langchain-core 1.0.0a1__py3-none-any.whl → 1.0.0a3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of langchain-core might be problematic. Click here for more details.

Files changed (131) hide show
  1. langchain_core/_api/beta_decorator.py +17 -40
  2. langchain_core/_api/deprecation.py +20 -7
  3. langchain_core/_api/path.py +19 -2
  4. langchain_core/_import_utils.py +7 -0
  5. langchain_core/agents.py +10 -6
  6. langchain_core/callbacks/base.py +28 -15
  7. langchain_core/callbacks/manager.py +81 -69
  8. langchain_core/callbacks/usage.py +4 -2
  9. langchain_core/chat_history.py +29 -21
  10. langchain_core/document_loaders/base.py +34 -9
  11. langchain_core/document_loaders/langsmith.py +3 -0
  12. langchain_core/documents/base.py +35 -10
  13. langchain_core/documents/transformers.py +4 -2
  14. langchain_core/embeddings/fake.py +8 -5
  15. langchain_core/env.py +2 -3
  16. langchain_core/example_selectors/base.py +12 -0
  17. langchain_core/exceptions.py +7 -0
  18. langchain_core/globals.py +17 -28
  19. langchain_core/indexing/api.py +57 -45
  20. langchain_core/indexing/base.py +5 -8
  21. langchain_core/indexing/in_memory.py +23 -3
  22. langchain_core/language_models/__init__.py +6 -2
  23. langchain_core/language_models/_utils.py +28 -4
  24. langchain_core/language_models/base.py +33 -21
  25. langchain_core/language_models/chat_models.py +103 -29
  26. langchain_core/language_models/fake_chat_models.py +5 -7
  27. langchain_core/language_models/llms.py +54 -20
  28. langchain_core/load/dump.py +2 -3
  29. langchain_core/load/load.py +15 -1
  30. langchain_core/load/serializable.py +38 -43
  31. langchain_core/memory.py +7 -3
  32. langchain_core/messages/__init__.py +7 -17
  33. langchain_core/messages/ai.py +41 -34
  34. langchain_core/messages/base.py +16 -7
  35. langchain_core/messages/block_translators/__init__.py +10 -8
  36. langchain_core/messages/block_translators/anthropic.py +3 -1
  37. langchain_core/messages/block_translators/bedrock.py +3 -1
  38. langchain_core/messages/block_translators/bedrock_converse.py +3 -1
  39. langchain_core/messages/block_translators/google_genai.py +3 -1
  40. langchain_core/messages/block_translators/google_vertexai.py +3 -1
  41. langchain_core/messages/block_translators/groq.py +3 -1
  42. langchain_core/messages/block_translators/langchain_v0.py +3 -136
  43. langchain_core/messages/block_translators/ollama.py +3 -1
  44. langchain_core/messages/block_translators/openai.py +252 -10
  45. langchain_core/messages/content.py +26 -124
  46. langchain_core/messages/human.py +2 -13
  47. langchain_core/messages/system.py +2 -6
  48. langchain_core/messages/tool.py +34 -14
  49. langchain_core/messages/utils.py +189 -74
  50. langchain_core/output_parsers/base.py +5 -2
  51. langchain_core/output_parsers/json.py +4 -4
  52. langchain_core/output_parsers/list.py +7 -22
  53. langchain_core/output_parsers/openai_functions.py +3 -0
  54. langchain_core/output_parsers/openai_tools.py +6 -1
  55. langchain_core/output_parsers/pydantic.py +4 -0
  56. langchain_core/output_parsers/string.py +5 -1
  57. langchain_core/output_parsers/xml.py +19 -19
  58. langchain_core/outputs/chat_generation.py +18 -7
  59. langchain_core/outputs/generation.py +14 -3
  60. langchain_core/outputs/llm_result.py +8 -1
  61. langchain_core/prompt_values.py +10 -4
  62. langchain_core/prompts/base.py +6 -11
  63. langchain_core/prompts/chat.py +88 -60
  64. langchain_core/prompts/dict.py +16 -8
  65. langchain_core/prompts/few_shot.py +9 -11
  66. langchain_core/prompts/few_shot_with_templates.py +5 -1
  67. langchain_core/prompts/image.py +12 -5
  68. langchain_core/prompts/loading.py +2 -2
  69. langchain_core/prompts/message.py +5 -6
  70. langchain_core/prompts/pipeline.py +13 -8
  71. langchain_core/prompts/prompt.py +22 -8
  72. langchain_core/prompts/string.py +18 -10
  73. langchain_core/prompts/structured.py +7 -2
  74. langchain_core/rate_limiters.py +2 -2
  75. langchain_core/retrievers.py +7 -6
  76. langchain_core/runnables/base.py +387 -246
  77. langchain_core/runnables/branch.py +11 -28
  78. langchain_core/runnables/config.py +20 -17
  79. langchain_core/runnables/configurable.py +34 -19
  80. langchain_core/runnables/fallbacks.py +20 -13
  81. langchain_core/runnables/graph.py +48 -38
  82. langchain_core/runnables/graph_ascii.py +40 -17
  83. langchain_core/runnables/graph_mermaid.py +54 -25
  84. langchain_core/runnables/graph_png.py +27 -31
  85. langchain_core/runnables/history.py +55 -58
  86. langchain_core/runnables/passthrough.py +44 -21
  87. langchain_core/runnables/retry.py +44 -23
  88. langchain_core/runnables/router.py +9 -8
  89. langchain_core/runnables/schema.py +9 -0
  90. langchain_core/runnables/utils.py +53 -90
  91. langchain_core/stores.py +19 -31
  92. langchain_core/sys_info.py +9 -8
  93. langchain_core/tools/base.py +36 -27
  94. langchain_core/tools/convert.py +25 -14
  95. langchain_core/tools/simple.py +36 -8
  96. langchain_core/tools/structured.py +25 -12
  97. langchain_core/tracers/base.py +2 -2
  98. langchain_core/tracers/context.py +5 -1
  99. langchain_core/tracers/core.py +110 -46
  100. langchain_core/tracers/evaluation.py +22 -26
  101. langchain_core/tracers/event_stream.py +97 -42
  102. langchain_core/tracers/langchain.py +12 -3
  103. langchain_core/tracers/langchain_v1.py +10 -2
  104. langchain_core/tracers/log_stream.py +56 -17
  105. langchain_core/tracers/root_listeners.py +4 -20
  106. langchain_core/tracers/run_collector.py +6 -16
  107. langchain_core/tracers/schemas.py +5 -1
  108. langchain_core/utils/aiter.py +14 -6
  109. langchain_core/utils/env.py +3 -0
  110. langchain_core/utils/function_calling.py +46 -20
  111. langchain_core/utils/interactive_env.py +6 -2
  112. langchain_core/utils/iter.py +12 -5
  113. langchain_core/utils/json.py +12 -3
  114. langchain_core/utils/json_schema.py +156 -40
  115. langchain_core/utils/loading.py +5 -1
  116. langchain_core/utils/mustache.py +25 -16
  117. langchain_core/utils/pydantic.py +38 -9
  118. langchain_core/utils/utils.py +25 -9
  119. langchain_core/vectorstores/base.py +7 -20
  120. langchain_core/vectorstores/in_memory.py +20 -14
  121. langchain_core/vectorstores/utils.py +18 -12
  122. langchain_core/version.py +1 -1
  123. langchain_core-1.0.0a3.dist-info/METADATA +77 -0
  124. langchain_core-1.0.0a3.dist-info/RECORD +181 -0
  125. langchain_core/beta/__init__.py +0 -1
  126. langchain_core/beta/runnables/__init__.py +0 -1
  127. langchain_core/beta/runnables/context.py +0 -448
  128. langchain_core-1.0.0a1.dist-info/METADATA +0 -106
  129. langchain_core-1.0.0a1.dist-info/RECORD +0 -184
  130. {langchain_core-1.0.0a1.dist-info → langchain_core-1.0.0a3.dist-info}/WHEEL +0 -0
  131. {langchain_core-1.0.0a1.dist-info → langchain_core-1.0.0a3.dist-info}/entry_points.txt +0 -0
@@ -26,7 +26,8 @@ https://python.langchain.com/docs/how_to/custom_chat_model/
26
26
  **LLMs**
27
27
 
28
28
  Language models that takes a string as input and returns a string.
29
- These are traditionally older models (newer models generally are Chat Models, see below).
29
+ These are traditionally older models (newer models generally are Chat Models,
30
+ see below).
30
31
 
31
32
  Although the underlying models are string in, string out, the LangChain wrappers
32
33
  also allow these models to take messages as input. This gives them the same interface
@@ -39,11 +40,12 @@ Please see the following guide for more information on how to implement a custom
39
40
  https://python.langchain.com/docs/how_to/custom_llm/
40
41
 
41
42
 
42
- """ # noqa: E501
43
+ """
43
44
 
44
45
  from typing import TYPE_CHECKING
45
46
 
46
47
  from langchain_core._import_utils import import_attr
48
+ from langchain_core.language_models._utils import is_openai_data_block
47
49
 
48
50
  if TYPE_CHECKING:
49
51
  from langchain_core.language_models.base import (
@@ -84,6 +86,7 @@ __all__ = (
84
86
  "ParrotFakeChatModel",
85
87
  "SimpleChatModel",
86
88
  "get_tokenizer",
89
+ "is_openai_data_block",
87
90
  )
88
91
 
89
92
  _dynamic_imports = {
@@ -103,6 +106,7 @@ _dynamic_imports = {
103
106
  "ParrotFakeChatModel": "fake_chat_models",
104
107
  "LLM": "llms",
105
108
  "BaseLLM": "llms",
109
+ "is_openai_data_block": "_utils",
106
110
  }
107
111
 
108
112
 
@@ -16,16 +16,34 @@ from langchain_core.messages.content import (
16
16
  )
17
17
 
18
18
 
19
- def _is_openai_data_block(block: dict) -> bool:
20
- """Check if the block contains multimodal data in OpenAI Chat Completions format.
19
+ def is_openai_data_block(
20
+ block: dict, filter_: Union[Literal["image", "audio", "file"], None] = None
21
+ ) -> bool:
22
+ """Check whether a block contains multimodal data in OpenAI Chat Completions format.
21
23
 
22
24
  Supports both data and ID-style blocks (e.g. ``'file_data'`` and ``'file_id'``)
23
25
 
24
26
  If additional keys are present, they are ignored / will not affect outcome as long
25
27
  as the required keys are present and valid.
26
28
 
29
+ Args:
30
+ block: The content block to check.
31
+ filter_: If provided, only return True for blocks matching this specific type.
32
+ - "image": Only match image_url blocks
33
+ - "audio": Only match input_audio blocks
34
+ - "file": Only match file blocks
35
+ If None, match any valid OpenAI data block type. Note that this means that
36
+ if the block has a valid OpenAI data type but the filter_ is set to a
37
+ different type, this function will return False.
38
+
39
+ Returns:
40
+ True if the block is a valid OpenAI data block and matches the filter_
41
+ (if provided).
42
+
27
43
  """
28
44
  if block.get("type") == "image_url":
45
+ if filter_ is not None and filter_ != "image":
46
+ return False
29
47
  if (
30
48
  (set(block.keys()) <= {"type", "image_url", "detail"})
31
49
  and (image_url := block.get("image_url"))
@@ -38,6 +56,8 @@ def _is_openai_data_block(block: dict) -> bool:
38
56
  # Ignore `'detail'` since it's optional and specific to OpenAI
39
57
 
40
58
  elif block.get("type") == "input_audio":
59
+ if filter_ is not None and filter_ != "audio":
60
+ return False
41
61
  if (audio := block.get("input_audio")) and isinstance(audio, dict):
42
62
  audio_data = audio.get("data")
43
63
  audio_format = audio.get("format")
@@ -46,6 +66,8 @@ def _is_openai_data_block(block: dict) -> bool:
46
66
  return True
47
67
 
48
68
  elif block.get("type") == "file":
69
+ if filter_ is not None and filter_ != "file":
70
+ return False
49
71
  if (file := block.get("file")) and isinstance(file, dict):
50
72
  file_data = file.get("file_data")
51
73
  file_id = file.get("file_id")
@@ -212,8 +234,10 @@ def _normalize_messages(
212
234
  }
213
235
 
214
236
  """
215
- from langchain_core.messages.block_translators.langchain_v0 import (
237
+ from langchain_core.messages.block_translators.langchain_v0 import ( # noqa: PLC0415
216
238
  _convert_legacy_v0_content_block_to_v1,
239
+ )
240
+ from langchain_core.messages.block_translators.openai import ( # noqa: PLC0415
217
241
  _convert_openai_format_to_data_block,
218
242
  )
219
243
 
@@ -230,7 +254,7 @@ def _normalize_messages(
230
254
  isinstance(block, dict)
231
255
  and block.get("type") in {"input_audio", "file"}
232
256
  # Discriminate between OpenAI/LC format since they share `'type'`
233
- and _is_openai_data_block(block)
257
+ and is_openai_data_block(block)
234
258
  ):
235
259
  formatted_message = _ensure_message_copy(message, formatted_message)
236
260
 
@@ -12,16 +12,18 @@ from typing import (
12
12
  Callable,
13
13
  Literal,
14
14
  Optional,
15
+ TypeAlias,
15
16
  TypeVar,
16
17
  Union,
17
18
  )
18
19
 
19
20
  from pydantic import BaseModel, ConfigDict, Field, field_validator
20
- from typing_extensions import TypeAlias, TypedDict, override
21
+ from typing_extensions import TypedDict, override
21
22
 
22
23
  from langchain_core._api import deprecated
23
24
  from langchain_core.caches import BaseCache
24
25
  from langchain_core.callbacks import Callbacks
26
+ from langchain_core.globals import get_verbose
25
27
  from langchain_core.messages import (
26
28
  AIMessage,
27
29
  AnyMessage,
@@ -29,13 +31,24 @@ from langchain_core.messages import (
29
31
  MessageLikeRepresentation,
30
32
  get_buffer_string,
31
33
  )
32
- from langchain_core.prompt_values import PromptValue
34
+ from langchain_core.prompt_values import (
35
+ ChatPromptValueConcrete,
36
+ PromptValue,
37
+ StringPromptValue,
38
+ )
33
39
  from langchain_core.runnables import Runnable, RunnableSerializable
34
40
  from langchain_core.utils import get_pydantic_field_names
35
41
 
36
42
  if TYPE_CHECKING:
37
43
  from langchain_core.outputs import LLMResult
38
44
 
45
+ try:
46
+ from transformers import GPT2TokenizerFast # type: ignore[import-not-found]
47
+
48
+ _HAS_TRANSFORMERS = True
49
+ except ImportError:
50
+ _HAS_TRANSFORMERS = False
51
+
39
52
 
40
53
  class LangSmithParams(TypedDict, total=False):
41
54
  """LangSmith parameters for tracing."""
@@ -60,16 +73,20 @@ def get_tokenizer() -> Any:
60
73
 
61
74
  This function is cached to avoid re-loading the tokenizer every time it is called.
62
75
 
76
+ Raises:
77
+ ImportError: If the transformers package is not installed.
78
+
79
+ Returns:
80
+ The GPT-2 tokenizer instance.
81
+
63
82
  """
64
- try:
65
- from transformers import GPT2TokenizerFast # type: ignore[import-not-found]
66
- except ImportError as e:
83
+ if not _HAS_TRANSFORMERS:
67
84
  msg = (
68
85
  "Could not import transformers python package. "
69
86
  "This is needed in order to calculate get_token_ids. "
70
87
  "Please install it with `pip install transformers`."
71
88
  )
72
- raise ImportError(msg) from e
89
+ raise ImportError(msg)
73
90
  # create a GPT-2 tokenizer instance
74
91
  return GPT2TokenizerFast.from_pretrained("gpt2")
75
92
 
@@ -90,8 +107,6 @@ LanguageModelOutputVar = TypeVar("LanguageModelOutputVar", AIMessage, str)
90
107
 
91
108
 
92
109
  def _get_verbosity() -> bool:
93
- from langchain_core.globals import get_verbose
94
-
95
110
  return get_verbose()
96
111
 
97
112
 
@@ -153,11 +168,6 @@ class BaseLanguageModel(
153
168
  @override
154
169
  def InputType(self) -> TypeAlias:
155
170
  """Get the input type for this runnable."""
156
- from langchain_core.prompt_values import (
157
- ChatPromptValueConcrete,
158
- StringPromptValue,
159
- )
160
-
161
171
  # This is a version of LanguageModelInput which replaces the abstract
162
172
  # base class BaseMessage with a union of its subclasses, which makes
163
173
  # for a much better schema.
@@ -181,10 +191,11 @@ class BaseLanguageModel(
181
191
  API.
182
192
 
183
193
  Use this method when you want to:
184
- 1. take advantage of batched calls,
185
- 2. need more output from the model than just the top generated value,
186
- 3. are building chains that are agnostic to the underlying language model
187
- type (e.g., pure text completion models vs chat models).
194
+
195
+ 1. Take advantage of batched calls,
196
+ 2. Need more output from the model than just the top generated value,
197
+ 3. Are building chains that are agnostic to the underlying language model
198
+ type (e.g., pure text completion models vs chat models).
188
199
 
189
200
  Args:
190
201
  prompts: List of PromptValues. A PromptValue is an object that can be
@@ -217,10 +228,11 @@ class BaseLanguageModel(
217
228
  API.
218
229
 
219
230
  Use this method when you want to:
220
- 1. take advantage of batched calls,
221
- 2. need more output from the model than just the top generated value,
222
- 3. are building chains that are agnostic to the underlying language model
223
- type (e.g., pure text completion models vs chat models).
231
+
232
+ 1. Take advantage of batched calls,
233
+ 2. Need more output from the model than just the top generated value,
234
+ 3. Are building chains that are agnostic to the underlying language model
235
+ type (e.g., pure text completion models vs chat models).
224
236
 
225
237
  Args:
226
238
  prompts: List of PromptValues. A PromptValue is an object that can be
@@ -44,11 +44,17 @@ from langchain_core.messages import (
44
44
  BaseMessage,
45
45
  HumanMessage,
46
46
  convert_to_messages,
47
- convert_to_openai_data_block,
48
- convert_to_openai_image_block,
49
47
  is_data_content_block,
50
48
  message_chunk_to_message,
51
49
  )
50
+ from langchain_core.messages.block_translators.openai import (
51
+ convert_to_openai_data_block,
52
+ convert_to_openai_image_block,
53
+ )
54
+ from langchain_core.output_parsers.openai_tools import (
55
+ JsonOutputKeyToolsParser,
56
+ PydanticToolsParser,
57
+ )
52
58
  from langchain_core.outputs import (
53
59
  ChatGeneration,
54
60
  ChatGenerationChunk,
@@ -141,8 +147,9 @@ def _format_for_tracing(messages: list[BaseMessage]) -> list[BaseMessage]:
141
147
  )
142
148
  elif (
143
149
  block.get("type") == "file"
144
- and is_data_content_block(block)
150
+ and is_data_content_block(block) # v0 (image/audio/file) or v1
145
151
  and "base64" in block
152
+ # Narrows to old Base64ContentBlock or new FileContentBlock
146
153
  ):
147
154
  if message_to_trace is message:
148
155
  # Shallow copy
@@ -165,8 +172,6 @@ def _format_for_tracing(messages: list[BaseMessage]) -> list[BaseMessage]:
165
172
  "type": key,
166
173
  key: block[key],
167
174
  }
168
- else:
169
- pass
170
175
  messages_to_trace.append(message_to_trace)
171
176
 
172
177
  return messages_to_trace
@@ -178,6 +183,9 @@ def generate_from_stream(stream: Iterator[ChatGenerationChunk]) -> ChatResult:
178
183
  Args:
179
184
  stream: Iterator of ``ChatGenerationChunk``.
180
185
 
186
+ Raises:
187
+ ValueError: If no generations are found in the stream.
188
+
181
189
  Returns:
182
190
  ChatResult: Chat result.
183
191
 
@@ -367,7 +375,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
367
375
  @model_validator(mode="before")
368
376
  @classmethod
369
377
  def raise_deprecation(cls, values: dict) -> Any:
370
- """Raise deprecation warning if ``callback_manager`` is used.
378
+ """Emit deprecation warning if ``callback_manager`` is used.
371
379
 
372
380
  Args:
373
381
  values (Dict): Values to validate.
@@ -375,9 +383,6 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
375
383
  Returns:
376
384
  Dict: Validated values.
377
385
 
378
- Raises:
379
- DeprecationWarning: If ``callback_manager`` is used.
380
-
381
386
  """
382
387
  if values.get("callback_manager") is not None:
383
388
  warnings.warn(
@@ -811,7 +816,9 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
811
816
  ls_params["ls_stop"] = stop
812
817
 
813
818
  # model
814
- if hasattr(self, "model") and isinstance(self.model, str):
819
+ if "model" in kwargs and isinstance(kwargs["model"], str):
820
+ ls_params["ls_model_name"] = kwargs["model"]
821
+ elif hasattr(self, "model") and isinstance(self.model, str):
815
822
  ls_params["ls_model_name"] = self.model
816
823
  elif hasattr(self, "model_name") and isinstance(self.model_name, str):
817
824
  ls_params["ls_model_name"] = self.model_name
@@ -862,10 +869,11 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
862
869
  API.
863
870
 
864
871
  Use this method when you want to:
865
- 1. take advantage of batched calls,
866
- 2. need more output from the model than just the top generated value,
867
- 3. are building chains that are agnostic to the underlying language model
868
- type (e.g., pure text completion models vs chat models).
872
+
873
+ 1. Take advantage of batched calls,
874
+ 2. Need more output from the model than just the top generated value,
875
+ 3. Are building chains that are agnostic to the underlying language model
876
+ type (e.g., pure text completion models vs chat models).
869
877
 
870
878
  Args:
871
879
  messages: List of list of messages.
@@ -977,10 +985,11 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
977
985
  API.
978
986
 
979
987
  Use this method when you want to:
980
- 1. take advantage of batched calls,
981
- 2. need more output from the model than just the top generated value,
982
- 3. are building chains that are agnostic to the underlying language model
983
- type (e.g., pure text completion models vs chat models).
988
+
989
+ 1. Take advantage of batched calls,
990
+ 2. Need more output from the model than just the top generated value,
991
+ 3. Are building chains that are agnostic to the underlying language model
992
+ type (e.g., pure text completion models vs chat models).
984
993
 
985
994
  Args:
986
995
  messages: List of list of messages.
@@ -1348,7 +1357,17 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1348
1357
  run_manager: Optional[CallbackManagerForLLMRun] = None,
1349
1358
  **kwargs: Any,
1350
1359
  ) -> ChatResult:
1351
- """Top Level call."""
1360
+ """Generate the result.
1361
+
1362
+ Args:
1363
+ messages: The messages to generate from.
1364
+ stop: Optional list of stop words to use when generating.
1365
+ run_manager: Optional callback manager to use for this call.
1366
+ **kwargs: Additional keyword arguments to pass to the model.
1367
+
1368
+ Returns:
1369
+ The chat result.
1370
+ """
1352
1371
 
1353
1372
  async def _agenerate(
1354
1373
  self,
@@ -1357,7 +1376,17 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1357
1376
  run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
1358
1377
  **kwargs: Any,
1359
1378
  ) -> ChatResult:
1360
- """Top Level call."""
1379
+ """Generate the result.
1380
+
1381
+ Args:
1382
+ messages: The messages to generate from.
1383
+ stop: Optional list of stop words to use when generating.
1384
+ run_manager: Optional callback manager to use for this call.
1385
+ **kwargs: Additional keyword arguments to pass to the model.
1386
+
1387
+ Returns:
1388
+ The chat result.
1389
+ """
1361
1390
  return await run_in_executor(
1362
1391
  None,
1363
1392
  self._generate,
@@ -1374,6 +1403,17 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1374
1403
  run_manager: Optional[CallbackManagerForLLMRun] = None,
1375
1404
  **kwargs: Any,
1376
1405
  ) -> Iterator[ChatGenerationChunk]:
1406
+ """Stream the output of the model.
1407
+
1408
+ Args:
1409
+ messages: The messages to generate from.
1410
+ stop: Optional list of stop words to use when generating.
1411
+ run_manager: Optional callback manager to use for this call.
1412
+ **kwargs: Additional keyword arguments to pass to the model.
1413
+
1414
+ Yields:
1415
+ The chat generation chunks.
1416
+ """
1377
1417
  raise NotImplementedError
1378
1418
 
1379
1419
  async def _astream(
@@ -1383,6 +1423,17 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1383
1423
  run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
1384
1424
  **kwargs: Any,
1385
1425
  ) -> AsyncIterator[ChatGenerationChunk]:
1426
+ """Stream the output of the model.
1427
+
1428
+ Args:
1429
+ messages: The messages to generate from.
1430
+ stop: Optional list of stop words to use when generating.
1431
+ run_manager: Optional callback manager to use for this call.
1432
+ **kwargs: Additional keyword arguments to pass to the model.
1433
+
1434
+ Yields:
1435
+ The chat generation chunks.
1436
+ """
1386
1437
  iterator = await run_in_executor(
1387
1438
  None,
1388
1439
  self._stream,
@@ -1422,6 +1473,9 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1422
1473
  **kwargs: Arbitrary additional keyword arguments. These are usually passed
1423
1474
  to the model provider API call.
1424
1475
 
1476
+ Raises:
1477
+ ValueError: If the generation is not a chat generation.
1478
+
1425
1479
  Returns:
1426
1480
  The model output message.
1427
1481
 
@@ -1483,6 +1537,9 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1483
1537
  **kwargs: Arbitrary additional keyword arguments. These are usually passed
1484
1538
  to the model provider API call.
1485
1539
 
1540
+ Raises:
1541
+ ValueError: If the output is not a string.
1542
+
1486
1543
  Returns:
1487
1544
  The predicted output string.
1488
1545
 
@@ -1597,6 +1654,11 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1597
1654
  will be caught and returned as well. The final output is always a dict
1598
1655
  with keys ``'raw'``, ``'parsed'``, and ``'parsing_error'``.
1599
1656
 
1657
+ Raises:
1658
+ ValueError: If there are any unsupported ``kwargs``.
1659
+ NotImplementedError: If the model does not implement
1660
+ ``with_structured_output()``.
1661
+
1600
1662
  Returns:
1601
1663
  A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
1602
1664
 
@@ -1616,15 +1678,20 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1616
1678
 
1617
1679
  from pydantic import BaseModel
1618
1680
 
1681
+
1619
1682
  class AnswerWithJustification(BaseModel):
1620
1683
  '''An answer to the user question along with justification for the answer.'''
1684
+
1621
1685
  answer: str
1622
1686
  justification: str
1623
1687
 
1688
+
1624
1689
  llm = ChatModel(model="model-name", temperature=0)
1625
1690
  structured_llm = llm.with_structured_output(AnswerWithJustification)
1626
1691
 
1627
- structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
1692
+ structured_llm.invoke(
1693
+ "What weighs more a pound of bricks or a pound of feathers"
1694
+ )
1628
1695
 
1629
1696
  # -> AnswerWithJustification(
1630
1697
  # answer='They weigh the same',
@@ -1636,15 +1703,22 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1636
1703
 
1637
1704
  from pydantic import BaseModel
1638
1705
 
1706
+
1639
1707
  class AnswerWithJustification(BaseModel):
1640
1708
  '''An answer to the user question along with justification for the answer.'''
1709
+
1641
1710
  answer: str
1642
1711
  justification: str
1643
1712
 
1713
+
1644
1714
  llm = ChatModel(model="model-name", temperature=0)
1645
- structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
1715
+ structured_llm = llm.with_structured_output(
1716
+ AnswerWithJustification, include_raw=True
1717
+ )
1646
1718
 
1647
- structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
1719
+ structured_llm.invoke(
1720
+ "What weighs more a pound of bricks or a pound of feathers"
1721
+ )
1648
1722
  # -> {
1649
1723
  # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
1650
1724
  # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
@@ -1657,16 +1731,21 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1657
1731
  from pydantic import BaseModel
1658
1732
  from langchain_core.utils.function_calling import convert_to_openai_tool
1659
1733
 
1734
+
1660
1735
  class AnswerWithJustification(BaseModel):
1661
1736
  '''An answer to the user question along with justification for the answer.'''
1737
+
1662
1738
  answer: str
1663
1739
  justification: str
1664
1740
 
1741
+
1665
1742
  dict_schema = convert_to_openai_tool(AnswerWithJustification)
1666
1743
  llm = ChatModel(model="model-name", temperature=0)
1667
1744
  structured_llm = llm.with_structured_output(dict_schema)
1668
1745
 
1669
- structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
1746
+ structured_llm.invoke(
1747
+ "What weighs more a pound of bricks or a pound of feathers"
1748
+ )
1670
1749
  # -> {
1671
1750
  # 'answer': 'They weigh the same',
1672
1751
  # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
@@ -1683,11 +1762,6 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1683
1762
  msg = f"Received unsupported arguments {kwargs}"
1684
1763
  raise ValueError(msg)
1685
1764
 
1686
- from langchain_core.output_parsers.openai_tools import (
1687
- JsonOutputKeyToolsParser,
1688
- PydanticToolsParser,
1689
- )
1690
-
1691
1765
  if type(self).bind_tools is BaseChatModel.bind_tools:
1692
1766
  msg = "with_structured_output is not implemented for this model."
1693
1767
  raise NotImplementedError(msg)
@@ -75,12 +75,13 @@ class FakeListChatModel(SimpleChatModel):
75
75
  @override
76
76
  def _call(
77
77
  self,
78
- messages: list[BaseMessage],
79
- stop: Optional[list[str]] = None,
80
- run_manager: Optional[CallbackManagerForLLMRun] = None,
78
+ *args: Any,
81
79
  **kwargs: Any,
82
80
  ) -> str:
83
- """First try to lookup in queries, else return 'foo' or 'bar'."""
81
+ """Return the next response in the list.
82
+
83
+ Cycle back to the start if at the end.
84
+ """
84
85
  if self.sleep is not None:
85
86
  time.sleep(self.sleep)
86
87
  response = self.responses[self.i]
@@ -249,7 +250,6 @@ class GenericFakeChatModel(BaseChatModel):
249
250
  run_manager: Optional[CallbackManagerForLLMRun] = None,
250
251
  **kwargs: Any,
251
252
  ) -> ChatResult:
252
- """Top Level call."""
253
253
  message = next(self.messages)
254
254
  message_ = AIMessage(content=message) if isinstance(message, str) else message
255
255
  generation = ChatGeneration(message=message_)
@@ -262,7 +262,6 @@ class GenericFakeChatModel(BaseChatModel):
262
262
  run_manager: Optional[CallbackManagerForLLMRun] = None,
263
263
  **kwargs: Any,
264
264
  ) -> Iterator[ChatGenerationChunk]:
265
- """Stream the output of the model."""
266
265
  chat_result = self._generate(
267
266
  messages, stop=stop, run_manager=run_manager, **kwargs
268
267
  )
@@ -378,7 +377,6 @@ class ParrotFakeChatModel(BaseChatModel):
378
377
  run_manager: Optional[CallbackManagerForLLMRun] = None,
379
378
  **kwargs: Any,
380
379
  ) -> ChatResult:
381
- """Top Level call."""
382
380
  return ChatResult(generations=[ChatGeneration(message=messages[-1])])
383
381
 
384
382
  @property