langchain-core 1.0.0rc3__py3-none-any.whl → 1.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of langchain-core might be problematic. Click here for more details.

Files changed (76) hide show
  1. langchain_core/agents.py +2 -4
  2. langchain_core/caches.py +16 -7
  3. langchain_core/callbacks/base.py +0 -4
  4. langchain_core/callbacks/manager.py +0 -11
  5. langchain_core/chat_history.py +5 -5
  6. langchain_core/document_loaders/base.py +6 -4
  7. langchain_core/document_loaders/blob_loaders.py +1 -1
  8. langchain_core/document_loaders/langsmith.py +9 -13
  9. langchain_core/documents/__init__.py +24 -3
  10. langchain_core/documents/base.py +72 -61
  11. langchain_core/documents/compressor.py +6 -6
  12. langchain_core/documents/transformers.py +6 -6
  13. langchain_core/embeddings/fake.py +2 -2
  14. langchain_core/example_selectors/semantic_similarity.py +7 -7
  15. langchain_core/exceptions.py +2 -2
  16. langchain_core/indexing/__init__.py +1 -1
  17. langchain_core/indexing/api.py +62 -62
  18. langchain_core/indexing/base.py +20 -22
  19. langchain_core/indexing/in_memory.py +2 -4
  20. langchain_core/language_models/__init__.py +6 -5
  21. langchain_core/language_models/base.py +7 -8
  22. langchain_core/language_models/chat_models.py +84 -78
  23. langchain_core/language_models/fake_chat_models.py +1 -1
  24. langchain_core/language_models/llms.py +20 -18
  25. langchain_core/load/dump.py +6 -8
  26. langchain_core/load/serializable.py +4 -1
  27. langchain_core/messages/__init__.py +9 -0
  28. langchain_core/messages/ai.py +11 -7
  29. langchain_core/messages/base.py +4 -0
  30. langchain_core/messages/block_translators/google_genai.py +5 -3
  31. langchain_core/messages/content.py +4 -4
  32. langchain_core/messages/utils.py +17 -17
  33. langchain_core/output_parsers/__init__.py +17 -1
  34. langchain_core/output_parsers/base.py +3 -0
  35. langchain_core/output_parsers/format_instructions.py +9 -4
  36. langchain_core/output_parsers/json.py +5 -2
  37. langchain_core/output_parsers/list.py +16 -16
  38. langchain_core/output_parsers/openai_tools.py +2 -2
  39. langchain_core/output_parsers/pydantic.py +1 -1
  40. langchain_core/output_parsers/string.py +3 -3
  41. langchain_core/output_parsers/xml.py +28 -25
  42. langchain_core/outputs/generation.py +2 -3
  43. langchain_core/prompt_values.py +0 -6
  44. langchain_core/prompts/base.py +5 -3
  45. langchain_core/prompts/chat.py +60 -52
  46. langchain_core/prompts/string.py +5 -2
  47. langchain_core/prompts/structured.py +12 -8
  48. langchain_core/rate_limiters.py +1 -3
  49. langchain_core/retrievers.py +41 -37
  50. langchain_core/runnables/base.py +25 -29
  51. langchain_core/runnables/branch.py +9 -9
  52. langchain_core/runnables/config.py +2 -4
  53. langchain_core/runnables/configurable.py +3 -3
  54. langchain_core/runnables/fallbacks.py +1 -1
  55. langchain_core/runnables/graph.py +7 -3
  56. langchain_core/runnables/retry.py +1 -1
  57. langchain_core/runnables/schema.py +2 -5
  58. langchain_core/runnables/utils.py +3 -3
  59. langchain_core/stores.py +4 -6
  60. langchain_core/tools/base.py +68 -14
  61. langchain_core/tools/convert.py +8 -7
  62. langchain_core/tools/retriever.py +6 -5
  63. langchain_core/tools/structured.py +7 -5
  64. langchain_core/tracers/event_stream.py +4 -1
  65. langchain_core/tracers/log_stream.py +6 -3
  66. langchain_core/utils/function_calling.py +8 -0
  67. langchain_core/utils/json_schema.py +1 -1
  68. langchain_core/utils/strings.py +1 -4
  69. langchain_core/utils/utils.py +12 -5
  70. langchain_core/vectorstores/base.py +130 -130
  71. langchain_core/vectorstores/in_memory.py +4 -4
  72. langchain_core/vectorstores/utils.py +1 -1
  73. langchain_core/version.py +1 -1
  74. {langchain_core-1.0.0rc3.dist-info → langchain_core-1.0.2.dist-info}/METADATA +8 -7
  75. {langchain_core-1.0.0rc3.dist-info → langchain_core-1.0.2.dist-info}/RECORD +76 -76
  76. {langchain_core-1.0.0rc3.dist-info → langchain_core-1.0.2.dist-info}/WHEEL +0 -0
@@ -52,22 +52,22 @@ class VectorStore(ABC):
52
52
  ids: list[str] | None = None,
53
53
  **kwargs: Any,
54
54
  ) -> list[str]:
55
- """Run more texts through the embeddings and add to the vectorstore.
55
+ """Run more texts through the embeddings and add to the `VectorStore`.
56
56
 
57
57
  Args:
58
- texts: Iterable of strings to add to the vectorstore.
58
+ texts: Iterable of strings to add to the `VectorStore`.
59
59
  metadatas: Optional list of metadatas associated with the texts.
60
60
  ids: Optional list of IDs associated with the texts.
61
- **kwargs: vectorstore specific parameters.
61
+ **kwargs: `VectorStore` specific parameters.
62
62
  One of the kwargs should be `ids` which is a list of ids
63
63
  associated with the texts.
64
64
 
65
65
  Returns:
66
- List of ids from adding the texts into the vectorstore.
66
+ List of IDs from adding the texts into the `VectorStore`.
67
67
 
68
68
  Raises:
69
69
  ValueError: If the number of metadatas does not match the number of texts.
70
- ValueError: If the number of ids does not match the number of texts.
70
+ ValueError: If the number of IDs does not match the number of texts.
71
71
  """
72
72
  if type(self).add_documents != VectorStore.add_documents:
73
73
  # This condition is triggered if the subclass has provided
@@ -109,11 +109,12 @@ class VectorStore(ABC):
109
109
  """Delete by vector ID or other criteria.
110
110
 
111
111
  Args:
112
- ids: List of ids to delete. If `None`, delete all.
112
+ ids: List of IDs to delete. If `None`, delete all.
113
113
  **kwargs: Other keyword arguments that subclasses might use.
114
114
 
115
115
  Returns:
116
- True if deletion is successful, False otherwise, None if not implemented.
116
+ `True` if deletion is successful, `False` otherwise, `None` if not
117
+ implemented.
117
118
  """
118
119
  msg = "delete method must be implemented by subclass."
119
120
  raise NotImplementedError(msg)
@@ -135,12 +136,10 @@ class VectorStore(ABC):
135
136
  some IDs.
136
137
 
137
138
  Args:
138
- ids: List of ids to retrieve.
139
+ ids: List of IDs to retrieve.
139
140
 
140
141
  Returns:
141
- List of Documents.
142
-
143
- !!! version-added "Added in version 0.2.11"
142
+ List of `Document` objects.
144
143
  """
145
144
  msg = f"{self.__class__.__name__} does not yet support get_by_ids."
146
145
  raise NotImplementedError(msg)
@@ -163,12 +162,10 @@ class VectorStore(ABC):
163
162
  some IDs.
164
163
 
165
164
  Args:
166
- ids: List of ids to retrieve.
165
+ ids: List of IDs to retrieve.
167
166
 
168
167
  Returns:
169
- List of Documents.
170
-
171
- !!! version-added "Added in version 0.2.11"
168
+ List of `Document` objects.
172
169
  """
173
170
  return await run_in_executor(None, self.get_by_ids, ids)
174
171
 
@@ -176,11 +173,12 @@ class VectorStore(ABC):
176
173
  """Async delete by vector ID or other criteria.
177
174
 
178
175
  Args:
179
- ids: List of ids to delete. If `None`, delete all.
176
+ ids: List of IDs to delete. If `None`, delete all.
180
177
  **kwargs: Other keyword arguments that subclasses might use.
181
178
 
182
179
  Returns:
183
- True if deletion is successful, False otherwise, None if not implemented.
180
+ `True` if deletion is successful, `False` otherwise, `None` if not
181
+ implemented.
184
182
  """
185
183
  return await run_in_executor(None, self.delete, ids, **kwargs)
186
184
 
@@ -192,20 +190,20 @@ class VectorStore(ABC):
192
190
  ids: list[str] | None = None,
193
191
  **kwargs: Any,
194
192
  ) -> list[str]:
195
- """Async run more texts through the embeddings and add to the vectorstore.
193
+ """Async run more texts through the embeddings and add to the `VectorStore`.
196
194
 
197
195
  Args:
198
- texts: Iterable of strings to add to the vectorstore.
196
+ texts: Iterable of strings to add to the `VectorStore`.
199
197
  metadatas: Optional list of metadatas associated with the texts.
200
198
  ids: Optional list
201
- **kwargs: vectorstore specific parameters.
199
+ **kwargs: `VectorStore` specific parameters.
202
200
 
203
201
  Returns:
204
- List of ids from adding the texts into the vectorstore.
202
+ List of IDs from adding the texts into the `VectorStore`.
205
203
 
206
204
  Raises:
207
205
  ValueError: If the number of metadatas does not match the number of texts.
208
- ValueError: If the number of ids does not match the number of texts.
206
+ ValueError: If the number of IDs does not match the number of texts.
209
207
  """
210
208
  if ids is not None:
211
209
  # For backward compatibility
@@ -234,13 +232,13 @@ class VectorStore(ABC):
234
232
  return await run_in_executor(None, self.add_texts, texts, metadatas, **kwargs)
235
233
 
236
234
  def add_documents(self, documents: list[Document], **kwargs: Any) -> list[str]:
237
- """Add or update documents in the vectorstore.
235
+ """Add or update documents in the `VectorStore`.
238
236
 
239
237
  Args:
240
- documents: Documents to add to the vectorstore.
238
+ documents: Documents to add to the `VectorStore`.
241
239
  **kwargs: Additional keyword arguments.
242
- if kwargs contains ids and documents contain ids,
243
- the ids in the kwargs will receive precedence.
240
+ if kwargs contains IDs and documents contain ids,
241
+ the IDs in the kwargs will receive precedence.
244
242
 
245
243
  Returns:
246
244
  List of IDs of the added texts.
@@ -266,10 +264,10 @@ class VectorStore(ABC):
266
264
  async def aadd_documents(
267
265
  self, documents: list[Document], **kwargs: Any
268
266
  ) -> list[str]:
269
- """Async run more documents through the embeddings and add to the vectorstore.
267
+ """Async run more documents through the embeddings and add to the `VectorStore`.
270
268
 
271
269
  Args:
272
- documents: Documents to add to the vectorstore.
270
+ documents: Documents to add to the `VectorStore`.
273
271
  **kwargs: Additional keyword arguments.
274
272
 
275
273
  Returns:
@@ -295,17 +293,17 @@ class VectorStore(ABC):
295
293
  """Return docs most similar to query using a specified search type.
296
294
 
297
295
  Args:
298
- query: Input text
299
- search_type: Type of search to perform. Can be "similarity",
300
- "mmr", or "similarity_score_threshold".
296
+ query: Input text.
297
+ search_type: Type of search to perform. Can be `'similarity'`, `'mmr'`, or
298
+ `'similarity_score_threshold'`.
301
299
  **kwargs: Arguments to pass to the search method.
302
300
 
303
301
  Returns:
304
- List of Documents most similar to the query.
302
+ List of `Document` objects most similar to the query.
305
303
 
306
304
  Raises:
307
- ValueError: If search_type is not one of "similarity",
308
- "mmr", or "similarity_score_threshold".
305
+ ValueError: If `search_type` is not one of `'similarity'`,
306
+ `'mmr'`, or `'similarity_score_threshold'`.
309
307
  """
310
308
  if search_type == "similarity":
311
309
  return self.similarity_search(query, **kwargs)
@@ -330,16 +328,16 @@ class VectorStore(ABC):
330
328
 
331
329
  Args:
332
330
  query: Input text.
333
- search_type: Type of search to perform. Can be "similarity",
334
- "mmr", or "similarity_score_threshold".
331
+ search_type: Type of search to perform. Can be `'similarity'`, `'mmr'`, or
332
+ `'similarity_score_threshold'`.
335
333
  **kwargs: Arguments to pass to the search method.
336
334
 
337
335
  Returns:
338
- List of Documents most similar to the query.
336
+ List of `Document` objects most similar to the query.
339
337
 
340
338
  Raises:
341
- ValueError: If search_type is not one of "similarity",
342
- "mmr", or "similarity_score_threshold".
339
+ ValueError: If `search_type` is not one of `'similarity'`,
340
+ `'mmr'`, or `'similarity_score_threshold'`.
343
341
  """
344
342
  if search_type == "similarity":
345
343
  return await self.asimilarity_search(query, **kwargs)
@@ -364,11 +362,11 @@ class VectorStore(ABC):
364
362
 
365
363
  Args:
366
364
  query: Input text.
367
- k: Number of Documents to return.
365
+ k: Number of `Document` objects to return.
368
366
  **kwargs: Arguments to pass to the search method.
369
367
 
370
368
  Returns:
371
- List of Documents most similar to the query.
369
+ List of `Document` objects most similar to the query.
372
370
  """
373
371
 
374
372
  @staticmethod
@@ -423,7 +421,7 @@ class VectorStore(ABC):
423
421
  **kwargs: Arguments to pass to the search method.
424
422
 
425
423
  Returns:
426
- List of Tuples of (doc, similarity_score).
424
+ List of Tuples of `(doc, similarity_score)`.
427
425
  """
428
426
  raise NotImplementedError
429
427
 
@@ -437,7 +435,7 @@ class VectorStore(ABC):
437
435
  **kwargs: Arguments to pass to the search method.
438
436
 
439
437
  Returns:
440
- List of Tuples of (doc, similarity_score).
438
+ List of Tuples of `(doc, similarity_score)`.
441
439
  """
442
440
  # This is a temporary workaround to make the similarity search
443
441
  # asynchronous. The proper solution is to make the similarity search
@@ -455,19 +453,19 @@ class VectorStore(ABC):
455
453
  """Default similarity search with relevance scores.
456
454
 
457
455
  Modify if necessary in subclass.
458
- Return docs and relevance scores in the range [0, 1].
456
+ Return docs and relevance scores in the range `[0, 1]`.
459
457
 
460
- 0 is dissimilar, 1 is most similar.
458
+ `0` is dissimilar, `1` is most similar.
461
459
 
462
460
  Args:
463
461
  query: Input text.
464
- k: Number of Documents to return.
465
- **kwargs: kwargs to be passed to similarity search. Should include:
466
- score_threshold: Optional, a floating point value between 0 to 1 to
467
- filter the resulting set of retrieved docs
462
+ k: Number of `Document` objects to return.
463
+ **kwargs: kwargs to be passed to similarity search. Should include
464
+ `score_threshold`, An optional floating point value between `0` to `1`
465
+ to filter the resulting set of retrieved docs
468
466
 
469
467
  Returns:
470
- List of Tuples of (doc, similarity_score)
468
+ List of Tuples of `(doc, similarity_score)`
471
469
  """
472
470
  relevance_score_fn = self._select_relevance_score_fn()
473
471
  docs_and_scores = self.similarity_search_with_score(query, k, **kwargs)
@@ -482,19 +480,19 @@ class VectorStore(ABC):
482
480
  """Default similarity search with relevance scores.
483
481
 
484
482
  Modify if necessary in subclass.
485
- Return docs and relevance scores in the range [0, 1].
483
+ Return docs and relevance scores in the range `[0, 1]`.
486
484
 
487
- 0 is dissimilar, 1 is most similar.
485
+ `0` is dissimilar, `1` is most similar.
488
486
 
489
487
  Args:
490
488
  query: Input text.
491
- k: Number of Documents to return.
492
- **kwargs: kwargs to be passed to similarity search. Should include:
493
- score_threshold: Optional, a floating point value between 0 to 1 to
494
- filter the resulting set of retrieved docs
489
+ k: Number of `Document` objects to return.
490
+ **kwargs: kwargs to be passed to similarity search. Should include
491
+ `score_threshold`, An optional floating point value between `0` to `1`
492
+ to filter the resulting set of retrieved docs
495
493
 
496
494
  Returns:
497
- List of Tuples of (doc, similarity_score)
495
+ List of Tuples of `(doc, similarity_score)`
498
496
  """
499
497
  relevance_score_fn = self._select_relevance_score_fn()
500
498
  docs_and_scores = await self.asimilarity_search_with_score(query, k, **kwargs)
@@ -506,19 +504,19 @@ class VectorStore(ABC):
506
504
  k: int = 4,
507
505
  **kwargs: Any,
508
506
  ) -> list[tuple[Document, float]]:
509
- """Return docs and relevance scores in the range [0, 1].
507
+ """Return docs and relevance scores in the range `[0, 1]`.
510
508
 
511
- 0 is dissimilar, 1 is most similar.
509
+ `0` is dissimilar, `1` is most similar.
512
510
 
513
511
  Args:
514
512
  query: Input text.
515
- k: Number of Documents to return.
516
- **kwargs: kwargs to be passed to similarity search. Should include:
517
- score_threshold: Optional, a floating point value between 0 to 1 to
518
- filter the resulting set of retrieved docs.
513
+ k: Number of `Document` objects to return.
514
+ **kwargs: kwargs to be passed to similarity search. Should include
515
+ `score_threshold`, An optional floating point value between `0` to `1`
516
+ to filter the resulting set of retrieved docs
519
517
 
520
518
  Returns:
521
- List of Tuples of (doc, similarity_score).
519
+ List of Tuples of `(doc, similarity_score)`.
522
520
  """
523
521
  score_threshold = kwargs.pop("score_threshold", None)
524
522
 
@@ -555,19 +553,19 @@ class VectorStore(ABC):
555
553
  k: int = 4,
556
554
  **kwargs: Any,
557
555
  ) -> list[tuple[Document, float]]:
558
- """Async return docs and relevance scores in the range [0, 1].
556
+ """Async return docs and relevance scores in the range `[0, 1]`.
559
557
 
560
- 0 is dissimilar, 1 is most similar.
558
+ `0` is dissimilar, `1` is most similar.
561
559
 
562
560
  Args:
563
561
  query: Input text.
564
- k: Number of Documents to return.
565
- **kwargs: kwargs to be passed to similarity search. Should include:
566
- score_threshold: Optional, a floating point value between 0 to 1 to
567
- filter the resulting set of retrieved docs
562
+ k: Number of `Document` objects to return.
563
+ **kwargs: kwargs to be passed to similarity search. Should include
564
+ `score_threshold`, An optional floating point value between `0` to `1`
565
+ to filter the resulting set of retrieved docs
568
566
 
569
567
  Returns:
570
- List of Tuples of (doc, similarity_score)
568
+ List of Tuples of `(doc, similarity_score)`
571
569
  """
572
570
  score_threshold = kwargs.pop("score_threshold", None)
573
571
 
@@ -605,11 +603,11 @@ class VectorStore(ABC):
605
603
 
606
604
  Args:
607
605
  query: Input text.
608
- k: Number of Documents to return.
606
+ k: Number of `Document` objects to return.
609
607
  **kwargs: Arguments to pass to the search method.
610
608
 
611
609
  Returns:
612
- List of Documents most similar to the query.
610
+ List of `Document` objects most similar to the query.
613
611
  """
614
612
  # This is a temporary workaround to make the similarity search
615
613
  # asynchronous. The proper solution is to make the similarity search
@@ -623,11 +621,11 @@ class VectorStore(ABC):
623
621
 
624
622
  Args:
625
623
  embedding: Embedding to look up documents similar to.
626
- k: Number of Documents to return.
624
+ k: Number of `Document` objects to return.
627
625
  **kwargs: Arguments to pass to the search method.
628
626
 
629
627
  Returns:
630
- List of Documents most similar to the query vector.
628
+ List of `Document` objects most similar to the query vector.
631
629
  """
632
630
  raise NotImplementedError
633
631
 
@@ -638,11 +636,11 @@ class VectorStore(ABC):
638
636
 
639
637
  Args:
640
638
  embedding: Embedding to look up documents similar to.
641
- k: Number of Documents to return.
639
+ k: Number of `Document` objects to return.
642
640
  **kwargs: Arguments to pass to the search method.
643
641
 
644
642
  Returns:
645
- List of Documents most similar to the query vector.
643
+ List of `Document` objects most similar to the query vector.
646
644
  """
647
645
  # This is a temporary workaround to make the similarity search
648
646
  # asynchronous. The proper solution is to make the similarity search
@@ -666,15 +664,15 @@ class VectorStore(ABC):
666
664
 
667
665
  Args:
668
666
  query: Text to look up documents similar to.
669
- k: Number of Documents to return.
670
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
671
- lambda_mult: Number between 0 and 1 that determines the degree
667
+ k: Number of `Document` objects to return.
668
+ fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
669
+ lambda_mult: Number between `0` and `1` that determines the degree
672
670
  of diversity among the results with 0 corresponding
673
- to maximum diversity and 1 to minimum diversity.
671
+ to maximum diversity and `1` to minimum diversity.
674
672
  **kwargs: Arguments to pass to the search method.
675
673
 
676
674
  Returns:
677
- List of Documents selected by maximal marginal relevance.
675
+ List of `Document` objects selected by maximal marginal relevance.
678
676
  """
679
677
  raise NotImplementedError
680
678
 
@@ -693,15 +691,15 @@ class VectorStore(ABC):
693
691
 
694
692
  Args:
695
693
  query: Text to look up documents similar to.
696
- k: Number of Documents to return.
697
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
698
- lambda_mult: Number between 0 and 1 that determines the degree
694
+ k: Number of `Document` objects to return.
695
+ fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
696
+ lambda_mult: Number between `0` and `1` that determines the degree
699
697
  of diversity among the results with 0 corresponding
700
- to maximum diversity and 1 to minimum diversity.
698
+ to maximum diversity and `1` to minimum diversity.
701
699
  **kwargs: Arguments to pass to the search method.
702
700
 
703
701
  Returns:
704
- List of Documents selected by maximal marginal relevance.
702
+ List of `Document` objects selected by maximal marginal relevance.
705
703
  """
706
704
  # This is a temporary workaround to make the similarity search
707
705
  # asynchronous. The proper solution is to make the similarity search
@@ -731,15 +729,15 @@ class VectorStore(ABC):
731
729
 
732
730
  Args:
733
731
  embedding: Embedding to look up documents similar to.
734
- k: Number of Documents to return.
735
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
736
- lambda_mult: Number between 0 and 1 that determines the degree
732
+ k: Number of `Document` objects to return.
733
+ fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
734
+ lambda_mult: Number between `0` and `1` that determines the degree
737
735
  of diversity among the results with 0 corresponding
738
- to maximum diversity and 1 to minimum diversity.
736
+ to maximum diversity and `1` to minimum diversity.
739
737
  **kwargs: Arguments to pass to the search method.
740
738
 
741
739
  Returns:
742
- List of Documents selected by maximal marginal relevance.
740
+ List of `Document` objects selected by maximal marginal relevance.
743
741
  """
744
742
  raise NotImplementedError
745
743
 
@@ -758,15 +756,15 @@ class VectorStore(ABC):
758
756
 
759
757
  Args:
760
758
  embedding: Embedding to look up documents similar to.
761
- k: Number of Documents to return.
762
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
763
- lambda_mult: Number between 0 and 1 that determines the degree
759
+ k: Number of `Document` objects to return.
760
+ fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
761
+ lambda_mult: Number between `0` and `1` that determines the degree
764
762
  of diversity among the results with 0 corresponding
765
- to maximum diversity and 1 to minimum diversity.
763
+ to maximum diversity and `1` to minimum diversity.
766
764
  **kwargs: Arguments to pass to the search method.
767
765
 
768
766
  Returns:
769
- List of Documents selected by maximal marginal relevance.
767
+ List of `Document` objects selected by maximal marginal relevance.
770
768
  """
771
769
  return await run_in_executor(
772
770
  None,
@@ -785,15 +783,15 @@ class VectorStore(ABC):
785
783
  embedding: Embeddings,
786
784
  **kwargs: Any,
787
785
  ) -> Self:
788
- """Return VectorStore initialized from documents and embeddings.
786
+ """Return `VectorStore` initialized from documents and embeddings.
789
787
 
790
788
  Args:
791
- documents: List of Documents to add to the vectorstore.
789
+ documents: List of `Document` objects to add to the `VectorStore`.
792
790
  embedding: Embedding function to use.
793
791
  **kwargs: Additional keyword arguments.
794
792
 
795
793
  Returns:
796
- VectorStore initialized from documents and embeddings.
794
+ `VectorStore` initialized from documents and embeddings.
797
795
  """
798
796
  texts = [d.page_content for d in documents]
799
797
  metadatas = [d.metadata for d in documents]
@@ -815,15 +813,15 @@ class VectorStore(ABC):
815
813
  embedding: Embeddings,
816
814
  **kwargs: Any,
817
815
  ) -> Self:
818
- """Async return VectorStore initialized from documents and embeddings.
816
+ """Async return `VectorStore` initialized from documents and embeddings.
819
817
 
820
818
  Args:
821
- documents: List of Documents to add to the vectorstore.
819
+ documents: List of `Document` objects to add to the `VectorStore`.
822
820
  embedding: Embedding function to use.
823
821
  **kwargs: Additional keyword arguments.
824
822
 
825
823
  Returns:
826
- VectorStore initialized from documents and embeddings.
824
+ `VectorStore` initialized from documents and embeddings.
827
825
  """
828
826
  texts = [d.page_content for d in documents]
829
827
  metadatas = [d.metadata for d in documents]
@@ -849,17 +847,17 @@ class VectorStore(ABC):
849
847
  ids: list[str] | None = None,
850
848
  **kwargs: Any,
851
849
  ) -> VST:
852
- """Return VectorStore initialized from texts and embeddings.
850
+ """Return `VectorStore` initialized from texts and embeddings.
853
851
 
854
852
  Args:
855
- texts: Texts to add to the vectorstore.
853
+ texts: Texts to add to the `VectorStore`.
856
854
  embedding: Embedding function to use.
857
855
  metadatas: Optional list of metadatas associated with the texts.
858
856
  ids: Optional list of IDs associated with the texts.
859
857
  **kwargs: Additional keyword arguments.
860
858
 
861
859
  Returns:
862
- VectorStore initialized from texts and embeddings.
860
+ `VectorStore` initialized from texts and embeddings.
863
861
  """
864
862
 
865
863
  @classmethod
@@ -872,17 +870,17 @@ class VectorStore(ABC):
872
870
  ids: list[str] | None = None,
873
871
  **kwargs: Any,
874
872
  ) -> Self:
875
- """Async return VectorStore initialized from texts and embeddings.
873
+ """Async return `VectorStore` initialized from texts and embeddings.
876
874
 
877
875
  Args:
878
- texts: Texts to add to the vectorstore.
876
+ texts: Texts to add to the `VectorStore`.
879
877
  embedding: Embedding function to use.
880
878
  metadatas: Optional list of metadatas associated with the texts.
881
879
  ids: Optional list of IDs associated with the texts.
882
880
  **kwargs: Additional keyword arguments.
883
881
 
884
882
  Returns:
885
- VectorStore initialized from texts and embeddings.
883
+ `VectorStore` initialized from texts and embeddings.
886
884
  """
887
885
  if ids is not None:
888
886
  kwargs["ids"] = ids
@@ -898,27 +896,29 @@ class VectorStore(ABC):
898
896
  return tags
899
897
 
900
898
  def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever:
901
- """Return VectorStoreRetriever initialized from this VectorStore.
899
+ """Return `VectorStoreRetriever` initialized from this `VectorStore`.
902
900
 
903
901
  Args:
904
902
  **kwargs: Keyword arguments to pass to the search function.
905
903
  Can include:
906
- search_type: Defines the type of search that the Retriever should
907
- perform. Can be "similarity" (default), "mmr", or
908
- "similarity_score_threshold".
909
- search_kwargs: Keyword arguments to pass to the search function. Can
904
+
905
+ * `search_type`: Defines the type of search that the Retriever should
906
+ perform. Can be `'similarity'` (default), `'mmr'`, or
907
+ `'similarity_score_threshold'`.
908
+ * `search_kwargs`: Keyword arguments to pass to the search function. Can
910
909
  include things like:
911
- k: Amount of documents to return (Default: 4)
912
- score_threshold: Minimum relevance threshold
913
- for similarity_score_threshold
914
- fetch_k: Amount of documents to pass to MMR algorithm
915
- (Default: 20)
916
- lambda_mult: Diversity of results returned by MMR;
917
- 1 for minimum diversity and 0 for maximum. (Default: 0.5)
918
- filter: Filter by document metadata
910
+
911
+ * `k`: Amount of documents to return (Default: `4`)
912
+ * `score_threshold`: Minimum relevance threshold
913
+ for `similarity_score_threshold`
914
+ * `fetch_k`: Amount of documents to pass to MMR algorithm
915
+ (Default: `20`)
916
+ * `lambda_mult`: Diversity of results returned by MMR;
917
+ `1` for minimum diversity and 0 for maximum. (Default: `0.5`)
918
+ * `filter`: Filter by document metadata
919
919
 
920
920
  Returns:
921
- Retriever class for VectorStore.
921
+ Retriever class for `VectorStore`.
922
922
 
923
923
  Examples:
924
924
  ```python
@@ -958,7 +958,7 @@ class VectorStoreRetriever(BaseRetriever):
958
958
  vectorstore: VectorStore
959
959
  """VectorStore to use for retrieval."""
960
960
  search_type: str = "similarity"
961
- """Type of search to perform. Defaults to "similarity"."""
961
+ """Type of search to perform."""
962
962
  search_kwargs: dict = Field(default_factory=dict)
963
963
  """Keyword arguments to pass to the search function."""
964
964
  allowed_search_types: ClassVar[Collection[str]] = (
@@ -983,8 +983,8 @@ class VectorStoreRetriever(BaseRetriever):
983
983
  Validated values.
984
984
 
985
985
  Raises:
986
- ValueError: If search_type is not one of the allowed search types.
987
- ValueError: If score_threshold is not specified with a float value(0~1)
986
+ ValueError: If `search_type` is not one of the allowed search types.
987
+ ValueError: If `score_threshold` is not specified with a float value(`0~1`)
988
988
  """
989
989
  search_type = values.get("search_type", "similarity")
990
990
  if search_type not in cls.allowed_search_types:
@@ -1072,10 +1072,10 @@ class VectorStoreRetriever(BaseRetriever):
1072
1072
  return docs
1073
1073
 
1074
1074
  def add_documents(self, documents: list[Document], **kwargs: Any) -> list[str]:
1075
- """Add documents to the vectorstore.
1075
+ """Add documents to the `VectorStore`.
1076
1076
 
1077
1077
  Args:
1078
- documents: Documents to add to the vectorstore.
1078
+ documents: Documents to add to the `VectorStore`.
1079
1079
  **kwargs: Other keyword arguments that subclasses might use.
1080
1080
 
1081
1081
  Returns:
@@ -1086,10 +1086,10 @@ class VectorStoreRetriever(BaseRetriever):
1086
1086
  async def aadd_documents(
1087
1087
  self, documents: list[Document], **kwargs: Any
1088
1088
  ) -> list[str]:
1089
- """Async add documents to the vectorstore.
1089
+ """Async add documents to the `VectorStore`.
1090
1090
 
1091
1091
  Args:
1092
- documents: Documents to add to the vectorstore.
1092
+ documents: Documents to add to the `VectorStore`.
1093
1093
  **kwargs: Other keyword arguments that subclasses might use.
1094
1094
 
1095
1095
  Returns:
@@ -257,10 +257,10 @@ class InMemoryVectorStore(VectorStore):
257
257
  """Get documents by their ids.
258
258
 
259
259
  Args:
260
- ids: The ids of the documents to get.
260
+ ids: The IDs of the documents to get.
261
261
 
262
262
  Returns:
263
- A list of Document objects.
263
+ A list of `Document` objects.
264
264
  """
265
265
  documents = []
266
266
 
@@ -281,10 +281,10 @@ class InMemoryVectorStore(VectorStore):
281
281
  """Async get documents by their ids.
282
282
 
283
283
  Args:
284
- ids: The ids of the documents to get.
284
+ ids: The IDs of the documents to get.
285
285
 
286
286
  Returns:
287
- A list of Document objects.
287
+ A list of `Document` objects.
288
288
  """
289
289
  return self.get_by_ids(ids)
290
290
 
@@ -1,4 +1,4 @@
1
- """Internal utilities for the in memory implementation of VectorStore.
1
+ """Internal utilities for the in memory implementation of `VectorStore`.
2
2
 
3
3
  These are part of a private API, and users should not use them directly
4
4
  as they can change without notice.
langchain_core/version.py CHANGED
@@ -1,3 +1,3 @@
1
1
  """langchain-core version information and utilities."""
2
2
 
3
- VERSION = "1.0.0rc3"
3
+ VERSION = "1.0.2"