cannot be empty")
112
+
113
+ if not provider_name[0].isalnum():
114
+ raise ValueError(
115
+ f"provider_name must start with a letter. Received: {provider_name}"
116
+ )
117
+
118
+ if not all(c.isalnum() or c == "_" for c in provider_name):
119
+ raise ValueError(
120
+ f"provider_name can only contain letters, numbers, underscores. Received: {provider_name}"
121
+ )
122
+
123
+ if len(provider_name) > 20:
124
+ raise ValueError(
125
+ f"provider_name must be 20 characters or fewer. Received: {provider_name}"
126
+ )
@@ -11,7 +11,7 @@ def format_prompt(request: ModelRequest) -> str:
11
11
  Variables are first resolved from the state, then from the context if not found.
12
12
 
13
13
  Example:
14
- >>> from langchain_dev_utils.agents.middleware.format_prompt import format_prompt
14
+ >>> from langchain_dev_utils.agents.middleware import format_prompt
15
15
  >>> from langchain.agents import create_agent
16
16
  >>> from langchain_core.messages import HumanMessage
17
17
  >>> from dataclasses import dataclass
@@ -171,7 +171,7 @@ def wrap_all_agents_as_tool(
171
171
  Example:
172
172
  >>> from langchain_dev_utils.agents import wrap_all_agents_as_tool, create_agent
173
173
  >>>
174
- >>> call_time_agent_tool = wrap_all_agents_as_tool(
174
+ >>> call_agent_tool = wrap_all_agents_as_tool(
175
175
  ... [time_agent,weather_agent],
176
176
  ... tool_name="call_sub_agents",
177
177
  ... tool_description="Used to invoke the sub-agents to perform tasks"
@@ -0,0 +1,3 @@
1
+ from .create_utils import create_openai_compatible_model
2
+
3
+ __all__ = ["create_openai_compatible_model"]
@@ -0,0 +1,53 @@
1
+ from typing import Any, Optional, cast
2
+
3
+ from langchain_core.utils import from_env
4
+
5
+ from langchain_dev_utils._utils import _check_pkg_install
6
+
7
+ from ..types import CompatibilityOptions
8
+
9
+
10
+ def create_openai_compatible_model(
11
+ model_provider: str,
12
+ base_url: Optional[str] = None,
13
+ compatibility_options: Optional[CompatibilityOptions] = None,
14
+ model_profiles: Optional[dict[str, dict[str, Any]]] = None,
15
+ chat_model_cls_name: Optional[str] = None,
16
+ ):
17
+ """Factory function for creating provider-specific OpenAI-compatible model classes.
18
+
19
+ Dynamically generates model classes for different OpenAI-compatible providers,
20
+ configuring environment variable mappings and default base URLs specific to each provider.
21
+
22
+ Args:
23
+ model_provider (str): Identifier for the OpenAI-compatible provider (e.g. `vllm`, `moonshot`)
24
+ base_url (Optional[str], optional): Default API base URL for the provider. Defaults to None. If not provided, will try to use the environment variable.
25
+ compatibility_options (Optional[CompatibilityOptions], optional): Optional configuration for compatibility options with the provider. Defaults to None.
26
+ model_profiles (Optional[dict[str, dict[str, Any]]], optional): Optional model profiles for the provider. Defaults to None.
27
+ chat_model_cls_name (Optional[str], optional): Optional custom class name for the generated model. Defaults to None.
28
+ Returns:
29
+ Type[_BaseChatOpenAICompatible]: Configured model class ready for instantiation with provider-specific settings
30
+
31
+ Examples:
32
+ >>> from langchain_dev_utils.chat_models.adapters import create_openai_compatible_chat_model
33
+ >>> ChatVLLM = create_openai_compatible_chat_model(
34
+ ... "vllm",
35
+ ... base_url="http://localhost:8000",
36
+ ... chat_model_cls_name="ChatVLLM",
37
+ ... )
38
+ >>> model = ChatVLLM(model="qwen3-4b")
39
+ >>> model.invoke("hello")
40
+ """
41
+ _check_pkg_install("langchain_openai")
42
+ from .openai_compatible import _create_openai_compatible_model
43
+
44
+ base_url = (
45
+ base_url or from_env(f"{model_provider.upper()}_API_BASE", default=None)()
46
+ )
47
+ return _create_openai_compatible_model(
48
+ chat_model_cls_name=chat_model_cls_name,
49
+ provider=model_provider,
50
+ base_url=cast(str, base_url),
51
+ compatibility_options=compatibility_options,
52
+ profiles=model_profiles,
53
+ )
@@ -12,6 +12,7 @@ from typing import (
12
12
  Type,
13
13
  TypeVar,
14
14
  Union,
15
+ cast,
15
16
  )
16
17
 
17
18
  import openai
@@ -19,7 +20,11 @@ from langchain_core.callbacks import (
19
20
  AsyncCallbackManagerForLLMRun,
20
21
  CallbackManagerForLLMRun,
21
22
  )
22
- from langchain_core.language_models import LangSmithParams, LanguageModelInput
23
+ from langchain_core.language_models import (
24
+ LangSmithParams,
25
+ LanguageModelInput,
26
+ ModelProfile,
27
+ )
23
28
  from langchain_core.messages import (
24
29
  AIMessage,
25
30
  AIMessageChunk,
@@ -45,12 +50,21 @@ from pydantic import (
45
50
  )
46
51
  from typing_extensions import Self
47
52
 
53
+ from ..._utils import (
54
+ _validate_base_url,
55
+ _validate_model_cls_name,
56
+ _validate_provider_name,
57
+ )
48
58
  from ..types import (
49
59
  CompatibilityOptions,
50
60
  ReasoningKeepPolicy,
51
61
  ResponseFormatType,
52
62
  ToolChoiceType,
53
63
  )
64
+ from .register_profiles import (
65
+ _get_profile_by_provider_and_model,
66
+ _register_profile_with_provider,
67
+ )
54
68
 
55
69
  _BM = TypeVar("_BM", bound=BaseModel)
56
70
  _DictOrPydanticClass = Union[dict[str, Any], type[_BM], type]
@@ -152,7 +166,7 @@ class _BaseChatOpenAICompatible(BaseChatOpenAI):
152
166
  Note: This is a template class and should not be exported or instantiated
153
167
  directly. Instead, use it as a base class and provide the specific provider
154
168
  name through inheritance or the factory function
155
- `_create_openai_compatible_model()`.
169
+ `create_openai_compatible_model()`.
156
170
  """
157
171
 
158
172
  model_name: str = Field(alias="model", default="openai compatible model")
@@ -283,7 +297,10 @@ class _BaseChatOpenAICompatible(BaseChatOpenAI):
283
297
  def _set_model_profile(self) -> Self:
284
298
  """Set model profile if not overridden."""
285
299
  if self.profile is None:
286
- self.profile = {}
300
+ self.profile = cast(
301
+ ModelProfile,
302
+ _get_profile_by_provider_and_model(self._provider, self.model_name),
303
+ )
287
304
  return self
288
305
 
289
306
  def _create_chat_result(
@@ -574,10 +591,57 @@ class _BaseChatOpenAICompatible(BaseChatOpenAI):
574
591
  )
575
592
 
576
593
 
594
+ def _validate_compatibility_options(
595
+ compatibility_options: Optional[CompatibilityOptions] = None,
596
+ ) -> None:
597
+ """Validate provider configuration against supported features.
598
+
599
+ Args:
600
+ compatibility_options: Optional configuration for the provider
601
+
602
+ Raises:
603
+ ValueError: If provider configuration is invalid
604
+ """
605
+ if compatibility_options is None:
606
+ compatibility_options = {}
607
+
608
+ if "supported_tool_choice" in compatibility_options:
609
+ _supported_tool_choice = compatibility_options["supported_tool_choice"]
610
+ for tool_choice in _supported_tool_choice:
611
+ if tool_choice not in ["auto", "none", "required", "specific"]:
612
+ raise ValueError(
613
+ f"Unsupported tool_choice: {tool_choice}. Please choose from 'auto', 'none', 'required','specific'."
614
+ )
615
+
616
+ if "supported_response_format" in compatibility_options:
617
+ _supported_response_format = compatibility_options["supported_response_format"]
618
+ for response_format in _supported_response_format:
619
+ if response_format not in ["json_schema", "json_mode"]:
620
+ raise ValueError(
621
+ f"Unsupported response_format: {response_format}. Please choose from 'json_schema', 'json_mode'."
622
+ )
623
+
624
+ if "reasoning_keep_policy" in compatibility_options:
625
+ _reasoning_keep_policy = compatibility_options["reasoning_keep_policy"]
626
+ if _reasoning_keep_policy not in ["never", "current", "all"]:
627
+ raise ValueError(
628
+ f"Unsupported reasoning_keep_policy: {_reasoning_keep_policy}. Please choose from 'never', 'current', 'all'."
629
+ )
630
+
631
+ if "include_usage" in compatibility_options:
632
+ _include_usage = compatibility_options["include_usage"]
633
+ if not isinstance(_include_usage, bool):
634
+ raise ValueError(
635
+ f"include_usage must be a boolean value. Received: {_include_usage}"
636
+ )
637
+
638
+
577
639
  def _create_openai_compatible_model(
578
640
  provider: str,
579
641
  base_url: str,
580
642
  compatibility_options: Optional[CompatibilityOptions] = None,
643
+ profiles: Optional[dict[str, dict[str, Any]]] = None,
644
+ chat_model_cls_name: Optional[str] = None,
581
645
  ) -> Type[_BaseChatOpenAICompatible]:
582
646
  """Factory function for creating provider-specific OpenAI-compatible model classes.
583
647
 
@@ -588,14 +652,27 @@ def _create_openai_compatible_model(
588
652
  provider: Provider identifier (e.g.`vllm`)
589
653
  base_url: Default API base URL for the provider
590
654
  compatibility_options: Optional configuration for the provider
655
+ profiles: Optional profiles for the provider
656
+ chat_model_cls_name: Optional name for the model class
591
657
 
592
658
  Returns:
593
659
  Configured model class ready for instantiation with provider-specific settings
594
660
  """
595
- chat_model_cls_name = f"Chat{provider.title()}"
661
+ chat_model_cls_name = chat_model_cls_name or f"Chat{provider.title()}"
596
662
  if compatibility_options is None:
597
663
  compatibility_options = {}
598
664
 
665
+ if profiles is not None:
666
+ _register_profile_with_provider(provider, profiles)
667
+
668
+ _validate_compatibility_options(compatibility_options)
669
+
670
+ _validate_provider_name(provider)
671
+
672
+ _validate_model_cls_name(chat_model_cls_name)
673
+
674
+ _validate_base_url(base_url)
675
+
599
676
  return create_model(
600
677
  chat_model_cls_name,
601
678
  __base__=_BaseChatOpenAICompatible,
@@ -0,0 +1,15 @@
1
+ from typing import Any
2
+
3
+ _PROFILES = {}
4
+
5
+
6
+ def _register_profile_with_provider(
7
+ provider_name: str, profile: dict[str, Any]
8
+ ) -> None:
9
+ _PROFILES.update({provider_name: profile})
10
+
11
+
12
+ def _get_profile_by_provider_and_model(
13
+ provider_name: str, model_name: str
14
+ ) -> dict[str, Any]:
15
+ return _PROFILES.get(provider_name, {}).get(model_name, {})
@@ -7,6 +7,7 @@ from langchain_core.utils import from_env
7
7
  from langchain_dev_utils._utils import (
8
8
  _check_pkg_install,
9
9
  _get_base_url_field_name,
10
+ _validate_provider_name,
10
11
  )
11
12
 
12
13
  from .types import ChatModelProvider, ChatModelType, CompatibilityOptions
@@ -126,6 +127,7 @@ def register_model_provider(
126
127
  >>> model = load_chat_model(model="vllm:qwen3-4b")
127
128
  >>> model.invoke("Hello")
128
129
  """
130
+ _validate_provider_name(provider_name)
129
131
  base_url = base_url or from_env(f"{provider_name.upper()}_API_BASE", default=None)()
130
132
  if isinstance(chat_model, str):
131
133
  _check_pkg_install("langchain_openai")
@@ -141,19 +143,12 @@ def register_model_provider(
141
143
  "when chat_model is a string, the value must be 'openai-compatible'"
142
144
  )
143
145
  chat_model = _create_openai_compatible_model(
144
- provider_name,
145
- base_url,
146
+ provider=provider_name,
147
+ base_url=base_url,
146
148
  compatibility_options=compatibility_options,
149
+ profiles=model_profiles,
147
150
  )
148
- _MODEL_PROVIDERS_DICT.update(
149
- {
150
- provider_name: {
151
- "chat_model": chat_model,
152
- "base_url": base_url,
153
- "model_profiles": model_profiles,
154
- }
155
- }
156
- )
151
+ _MODEL_PROVIDERS_DICT.update({provider_name: {"chat_model": chat_model}})
157
152
  else:
158
153
  if base_url is not None:
159
154
  _MODEL_PROVIDERS_DICT.update(
@@ -0,0 +1,3 @@
1
+ from .create_utils import create_openai_compatible_embedding
2
+
3
+ __all__ = ["create_openai_compatible_embedding"]
@@ -0,0 +1,45 @@
1
+ from typing import Optional, cast
2
+
3
+ from langchain_core.utils import from_env
4
+
5
+ from langchain_dev_utils._utils import _check_pkg_install
6
+
7
+
8
+ def create_openai_compatible_embedding(
9
+ embedding_provider: str,
10
+ base_url: Optional[str] = None,
11
+ embedding_model_cls_name: Optional[str] = None,
12
+ ):
13
+ """Factory function for creating provider-specific OpenAI-compatible embedding classes.
14
+
15
+ Dynamically generates embedding classes for different OpenAI-compatible providers,
16
+ configuring environment variable mappings and default base URLs specific to each provider.
17
+
18
+ Args:
19
+ embedding_provider (str): Identifier for the OpenAI-compatible provider (e.g. `vllm`, `moonshot`)
20
+ base_url (Optional[str], optional): Default API base URL for the provider. Defaults to None. If not provided, will try to use the environment variable.
21
+ embedding_model_cls_name (Optional[str], optional): Optional custom class name for the generated embedding. Defaults to None.
22
+ Returns:
23
+ Type[_BaseEmbeddingOpenAICompatible]: Configured embedding class ready for instantiation with provider-specific settings
24
+
25
+ Examples:
26
+ >>> from langchain_dev_utils.embeddings.adapters import create_openai_compatible_embedding
27
+ >>> VLLMEmbedding = create_openai_compatible_embedding(
28
+ ... "vllm",
29
+ ... base_url="http://localhost:8000",
30
+ ... embedding_model_cls_name="VLLMEmbedding",
31
+ ... )
32
+ >>> model = VLLMEmbedding(model="qwen3-embedding-8b")
33
+ >>> model.embed_query("hello")
34
+ """
35
+ _check_pkg_install("langchain_openai")
36
+ from .openai_compatible import _create_openai_compatible_embedding
37
+
38
+ base_url = (
39
+ base_url or from_env(f"{embedding_provider.upper()}_API_BASE", default=None)()
40
+ )
41
+ return _create_openai_compatible_embedding(
42
+ provider=embedding_provider,
43
+ base_url=cast(str, base_url),
44
+ embeddings_cls_name=embedding_model_cls_name,
45
+ )
@@ -0,0 +1,91 @@
1
+ from typing import Optional, Type
2
+
3
+ from langchain_core.utils import from_env, secret_from_env
4
+ from langchain_openai.embeddings import OpenAIEmbeddings
5
+ from pydantic import Field, SecretStr, create_model
6
+
7
+ from ..._utils import (
8
+ _validate_base_url,
9
+ _validate_model_cls_name,
10
+ _validate_provider_name,
11
+ )
12
+
13
+
14
+ class _BaseEmbeddingOpenAICompatible(OpenAIEmbeddings):
15
+ """Base class for OpenAI-Compatible embeddings.
16
+
17
+ This class extends the OpenAIEmbeddings class to support
18
+ custom API keys and base URLs for OpenAI-Compatible models.
19
+
20
+ Note: This is a template class and should not be exported or instantiated
21
+ directly. Instead, use it as a base class and provide the specific provider
22
+ name through inheritance or the factory function
23
+ `create_openai_compatible_embedding()`.
24
+ """
25
+
26
+ openai_api_key: Optional[SecretStr] = Field(
27
+ default_factory=secret_from_env("OPENAI_COMPATIBLE_API_KEY", default=None),
28
+ alias="api_key",
29
+ )
30
+ """OpenAI Compatible API key"""
31
+ openai_api_base: str = Field(
32
+ default_factory=from_env("OPENAI_COMPATIBLE_API_BASE", default=""),
33
+ alias="base_url",
34
+ )
35
+ """OpenAI Compatible API base URL"""
36
+
37
+ check_embedding_ctx_length: bool = False
38
+ """Whether to check the token length of inputs and automatically split inputs
39
+ longer than embedding_ctx_length. Defaults to False. """
40
+
41
+
42
+ def _create_openai_compatible_embedding(
43
+ provider: str,
44
+ base_url: str,
45
+ embeddings_cls_name: Optional[str] = None,
46
+ ) -> Type[_BaseEmbeddingOpenAICompatible]:
47
+ """Factory function for creating provider-specific OpenAI-compatible embeddings classes.
48
+
49
+ Dynamically generates embeddings classes for different OpenAI-compatible providers,
50
+ configuring environment variable mappings and default base URLs specific to each provider.
51
+
52
+ Args:
53
+ provider: Provider identifier (e.g.`vllm`)
54
+ base_url: Default API base URL for the provider
55
+ embeddings_cls_name: Optional custom class name for the generated embeddings. Defaults to None.
56
+
57
+ Returns:
58
+ Configured embeddings class ready for instantiation with provider-specific settings
59
+ """
60
+ embeddings_cls_name = embeddings_cls_name or f"{provider.title()}Embeddings"
61
+
62
+ if len(provider) >= 20:
63
+ raise ValueError(
64
+ f"provider must be less than 50 characters. Received: {provider}"
65
+ )
66
+
67
+ _validate_model_cls_name(embeddings_cls_name)
68
+ _validate_provider_name(provider)
69
+
70
+ _validate_base_url(base_url)
71
+
72
+ return create_model(
73
+ embeddings_cls_name,
74
+ __base__=_BaseEmbeddingOpenAICompatible,
75
+ openai_api_base=(
76
+ str,
77
+ Field(
78
+ default_factory=from_env(
79
+ f"{provider.upper()}_API_BASE", default=base_url
80
+ ),
81
+ ),
82
+ ),
83
+ openai_api_key=(
84
+ str,
85
+ Field(
86
+ default_factory=secret_from_env(
87
+ f"{provider.upper()}_API_KEY", default=None
88
+ ),
89
+ ),
90
+ ),
91
+ )
@@ -1,11 +1,12 @@
1
1
  from typing import Any, Literal, NotRequired, Optional, TypedDict, Union
2
2
 
3
3
  from langchain.embeddings.base import _SUPPORTED_PROVIDERS, Embeddings, init_embeddings
4
- from langchain_core.utils import from_env, secret_from_env
4
+ from langchain_core.utils import from_env
5
5
 
6
6
  from langchain_dev_utils._utils import (
7
7
  _check_pkg_install,
8
8
  _get_base_url_field_name,
9
+ _validate_provider_name,
9
10
  )
10
11
 
11
12
  _EMBEDDINGS_PROVIDERS_DICT = {}
@@ -87,7 +88,7 @@ def register_embeddings_provider(
87
88
  >>> embeddings = load_embeddings("vllm:qwen3-embedding-4b")
88
89
  >>> embeddings.embed_query("hello world")
89
90
  """
90
-
91
+ _validate_provider_name(provider_name)
91
92
  base_url = base_url or from_env(f"{provider_name.upper()}_API_BASE", default=None)()
92
93
  if isinstance(embeddings_model, str):
93
94
  if base_url is None:
@@ -101,12 +102,16 @@ def register_embeddings_provider(
101
102
  )
102
103
 
103
104
  _check_pkg_install("langchain_openai")
105
+ from .adapters.openai_compatible import _create_openai_compatible_embedding
104
106
 
107
+ embeddings_model = _create_openai_compatible_embedding(
108
+ provider=provider_name,
109
+ base_url=base_url,
110
+ )
105
111
  _EMBEDDINGS_PROVIDERS_DICT.update(
106
112
  {
107
113
  provider_name: {
108
114
  "embeddings_model": embeddings_model,
109
- "base_url": base_url,
110
115
  }
111
116
  }
112
117
  )
@@ -220,28 +225,10 @@ def load_embeddings(
220
225
 
221
226
  if provider in _EMBEDDINGS_PROVIDERS_DICT:
222
227
  embeddings = _EMBEDDINGS_PROVIDERS_DICT[provider]["embeddings_model"]
223
- if isinstance(embeddings, str):
224
- if not (api_key := kwargs.get("api_key")):
225
- api_key = secret_from_env(f"{provider.upper()}_API_KEY", default=None)()
226
- if not api_key:
227
- raise ValueError(
228
- f"API key for {provider} not found. Please set it in the environment."
229
- )
230
- kwargs["api_key"] = api_key
231
- if embeddings == "openai-compatible":
232
- kwargs["check_embedding_ctx_length"] = False
233
- embeddings = "openai"
234
- return init_embeddings(
235
- model=model,
236
- provider=embeddings,
237
- base_url=_EMBEDDINGS_PROVIDERS_DICT[provider]["base_url"],
238
- **kwargs,
239
- )
240
- else:
241
- if base_url := _EMBEDDINGS_PROVIDERS_DICT[provider].get("base_url"):
242
- url_key = _get_base_url_field_name(embeddings)
243
- if url_key is not None:
244
- kwargs.update({url_key: base_url})
245
- return embeddings(model=model, **kwargs)
228
+ if base_url := _EMBEDDINGS_PROVIDERS_DICT[provider].get("base_url"):
229
+ url_key = _get_base_url_field_name(embeddings)
230
+ if url_key is not None:
231
+ kwargs.update({url_key: base_url})
232
+ return embeddings(model=model, **kwargs)
246
233
  else:
247
234
  return init_embeddings(model, provider=provider, **kwargs)
@@ -1,15 +1,15 @@
1
- from .content import (
2
- aconvert_reasoning_content_for_chunk_iterator,
3
- convert_reasoning_content_for_ai_message,
4
- convert_reasoning_content_for_chunk_iterator,
5
- merge_ai_message_chunk,
6
- )
7
- from .format import format_sequence
8
-
9
- __all__ = [
10
- "convert_reasoning_content_for_ai_message",
11
- "convert_reasoning_content_for_chunk_iterator",
12
- "aconvert_reasoning_content_for_chunk_iterator",
13
- "merge_ai_message_chunk",
14
- "format_sequence",
15
- ]
1
+ from .content import (
2
+ aconvert_reasoning_content_for_chunk_iterator,
3
+ convert_reasoning_content_for_ai_message,
4
+ convert_reasoning_content_for_chunk_iterator,
5
+ merge_ai_message_chunk,
6
+ )
7
+ from .format import format_sequence
8
+
9
+ __all__ = [
10
+ "convert_reasoning_content_for_ai_message",
11
+ "convert_reasoning_content_for_chunk_iterator",
12
+ "aconvert_reasoning_content_for_chunk_iterator",
13
+ "merge_ai_message_chunk",
14
+ "format_sequence",
15
+ ]
@@ -1,69 +1,69 @@
1
- from typing import Sequence, Union
2
-
3
- from langchain_core.documents import Document
4
- from langchain_core.messages import (
5
- AIMessage,
6
- BaseMessage,
7
- HumanMessage,
8
- SystemMessage,
9
- ToolMessage,
10
- )
11
-
12
-
13
- def format_sequence(
14
- inputs: Union[Sequence[Document], Sequence[BaseMessage], Sequence[str]],
15
- separator: str = "-",
16
- with_num: bool = False,
17
- ) -> str:
18
- """Convert a list of messages, documents, or strings into a formatted string.
19
-
20
- This function extracts text content from various types (e.g., HumanMessage, Document)
21
- and joins them into a single string. Optionally adds serial numbers and a custom
22
- separator between items.
23
-
24
- Args:
25
- inputs: A list of inputs. Supported types:
26
- - langchain_core.messages: HumanMessage, AIMessage, SystemMessage, ToolMessage
27
- - langchain_core.documents.Document
28
- - str
29
- separator: The separator used to join the items. Defaults to "-".
30
- with_num: If True, prefixes each item with a serial number (e.g., "1. Hello").
31
- Defaults to False.
32
-
33
- Returns:
34
- A formatted string composed of the input contents, joined by `separator`.
35
-
36
- Example:
37
- # Format messages with default separator:
38
- >>> from langchain_dev_utils.message_convert import format_sequence
39
- >>> from langchain_core.messages import HumanMessage, AIMessage
40
- >>> messages = [
41
- ... HumanMessage(content="Hello, how are you?"),
42
- ... AIMessage(content="I'm doing well, thank you!")
43
- ... ]
44
- >>> formatted = format_sequence(messages)
45
- >>> formatted
46
-
47
- # Format with custom separator and numbering:
48
- >>> formatted = format_sequence(messages, separator="---", with_num=True)
49
- >>> formatted
50
- """
51
- if not inputs:
52
- return ""
53
-
54
- outputs = []
55
-
56
- for input_item in inputs:
57
- if isinstance(
58
- input_item, (HumanMessage, AIMessage, SystemMessage, ToolMessage)
59
- ):
60
- outputs.append(input_item.content)
61
- elif isinstance(input_item, Document):
62
- outputs.append(input_item.page_content)
63
- elif isinstance(input_item, str):
64
- outputs.append(input_item)
65
- if with_num:
66
- outputs = [f"{i + 1}. {output}" for i, output in enumerate(outputs)]
67
-
68
- str_ = "\n" + separator
69
- return separator + str_.join(outputs)
1
+ from typing import Sequence, Union
2
+
3
+ from langchain_core.documents import Document
4
+ from langchain_core.messages import (
5
+ AIMessage,
6
+ BaseMessage,
7
+ HumanMessage,
8
+ SystemMessage,
9
+ ToolMessage,
10
+ )
11
+
12
+
13
+ def format_sequence(
14
+ inputs: Union[Sequence[Document], Sequence[BaseMessage], Sequence[str]],
15
+ separator: str = "-",
16
+ with_num: bool = False,
17
+ ) -> str:
18
+ """Convert a list of messages, documents, or strings into a formatted string.
19
+
20
+ This function extracts text content from various types (e.g., HumanMessage, Document)
21
+ and joins them into a single string. Optionally adds serial numbers and a custom
22
+ separator between items.
23
+
24
+ Args:
25
+ inputs: A list of inputs. Supported types:
26
+ - langchain_core.messages: HumanMessage, AIMessage, SystemMessage, ToolMessage
27
+ - langchain_core.documents.Document
28
+ - str
29
+ separator: The separator used to join the items. Defaults to "-".
30
+ with_num: If True, prefixes each item with a serial number (e.g., "1. Hello").
31
+ Defaults to False.
32
+
33
+ Returns:
34
+ A formatted string composed of the input contents, joined by `separator`.
35
+
36
+ Example:
37
+ # Format messages with default separator:
38
+ >>> from langchain_dev_utils.message_convert import format_sequence
39
+ >>> from langchain_core.messages import HumanMessage, AIMessage
40
+ >>> messages = [
41
+ ... HumanMessage(content="Hello, how are you?"),
42
+ ... AIMessage(content="I'm doing well, thank you!")
43
+ ... ]
44
+ >>> formatted = format_sequence(messages)
45
+ >>> formatted
46
+
47
+ # Format with custom separator and numbering:
48
+ >>> formatted = format_sequence(messages, separator="---", with_num=True)
49
+ >>> formatted
50
+ """
51
+ if not inputs:
52
+ return ""
53
+
54
+ outputs = []
55
+
56
+ for input_item in inputs:
57
+ if isinstance(
58
+ input_item, (HumanMessage, AIMessage, SystemMessage, ToolMessage)
59
+ ):
60
+ outputs.append(input_item.content)
61
+ elif isinstance(input_item, Document):
62
+ outputs.append(input_item.page_content)
63
+ elif isinstance(input_item, str):
64
+ outputs.append(input_item)
65
+ if with_num:
66
+ outputs = [f"{i + 1}. {output}" for i, output in enumerate(outputs)]
67
+
68
+ str_ = "\n" + separator
69
+ return separator + str_.join(outputs)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langchain-dev-utils
3
- Version: 1.3.3
3
+ Version: 1.3.5
4
4
  Summary: A practical utility library for LangChain and LangGraph development
5
5
  Project-URL: Source Code, https://github.com/TBice123123/langchain-dev-utils
6
6
  Project-URL: repository, https://github.com/TBice123123/langchain-dev-utils
@@ -1,13 +1,13 @@
1
- langchain_dev_utils/__init__.py,sha256=Vi6om3KImlKsS_Wg5CjUgYffoi2zx7T-SRPnnGL0G7M,22
2
- langchain_dev_utils/_utils.py,sha256=MFEzR1BjXMj6HEVwt2x2omttFuDJ_rYAEbNqe99r9pM,1338
1
+ langchain_dev_utils/__init__.py,sha256=HxBccdYuMvYSmkuVJi1a6zde7NfWgx8iuIRvVLBi-XA,23
2
+ langchain_dev_utils/_utils.py,sha256=rYsVM6ceU-VzZsJyf7ikfMh3OD84xCt0MLQIB3bwf_A,3858
3
3
  langchain_dev_utils/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  langchain_dev_utils/agents/__init__.py,sha256=69_biZzyJvW9OBT1g8TX_77mp9-I_TvWo9QtlvHq83E,177
5
5
  langchain_dev_utils/agents/factory.py,sha256=8XB6y_ddf58vXlTLHBL6KCirFqkD2GjtzsuOt98sS7U,3732
6
6
  langchain_dev_utils/agents/file_system.py,sha256=Yk3eetREE26WNrnTWLoiDUpOyCJ-rhjlfFDk6foLa1E,8468
7
7
  langchain_dev_utils/agents/plan.py,sha256=WwhoiJBmVYVI9bT8HfjCzTJ_SIp9WFil0gOeznv2omQ,6497
8
- langchain_dev_utils/agents/wrap.py,sha256=O8LSieRhlqL4cwf_BPNIiJD3lhTyL6civBHcQPWCqSU,9490
8
+ langchain_dev_utils/agents/wrap.py,sha256=dJbCvljyw-ee43__2uws4H4ZhsyyX1AuavNtHrdWqN8,9485
9
9
  langchain_dev_utils/agents/middleware/__init__.py,sha256=QVQibaNHvHPyNTZ2UNFfYL153ZboaCHcoioTHK0FsiY,710
10
- langchain_dev_utils/agents/middleware/format_prompt.py,sha256=LzYiQXCRvkpfDhGPxhZwdepeU3j-HUWPJqcx3FWsfT4,2357
10
+ langchain_dev_utils/agents/middleware/format_prompt.py,sha256=yIkoSVPp0FemkjezvGsOmtgOkZDyEYQ8yh4YWYYGtVc,2343
11
11
  langchain_dev_utils/agents/middleware/handoffs.py,sha256=r196Xk0Jws1Tz6JQuvy5HEc3HAAQejCxFmJpB6KrvLU,7230
12
12
  langchain_dev_utils/agents/middleware/model_fallback.py,sha256=8xiNjTJ0yiRkPLCRfAGNnqY1TLstj1Anmiqyv5w2mA8,1633
13
13
  langchain_dev_utils/agents/middleware/model_router.py,sha256=qBspvj9ZoKfmC1pHWTO0EHHfxjgCUd-TuSbqvZl0kmg,7977
@@ -17,15 +17,20 @@ langchain_dev_utils/agents/middleware/tool_call_repair.py,sha256=oZF0Oejemqs9kSn
17
17
  langchain_dev_utils/agents/middleware/tool_emulator.py,sha256=OgtPhqturaWzF4fRSJ3f_IXvIrYrrAjlpOC5zmLtrkY,2031
18
18
  langchain_dev_utils/agents/middleware/tool_selection.py,sha256=dRH5ejR6N02Djwxt6Gd63MYkg6SV5pySlzaRt53OoZk,3113
19
19
  langchain_dev_utils/chat_models/__init__.py,sha256=YSLUyHrWEEj4y4DtGFCOnDW02VIYZdfAH800m4Klgeg,224
20
- langchain_dev_utils/chat_models/base.py,sha256=BzaoCIv145eE8b5wNDsbZDHn4EAxe4vdlptp7qXPWKk,11625
20
+ langchain_dev_utils/chat_models/base.py,sha256=G_SNvd53ogho-LRgD7DCD65xj51J2JxmOkA4URNW6ZQ,11560
21
21
  langchain_dev_utils/chat_models/types.py,sha256=MD3cv_ZIe9fCdgwisNfuxAOhy-j4YSs1ZOQYyCjlNKs,927
22
- langchain_dev_utils/chat_models/adapters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
- langchain_dev_utils/chat_models/adapters/openai_compatible.py,sha256=ws1CTZhyl8gxoY_RCLsV3cDgc8d7yDLWUa6ZfloxuMs,24239
22
+ langchain_dev_utils/chat_models/adapters/__init__.py,sha256=4tTbhAAQdpX_gWyWeH97hqS5HnaoqQqW6QBh9Qd1SKs,106
23
+ langchain_dev_utils/chat_models/adapters/create_utils.py,sha256=r8_XWLNF3Yc6sumlBhmgG1QcBa4Dsba7X3f_9YeMeGA,2479
24
+ langchain_dev_utils/chat_models/adapters/openai_compatible.py,sha256=Xsd6HN1zGGDl87bZ5NMfwKfxWkgdP4DpszEqlb4Z-MY,27198
25
+ langchain_dev_utils/chat_models/adapters/register_profiles.py,sha256=YS9ItCEq2ISoB_bp6QH5NVKOVR9-7la3r7B_xQNxZxE,366
24
26
  langchain_dev_utils/embeddings/__init__.py,sha256=zbEOaV86TUi9Zrg_dH9dpdgacWg31HMJTlTQknA9EKk,244
25
- langchain_dev_utils/embeddings/base.py,sha256=BGoWY0L7nG9iRV3d4sSagXhECXrwvS1xA-A_OVltn3k,9406
26
- langchain_dev_utils/message_convert/__init__.py,sha256=ZGrHGXPKMrZ_p9MqfIVZ4jgbEyb7aC4Q7X-muuThIYU,457
27
+ langchain_dev_utils/embeddings/base.py,sha256=GXFKZSAExMtCFUpsd6mY4NxCWCrq7JAatBw3kS9LaKY,8803
28
+ langchain_dev_utils/embeddings/adapters/__init__.py,sha256=yJEZZdzZ2fv1ExezLaNxo0VU9HJTHKYbS3T_XP8Ab9c,114
29
+ langchain_dev_utils/embeddings/adapters/create_utils.py,sha256=K4JlbjG-O5xLY3wxaVt0UZ3QwI--cVb4qyxLATKVAWQ,2012
30
+ langchain_dev_utils/embeddings/adapters/openai_compatible.py,sha256=fo7-m7dcWL4xrhSqdAHHVREsiXfVOvIrlaotaYTEiyE,3159
31
+ langchain_dev_utils/message_convert/__init__.py,sha256=nnkDa_Im0dCb5u4aa2FRB9tqB8e6H6sEGYK6Vg81u2s,472
27
32
  langchain_dev_utils/message_convert/content.py,sha256=2V1g21byg3iLv5RjUW8zv3jwYwV7IH2hNim7jGRsIes,8096
28
- langchain_dev_utils/message_convert/format.py,sha256=1TOcJ09atH7LRtn_IIuBshKDXAyqoy3Q9b0Po-S-F9g,2377
33
+ langchain_dev_utils/message_convert/format.py,sha256=NdrYX0cJn2-G1ArLSjJ7yO788KV1d83F4Kimpyft0IM,2446
29
34
  langchain_dev_utils/pipeline/__init__.py,sha256=eE6WktaLHDkqMeXDIDaLtm-OPTwtsX_Av8iK9uYrceo,186
30
35
  langchain_dev_utils/pipeline/parallel.py,sha256=nwZWbdSNeyanC9WufoJBTceotgT--UnPOfStXjgNMOc,5271
31
36
  langchain_dev_utils/pipeline/sequential.py,sha256=sYJXQzVHDKUc-UV-HMv38JTPnse1A7sRM0vqSdpHK0k,3850
@@ -33,7 +38,7 @@ langchain_dev_utils/pipeline/types.py,sha256=T3aROKKXeWvd0jcH5XkgMDQfEkLfPaiOhhV
33
38
  langchain_dev_utils/tool_calling/__init__.py,sha256=mu_WxKMcu6RoTf4vkTPbA1WSBSNc6YIqyBtOQ6iVQj4,322
34
39
  langchain_dev_utils/tool_calling/human_in_the_loop.py,sha256=7Z_QO5OZUR6K8nLoIcafc6osnvX2IYNorOJcbx6bVso,9672
35
40
  langchain_dev_utils/tool_calling/utils.py,sha256=S4-KXQ8jWmpGTXYZitovF8rxKpaSSUkFruM8LDwvcvE,2765
36
- langchain_dev_utils-1.3.3.dist-info/METADATA,sha256=PEt8qHRYBK2l-A2djg8eJEuz6uZdxZq-fPa6U6yR8Cc,4552
37
- langchain_dev_utils-1.3.3.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
38
- langchain_dev_utils-1.3.3.dist-info/licenses/LICENSE,sha256=AWAOzNEcsvCEzHOF0qby5OKxviVH_eT9Yce1sgJTico,1084
39
- langchain_dev_utils-1.3.3.dist-info/RECORD,,
41
+ langchain_dev_utils-1.3.5.dist-info/METADATA,sha256=ftpdThaRWWEeTsrAYWNlf6WJPhP9xrEVTPez-JonkTk,4552
42
+ langchain_dev_utils-1.3.5.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
43
+ langchain_dev_utils-1.3.5.dist-info/licenses/LICENSE,sha256=AWAOzNEcsvCEzHOF0qby5OKxviVH_eT9Yce1sgJTico,1084
44
+ langchain_dev_utils-1.3.5.dist-info/RECORD,,