langchain-dev-utils 1.2.9__py3-none-any.whl → 1.2.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- from typing import Any, NotRequired, Optional, TypedDict, cast
1
+ from typing import Any, Optional, cast
2
2
 
3
3
  from langchain.chat_models.base import _SUPPORTED_PROVIDERS, _init_chat_model_helper
4
4
  from langchain_core.language_models.chat_models import BaseChatModel
@@ -9,17 +9,10 @@ from langchain_dev_utils._utils import (
9
9
  _get_base_url_field_name,
10
10
  )
11
11
 
12
- from .types import ChatModelType, CompatibilityOptions
13
-
14
- _MODEL_PROVIDERS_DICT = {}
12
+ from .types import ChatModelProvider, ChatModelType, CompatibilityOptions
15
13
 
16
14
 
17
- class ChatModelProvider(TypedDict):
18
- provider_name: str
19
- chat_model: ChatModelType
20
- base_url: NotRequired[str]
21
- model_profiles: NotRequired[dict[str, dict[str, Any]]]
22
- compatibility_options: NotRequired[CompatibilityOptions]
15
+ _MODEL_PROVIDERS_DICT = {}
23
16
 
24
17
 
25
18
  def _parse_model(model: str, model_provider: Optional[str]) -> tuple[str, str]:
@@ -1,4 +1,4 @@
1
- from typing import Literal, NotRequired, TypedDict, Union
1
+ from typing import Any, Literal, NotRequired, TypedDict, Union
2
2
 
3
3
  from langchain_core.language_models.chat_models import BaseChatModel
4
4
 
@@ -17,3 +17,11 @@ class CompatibilityOptions(TypedDict):
17
17
  supported_response_format: NotRequired[ResponseFormatType]
18
18
  reasoning_keep_policy: NotRequired[ReasoningKeepPolicy]
19
19
  include_usage: NotRequired[bool]
20
+
21
+
22
+ class ChatModelProvider(TypedDict):
23
+ provider_name: str
24
+ chat_model: ChatModelType
25
+ base_url: NotRequired[str]
26
+ model_profiles: NotRequired[dict[str, dict[str, Any]]]
27
+ compatibility_options: NotRequired[CompatibilityOptions]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langchain-dev-utils
3
- Version: 1.2.9
3
+ Version: 1.2.11
4
4
  Summary: A practical utility library for LangChain and LangGraph development
5
5
  Project-URL: Source Code, https://github.com/TBice123123/langchain-dev-utils
6
6
  Project-URL: repository, https://github.com/TBice123123/langchain-dev-utils
@@ -22,26 +22,26 @@ Description-Content-Type: text/markdown
22
22
  </p>
23
23
 
24
24
  <p align="center">
25
- 📚 <a href="https://tbice123123.github.io/langchain-dev-utils-docs/en/">English</a> •
26
- <a href="https://tbice123123.github.io/langchain-dev-utils-docs/zh/">中文</a>
25
+ 📚 <a href="https://tbice123123.github.io/langchain-dev-utils/">English</a> •
26
+ <a href="https://tbice123123.github.io/langchain-dev-utils/zh/">中文</a>
27
27
  </p>
28
28
 
29
29
  [![PyPI](https://img.shields.io/pypi/v/langchain-dev-utils.svg?color=%2334D058&label=pypi%20package)](https://pypi.org/project/langchain-dev-utils/)
30
30
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
31
31
  [![Python](https://img.shields.io/badge/python-3.11|3.12|3.13|3.14-%2334D058)](https://www.python.org/downloads)
32
32
  [![Downloads](https://static.pepy.tech/badge/langchain-dev-utils/month)](https://pepy.tech/project/langchain-dev-utils)
33
- [![Documentation](https://img.shields.io/badge/docs-latest-blue)](https://tbice123123.github.io/langchain-dev-utils-docs/en/)
33
+ [![Documentation](https://img.shields.io/badge/docs-latest-blue)](https://tbice123123.github.io/langchain-dev-utils/)
34
34
 
35
- > This is the English version. For the Chinese version, please visit [Chinese Documentation](https://github.com/TBice123123/langchain-dev-utils/blob/master/README_cn.md)
35
+ > This is the English version. For the Chinese version, please visit [中文文档](https://github.com/TBice123123/langchain-dev-utils/blob/master/README_cn.md)
36
36
 
37
- **langchain-dev-utils** is a utility library focused on enhancing the development experience with LangChain and LangGraph. It provides a series of out-of-the-box utility functions that can both reduce repetitive code writing and improve code consistency and readability. By simplifying development workflows, this library helps you prototype faster, iterate more smoothly, and create clearer, more reliable LLM-based AI applications.
37
+ **langchain-dev-utils** is a utility library focused on enhancing the development experience of LangChain and LangGraph. It provides a series of ready-to-use utility functions that can reduce repetitive code writing and improve code consistency and readability. By simplifying the development workflow, this library can help you build prototypes faster, iterate more smoothly, and create clearer and more reliable AI applications based on large language models.
38
38
 
39
39
  ## 🚀 Installation
40
40
 
41
41
  ```bash
42
42
  pip install -U langchain-dev-utils
43
43
 
44
- # Install the full-featured version:
44
+ # Install full-featured version:
45
45
  pip install -U langchain-dev-utils[standard]
46
46
  ```
47
47
 
@@ -49,16 +49,16 @@ pip install -U langchain-dev-utils[standard]
49
49
 
50
50
  ### 1. **Model Management**
51
51
 
52
- In `langchain`, the `init_chat_model`/`init_embeddings` functions can be used to initialize chat model instances/embedding model instances, but the model providers they support are relatively limited. This module provides a registration function (`register_model_provider`/`register_embeddings_provider`) to register any model provider for subsequent model loading using `load_chat_model` / `load_embeddings`.
52
+ In `langchain`, the `init_chat_model`/`init_embeddings` functions can be used to initialize chat model instances/embedding model instances, but they support a limited number of model providers. This module provides registration functions (`register_model_provider`/`register_embeddings_provider`) to easily register any model provider for later use with `load_chat_model` / `load_embeddings` for model loading.
53
53
 
54
54
  #### 1.1 Chat Model Management
55
55
 
56
- Mainly consists of the following two functions:
56
+ There are two main functions:
57
57
 
58
58
  - `register_model_provider`: Register a chat model provider
59
59
  - `load_chat_model`: Load a chat model
60
60
 
61
- Example for integrating a qwen3-4b model deployed using `vllm`:
61
+ Assuming you want to use the qwen3-4b model deployed with `vllm`, the reference code is as follows:
62
62
 
63
63
  ```python
64
64
  from langchain_dev_utils.chat_models import (
@@ -80,12 +80,12 @@ print(model.invoke("Hello"))
80
80
 
81
81
  #### 1.2 Embedding Model Management
82
82
 
83
- Mainly consists of the following two functions:
83
+ There are two main functions:
84
84
 
85
85
  - `register_embeddings_provider`: Register an embedding model provider
86
86
  - `load_embeddings`: Load an embedding model
87
87
 
88
- Example for integrating a qwen3-embedding-4b model deployed using `vllm`:
88
+ Assuming you want to use the qwen3-embedding-4b model deployed with `vllm`, the reference code is as follows:
89
89
 
90
90
  ```python
91
91
  from langchain_dev_utils.embeddings import register_embeddings_provider, load_embeddings
@@ -103,23 +103,21 @@ emb = embeddings.embed_query("Hello")
103
103
  print(emb)
104
104
  ```
105
105
 
106
- **For more information about model management, please refer to**: [Chat Model Management](https://tbice123123.github.io/langchain-dev-utils-docs/en/model-management/chat.html), [Embedding Model Management](https://tbice123123.github.io/langchain-dev-utils-docs/en/model-management/embedding.html)
107
106
 
108
107
  ### 2. **Message Conversion**
109
108
 
110
109
  Includes the following features:
111
110
 
112
- - Merge reasoning content into the final response
111
+ - Merge chain-of-thought content into final responses
113
112
  - Stream content merging
114
113
  - Content formatting tools
115
114
 
116
115
  #### 2.1 Stream Content Merging
117
116
 
118
- For stream responses obtained using `stream()` and `astream()`, you can use `merge_ai_message_chunk` to merge them into a final AIMessage.
117
+ For streaming responses obtained using `stream()` and `astream()`, you can use `merge_ai_message_chunk` to merge them into a final AIMessage.
119
118
 
120
119
  ```python
121
120
  from langchain_dev_utils.message_convert import merge_ai_message_chunk
122
-
123
121
  chunks = list(model.stream("Hello"))
124
122
  merged = merge_ai_message_chunk(chunks)
125
123
  ```
@@ -137,7 +135,6 @@ text = format_sequence([
137
135
  ], separator="\n", with_num=True)
138
136
  ```
139
137
 
140
- **For more information about message conversion, please refer to**: [Message Process](https://tbice123123.github.io/langchain-dev-utils-docs/en/message-conversion/message.html), [Formatting List Content](https://tbice123123.github.io/langchain-dev-utils-docs/en/message-conversion/format.html)
141
138
 
142
139
  ### 3. **Tool Calling**
143
140
 
@@ -157,10 +154,10 @@ from langchain_dev_utils.tool_calling import has_tool_calling, parse_tool_callin
157
154
 
158
155
  @tool
159
156
  def get_current_time() -> str:
160
- """Get the current timestamp"""
157
+ """Get current timestamp"""
161
158
  return str(datetime.datetime.now().timestamp())
162
159
 
163
- response = model.bind_tools([get_current_time]).invoke("What time is it?")
160
+ response = model.bind_tools([get_current_time]).invoke("What time is it now?")
164
161
 
165
162
  if has_tool_calling(response):
166
163
  name, args = parse_tool_calling(
@@ -184,40 +181,43 @@ import datetime
184
181
  @human_in_the_loop
185
182
  @tool
186
183
  def get_current_time() -> str:
187
- """Get the current timestamp"""
184
+ """Get current timestamp"""
188
185
  return str(datetime.datetime.now().timestamp())
189
186
  ```
190
187
 
191
- **For more information about tool calling, please refer to**: [Add Human-in-the-Loop Support](https://tbice123123.github.io/langchain-dev-utils-docs/en/tool-calling/human-in-the-loop.html), [Tool Call Handling](https://tbice123123.github.io/langchain-dev-utils-docs/en/tool-calling/tool.html)
192
188
 
193
189
  ### 4. **Agent Development**
194
190
 
195
- Includes the following capabilities:
191
+ Includes the following features:
196
192
 
197
- - Multi-agent construction
198
- - Commonly used middleware components
193
+ - Multi-agent construction
194
+ - Common middleware components
199
195
 
200
196
  #### 4.1 Multi-Agent Construction
201
197
 
202
- Wrapping an agent as a tool is a common implementation pattern in multi-agent systems, as elaborated in the official LangChain documentation. To support this pattern, this library provides a pre-built utility function `wrap_agent_as_tool`, which encapsulates an agent instance into a tool that can be invoked by other agents.
198
+ Wrapping agents as tools is a common implementation pattern in multi-agent systems, which is detailed in the official LangChain documentation. To this end, this library provides a pre-built function `wrap_agent_as_tool` to implement this pattern, which can wrap an agent instance into a tool that can be called by other agents.
203
199
 
204
- **Usage Example**:
200
+ Usage example:
205
201
 
206
202
  ```python
207
203
  import datetime
208
204
  from langchain_dev_utils.agents import create_agent, wrap_agent_as_tool
209
205
  from langchain.agents import AgentState
210
206
 
211
-
212
207
  @tool
213
208
  def get_current_time() -> str:
214
- """Get the current time."""
209
+ """Get current time"""
215
210
  return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
216
211
 
212
+ time_agent = create_agent("vllm:qwen3-4b", tools=[get_current_time], name="time-agent")
213
+ call_time_agent_tool = wrap_agent_as_tool(time_agent)
217
214
 
218
- agent = create_agent("vllm:qwen3-4b", tools=[get_current_time], name="time-agent")
219
- call_time_agent_tool = wrap_agent_as_tool(agent)
220
- response = call_time_agent_tool.invoke(
215
+ agent = create_agent(
216
+ "vllm:qwen3-4b",
217
+ name="agent",
218
+ tools=[call_time_agent_tool],
219
+ )
220
+ response = agent.invoke(
221
221
  {"messages": [{"role": "user", "content": "What time is it now?"}]}
222
222
  )
223
223
  print(response)
@@ -225,10 +225,11 @@ print(response)
225
225
 
226
226
  #### 4.2 Middleware
227
227
 
228
- Provides several commonly used middleware components. Below are examples using `ToolCallRepairMiddleware` and `PlanMiddleware`.
228
+ Provides some common middleware components. Below are examples using `ToolCallRepairMiddleware` and `PlanMiddleware`.
229
229
 
230
- - `ToolCallRepairMiddleware` automatically repairs malformed tool calls found in the model's `invalid_tool_calls` output.
231
- - `PlanMiddleware` enables task planning capabilities for agents.
230
+ `ToolCallRepairMiddleware` is used to fix `invaild_tool_calls` content from large models.
231
+
232
+ `PlanMiddleware` is used for agent planning.
232
233
 
233
234
  ```python
234
235
  from langchain_dev_utils.agents.middleware import (
@@ -236,33 +237,28 @@ from langchain_dev_utils.agents.middleware import (
236
237
  PlanMiddleware,
237
238
  )
238
239
 
239
- agent = create_agent(
240
+ agent=create_agent(
240
241
  "vllm:qwen3-4b",
241
242
  name="plan-agent",
242
- middleware=[
243
- ToolCallRepairMiddleware(),
244
- PlanMiddleware(use_read_plan_tool=False)
245
- ]
243
+ middleware=[ToolCallRepairMiddleware(), PlanMiddleware(
244
+ use_read_plan_tool=False
245
+ )]
246
246
  )
247
- response = agent.invoke({"messages": [{"role": "user", "content": "Give me a travel plan for visiting New York."}]})
247
+ response = agent.invoke({"messages": [{"role": "user", "content": "Give me a travel plan to New York"}]}))
248
248
  print(response)
249
249
  ```
250
250
 
251
- **For more details on agent development and a complete list of built-in middleware, please refer to**:
252
- [Multi-Agent Construction](https://tbice123123.github.io/langchain-dev-utils-docs/en/agent-development/multi-agent.html),
253
- [Middleware](https://tbice123123.github.io/langchain-dev-utils-docs/en/agent-development/middleware.html)
254
-
255
251
 
256
252
  ### 5. **State Graph Orchestration**
257
253
 
258
- Includes the following capabilities:
254
+ Includes the following features:
259
255
 
260
256
  - Sequential graph orchestration
261
257
  - Parallel graph orchestration
262
258
 
263
259
  #### 5.1 Sequential Graph Orchestration
264
260
 
265
- Use `create_sequential_pipeline` to orchestrate multiple subgraphs in sequential order:
261
+ Using `create_sequential_pipeline`, you can orchestrate multiple subgraphs in sequence:
266
262
 
267
263
  ```python
268
264
  from langchain.agents import AgentState
@@ -277,25 +273,25 @@ register_model_provider(
277
273
  base_url="http://localhost:8000/v1",
278
274
  )
279
275
 
280
- # Build a sequential pipeline (all subgraphs executed in order)
276
+ # Build sequential pipeline (all subgraphs execute in sequence)
281
277
  graph = create_sequential_pipeline(
282
278
  sub_graphs=[
283
279
  create_agent(
284
280
  model="vllm:qwen3-4b",
285
281
  tools=[get_current_time],
286
- system_prompt="You are a time-query assistant. You can only answer questions about the current time. If the question is unrelated to time, respond with 'I cannot answer that.'",
282
+ system_prompt="You are a time query assistant, you can only answer the current time. If this question is not related to time, please directly answer that you cannot answer",
287
283
  name="time_agent",
288
284
  ),
289
285
  create_agent(
290
286
  model="vllm:qwen3-4b",
291
287
  tools=[get_current_weather],
292
- system_prompt="You are a weather-query assistant. You can only answer questions about the current weather. If the question is unrelated to weather, respond with 'I cannot answer that.'",
288
+ system_prompt="You are a weather query assistant, you can only answer the current weather. If this question is not related to weather, please directly answer that you cannot answer",
293
289
  name="weather_agent",
294
290
  ),
295
291
  create_agent(
296
292
  model="vllm:qwen3-4b",
297
293
  tools=[get_current_user],
298
- system_prompt="You are a user-query assistant. You can only answer questions about the current user. If the question is unrelated to the user, respond with 'I cannot answer that.'",
294
+ system_prompt="You are a user query assistant, you can only answer the current user. If this question is not related to users, please directly answer that you cannot answer",
299
295
  name="user_agent",
300
296
  ),
301
297
  ],
@@ -308,44 +304,42 @@ print(response)
308
304
 
309
305
  #### 5.2 Parallel Graph Orchestration
310
306
 
311
- Use `create_parallel_pipeline` to orchestrate multiple subgraphs in parallel:
307
+ Using `create_parallel_pipeline`, you can orchestrate multiple subgraphs in parallel:
312
308
 
313
309
  ```python
314
310
  from langchain_dev_utils.pipeline import create_parallel_pipeline
315
311
 
316
- # Build a parallel pipeline (all subgraphs executed concurrently)
312
+ # Build parallel pipeline (all subgraphs execute in parallel)
317
313
  graph = create_parallel_pipeline(
318
314
  sub_graphs=[
319
315
  create_agent(
320
316
  model="vllm:qwen3-4b",
321
317
  tools=[get_current_time],
322
- system_prompt="You are a time-query assistant. You can only answer questions about the current time. If the question is unrelated to time, respond with 'I cannot answer that.'",
318
+ system_prompt="You are a time query assistant, you can only answer the current time. If this question is not related to time, please directly answer that you cannot answer",
323
319
  name="time_agent",
324
320
  ),
325
321
  create_agent(
326
322
  model="vllm:qwen3-4b",
327
323
  tools=[get_current_weather],
328
- system_prompt="You are a weather-query assistant. You can only answer questions about the current weather. If the question is unrelated to weather, respond with 'I cannot answer that.'",
324
+ system_prompt="You are a weather query assistant, you can only answer the current weather. If this question is not related to weather, please directly answer that you cannot answer",
329
325
  name="weather_agent",
330
326
  ),
331
327
  create_agent(
332
328
  model="vllm:qwen3-4b",
333
329
  tools=[get_current_user],
334
- system_prompt="You are a user-query assistant. You can only answer questions about the current user. If the question is unrelated to the user, respond with 'I cannot answer that.'",
330
+ system_prompt="You are a user query assistant, you can only answer the current user. If this question is not related to users, please directly answer that you cannot answer",
335
331
  name="user_agent",
336
332
  ),
337
333
  ],
338
334
  state_schema=AgentState,
339
335
  )
340
-
341
336
  response = graph.invoke({"messages": [HumanMessage("Hello")]})
342
337
  print(response)
343
338
  ```
344
339
 
345
- **For more information about state graph orchestration, please refer to**: [State Graph Orchestration](https://tbice123123.github.io/langchain-dev-utils-docs/en/graph-orchestration/pipeline.html)
346
340
 
347
341
  ## 💬 Join the Community
348
342
 
349
343
  - [GitHub Repository](https://github.com/TBice123123/langchain-dev-utils) — Browse source code, submit Pull Requests
350
344
  - [Issue Tracker](https://github.com/TBice123123/langchain-dev-utils/issues) — Report bugs or suggest improvements
351
- - We welcome contributions in all forms — whether code, documentation, or usage examples. Let's build a more powerful and practical LangChain development ecosystem together!
345
+ - We welcome all forms of contributions — whether code, documentation, or usage examples. Let's build a more powerful and practical LangChain development ecosystem together
@@ -1,4 +1,4 @@
1
- langchain_dev_utils/__init__.py,sha256=Oh3Y6CIypkhAjW-aquBTyP3_cA-gKgKTwq9EpcWpjps,22
1
+ langchain_dev_utils/__init__.py,sha256=aBWZsCYiXXcSUsUJr3tOTQWsH7ZDqJzyMYdQbOd5Qtc,23
2
2
  langchain_dev_utils/_utils.py,sha256=MFEzR1BjXMj6HEVwt2x2omttFuDJ_rYAEbNqe99r9pM,1338
3
3
  langchain_dev_utils/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  langchain_dev_utils/agents/__init__.py,sha256=PJ-lSDZv_AXMYA3H4fx-HzJa14tPbkGmq1HX8LNfaPo,125
@@ -15,10 +15,10 @@ langchain_dev_utils/agents/middleware/tool_call_repair.py,sha256=oZF0Oejemqs9kSn
15
15
  langchain_dev_utils/agents/middleware/tool_emulator.py,sha256=OgtPhqturaWzF4fRSJ3f_IXvIrYrrAjlpOC5zmLtrkY,2031
16
16
  langchain_dev_utils/agents/middleware/tool_selection.py,sha256=dRH5ejR6N02Djwxt6Gd63MYkg6SV5pySlzaRt53OoZk,3113
17
17
  langchain_dev_utils/chat_models/__init__.py,sha256=YSLUyHrWEEj4y4DtGFCOnDW02VIYZdfAH800m4Klgeg,224
18
- langchain_dev_utils/chat_models/base.py,sha256=CVMfgqMRnIKv8z4babusa2c4RKVuiWTL39mPD8cHAf4,11880
19
- langchain_dev_utils/chat_models/types.py,sha256=kVLbT-IbvNtWPVmyVmh58le5r8XCqrEwuFB9-TWCBJk,672
18
+ langchain_dev_utils/chat_models/base.py,sha256=t-tjNMX4BSyNxvBCLX-BKfJzJcnzhUzJY4NTHhVhnPA,11627
19
+ langchain_dev_utils/chat_models/types.py,sha256=MD3cv_ZIe9fCdgwisNfuxAOhy-j4YSs1ZOQYyCjlNKs,927
20
20
  langchain_dev_utils/chat_models/adapters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- langchain_dev_utils/chat_models/adapters/openai_compatible.py,sha256=YgC8ups0owOVmY-Fwi7oxiktsC9LG6UZka8XNTCBW9g,21457
21
+ langchain_dev_utils/chat_models/adapters/openai_compatible.py,sha256=v9ewQFn75Fl6urtVo4fZgg2RRrzRXGluKf-egYAI5A0,22658
22
22
  langchain_dev_utils/embeddings/__init__.py,sha256=zbEOaV86TUi9Zrg_dH9dpdgacWg31HMJTlTQknA9EKk,244
23
23
  langchain_dev_utils/embeddings/base.py,sha256=BGoWY0L7nG9iRV3d4sSagXhECXrwvS1xA-A_OVltn3k,9406
24
24
  langchain_dev_utils/message_convert/__init__.py,sha256=ZGrHGXPKMrZ_p9MqfIVZ4jgbEyb7aC4Q7X-muuThIYU,457
@@ -31,7 +31,7 @@ langchain_dev_utils/pipeline/types.py,sha256=T3aROKKXeWvd0jcH5XkgMDQfEkLfPaiOhhV
31
31
  langchain_dev_utils/tool_calling/__init__.py,sha256=mu_WxKMcu6RoTf4vkTPbA1WSBSNc6YIqyBtOQ6iVQj4,322
32
32
  langchain_dev_utils/tool_calling/human_in_the_loop.py,sha256=7Z_QO5OZUR6K8nLoIcafc6osnvX2IYNorOJcbx6bVso,9672
33
33
  langchain_dev_utils/tool_calling/utils.py,sha256=S4-KXQ8jWmpGTXYZitovF8rxKpaSSUkFruM8LDwvcvE,2765
34
- langchain_dev_utils-1.2.9.dist-info/METADATA,sha256=zzBTgY8EUmuz08ofh1t1letaKywRXuqQgfPdqWBVw2Q,13279
35
- langchain_dev_utils-1.2.9.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
36
- langchain_dev_utils-1.2.9.dist-info/licenses/LICENSE,sha256=AWAOzNEcsvCEzHOF0qby5OKxviVH_eT9Yce1sgJTico,1084
37
- langchain_dev_utils-1.2.9.dist-info/RECORD,,
34
+ langchain_dev_utils-1.2.11.dist-info/METADATA,sha256=4IGI_v0rIC8_SW13_j3h2JyPS_-rKPvdK6m6lTW2ymE,11853
35
+ langchain_dev_utils-1.2.11.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
36
+ langchain_dev_utils-1.2.11.dist-info/licenses/LICENSE,sha256=AWAOzNEcsvCEzHOF0qby5OKxviVH_eT9Yce1sgJTico,1084
37
+ langchain_dev_utils-1.2.11.dist-info/RECORD,,