lalsuite 7.26.2.dev20260106__cp314-cp314-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (749) hide show
  1. lal/.dylibs/Python +0 -0
  2. lal/.dylibs/libaec.0.dylib +0 -0
  3. lal/.dylibs/libbrotlicommon.1.2.0.dylib +0 -0
  4. lal/.dylibs/libbrotlidec.1.2.0.dylib +0 -0
  5. lal/.dylibs/libcfitsio.10.4.4.1.dylib +0 -0
  6. lal/.dylibs/libcrypto.3.dylib +0 -0
  7. lal/.dylibs/libcurl.4.dylib +0 -0
  8. lal/.dylibs/libfftw3.3.dylib +0 -0
  9. lal/.dylibs/libfftw3f.3.dylib +0 -0
  10. lal/.dylibs/libframel.8.48.4.dylib +0 -0
  11. lal/.dylibs/libgsl.28.dylib +0 -0
  12. lal/.dylibs/libgslcblas.0.dylib +0 -0
  13. lal/.dylibs/libhdf5.310.dylib +0 -0
  14. lal/.dylibs/libhdf5_hl.310.dylib +0 -0
  15. lal/.dylibs/libiconv.2.dylib +0 -0
  16. lal/.dylibs/libidn2.0.dylib +0 -0
  17. lal/.dylibs/libintl.8.dylib +0 -0
  18. lal/.dylibs/liblal.20.dylib +0 -0
  19. lal/.dylibs/liblalburst.8.dylib +0 -0
  20. lal/.dylibs/liblalframe.14.dylib +0 -0
  21. lal/.dylibs/liblalinference.23.dylib +0 -0
  22. lal/.dylibs/liblalinspiral.18.dylib +0 -0
  23. lal/.dylibs/liblalmetaio.11.dylib +0 -0
  24. lal/.dylibs/liblalpulsar.30.dylib +0 -0
  25. lal/.dylibs/liblalsimulation.37.dylib +0 -0
  26. lal/.dylibs/liblalsupport.14.dylib +0 -0
  27. lal/.dylibs/libmetaio.1.dylib +0 -0
  28. lal/.dylibs/libnghttp2.14.dylib +0 -0
  29. lal/.dylibs/libpsl.5.dylib +0 -0
  30. lal/.dylibs/libssl.3.dylib +0 -0
  31. lal/.dylibs/libsz.2.dylib +0 -0
  32. lal/.dylibs/libunistring.5.dylib +0 -0
  33. lal/.dylibs/libz.1.3.1.dylib +0 -0
  34. lal/.dylibs/libzstd.1.5.7.dylib +0 -0
  35. lal/__init__.py +145 -0
  36. lal/_lal.cpython-314-darwin.so +0 -0
  37. lal/_lal_swig.py +12 -0
  38. lal/antenna.py +1200 -0
  39. lal/git_version.py +64 -0
  40. lal/gpstime.py +233 -0
  41. lal/iterutils.py +408 -0
  42. lal/pipeline.py +3139 -0
  43. lal/rate.py +2455 -0
  44. lal/series.py +244 -0
  45. lal/utils/__init__.py +29 -0
  46. lal/utils/cache.py +379 -0
  47. lal/utils/series.py +277 -0
  48. lalapps/__init__.py +26 -0
  49. lalapps/bin/lal_cache +0 -0
  50. lalapps/bin/lal_fftw_wisdom +0 -0
  51. lalapps/bin/lal_fftwf_wisdom +0 -0
  52. lalapps/bin/lal_simd_detect +0 -0
  53. lalapps/bin/lal_tconvert +0 -0
  54. lalapps/bin/lal_version +0 -0
  55. lalapps/bin/lalapps_ComputeAntennaPattern +16 -0
  56. lalapps/bin/lalapps_ComputeFstatBenchmark +16 -0
  57. lalapps/bin/lalapps_ComputeFstatLatticeCount +16 -0
  58. lalapps/bin/lalapps_ComputeFstatMCUpperLimit +16 -0
  59. lalapps/bin/lalapps_ComputeFstatistic_v2 +16 -0
  60. lalapps/bin/lalapps_ComputePSD +16 -0
  61. lalapps/bin/lalapps_CopySFTs +16 -0
  62. lalapps/bin/lalapps_DistanceVsMass +0 -0
  63. lalapps/bin/lalapps_DriveHoughMulti +16 -0
  64. lalapps/bin/lalapps_FstatMetric_v2 +16 -0
  65. lalapps/bin/lalapps_HierarchSearchGCT +16 -0
  66. lalapps/bin/lalapps_HierarchicalSearch +16 -0
  67. lalapps/bin/lalapps_MakeSFTDAG +16 -0
  68. lalapps/bin/lalapps_MakeSFTs +16 -0
  69. lalapps/bin/lalapps_Makefakedata_v4 +16 -0
  70. lalapps/bin/lalapps_Makefakedata_v5 +16 -0
  71. lalapps/bin/lalapps_PredictFstat +16 -0
  72. lalapps/bin/lalapps_PrintDetectorState +16 -0
  73. lalapps/bin/lalapps_SFTclean +16 -0
  74. lalapps/bin/lalapps_SFTvalidate +16 -0
  75. lalapps/bin/lalapps_StringAddFrame +0 -0
  76. lalapps/bin/lalapps_StringSearch +0 -0
  77. lalapps/bin/lalapps_Weave +16 -0
  78. lalapps/bin/lalapps_WeaveCompare +16 -0
  79. lalapps/bin/lalapps_WeaveConcat +16 -0
  80. lalapps/bin/lalapps_WeaveSetup +16 -0
  81. lalapps/bin/lalapps_WriteSFTsfromSFDBs +16 -0
  82. lalapps/bin/lalapps_animate +0 -0
  83. lalapps/bin/lalapps_binj +0 -0
  84. lalapps/bin/lalapps_blindinj +0 -0
  85. lalapps/bin/lalapps_cache +16 -0
  86. lalapps/bin/lalapps_calfacs +0 -0
  87. lalapps/bin/lalapps_cbc_stochasticbank +0 -0
  88. lalapps/bin/lalapps_chirplen +0 -0
  89. lalapps/bin/lalapps_coh_PTF_inspiral +0 -0
  90. lalapps/bin/lalapps_coinj +0 -0
  91. lalapps/bin/lalapps_combine_crosscorr_toplists +16 -0
  92. lalapps/bin/lalapps_compareFstats +16 -0
  93. lalapps/bin/lalapps_compareSFTs +16 -0
  94. lalapps/bin/lalapps_create_time_correction_ephemeris +16 -0
  95. lalapps/bin/lalapps_dumpSFT +16 -0
  96. lalapps/bin/lalapps_effdist +0 -0
  97. lalapps/bin/lalapps_exc_resp +0 -0
  98. lalapps/bin/lalapps_fftw_wisdom +16 -0
  99. lalapps/bin/lalapps_fftwf_wisdom +16 -0
  100. lalapps/bin/lalapps_fits_header_getval +16 -0
  101. lalapps/bin/lalapps_fits_header_list +16 -0
  102. lalapps/bin/lalapps_fits_overview +16 -0
  103. lalapps/bin/lalapps_fits_table_list +16 -0
  104. lalapps/bin/lalapps_fr_ninja +0 -0
  105. lalapps/bin/lalapps_frextr +0 -0
  106. lalapps/bin/lalapps_frinfo +0 -0
  107. lalapps/bin/lalapps_frjoin +0 -0
  108. lalapps/bin/lalapps_frread +0 -0
  109. lalapps/bin/lalapps_frview +0 -0
  110. lalapps/bin/lalapps_gwf2xml +0 -0
  111. lalapps/bin/lalapps_heterodyne_pulsar +16 -0
  112. lalapps/bin/lalapps_inspawgfile +0 -0
  113. lalapps/bin/lalapps_inspfrinj +0 -0
  114. lalapps/bin/lalapps_inspinj +0 -0
  115. lalapps/bin/lalapps_inspiralDistance +0 -0
  116. lalapps/bin/lalapps_knope +16 -0
  117. lalapps/bin/lalapps_knope_automation_script +16 -0
  118. lalapps/bin/lalapps_knope_collate_results +16 -0
  119. lalapps/bin/lalapps_knope_result_page +16 -0
  120. lalapps/bin/lalapps_makeblindinj +85 -0
  121. lalapps/bin/lalapps_makeblindinj_himass +67 -0
  122. lalapps/bin/lalapps_ninja +0 -0
  123. lalapps/bin/lalapps_path2cache +16 -0
  124. lalapps/bin/lalapps_power +0 -0
  125. lalapps/bin/lalapps_pulsar_crosscorr_v2 +16 -0
  126. lalapps/bin/lalapps_pulsar_frequency_evolution +16 -0
  127. lalapps/bin/lalapps_pulsar_parameter_estimation_nested +16 -0
  128. lalapps/bin/lalapps_random_bank +0 -0
  129. lalapps/bin/lalapps_randombank +0 -0
  130. lalapps/bin/lalapps_run_pulsar_crosscorr_v2 +16 -0
  131. lalapps/bin/lalapps_searchsum2cache +16 -0
  132. lalapps/bin/lalapps_spec_avg +16 -0
  133. lalapps/bin/lalapps_spec_avg_long +16 -0
  134. lalapps/bin/lalapps_spec_coherence +16 -0
  135. lalapps/bin/lalapps_spininj +0 -0
  136. lalapps/bin/lalapps_splitSFTs +16 -0
  137. lalapps/bin/lalapps_splitbank +0 -0
  138. lalapps/bin/lalapps_ssbtodetector +16 -0
  139. lalapps/bin/lalapps_synthesizeBstatMC +16 -0
  140. lalapps/bin/lalapps_synthesizeLVStats +16 -0
  141. lalapps/bin/lalapps_synthesizeTransientStats +16 -0
  142. lalapps/bin/lalapps_tconvert +16 -0
  143. lalapps/bin/lalapps_tmpltbank +0 -0
  144. lalapps/bin/lalapps_version +0 -0
  145. lalapps/bin/lalapps_xtefitstoframe +0 -0
  146. lalapps/bin/lalburst_version +0 -0
  147. lalapps/bin/lalfr-cat +0 -0
  148. lalapps/bin/lalfr-cksum +0 -0
  149. lalapps/bin/lalfr-cut +0 -0
  150. lalapps/bin/lalfr-dump +0 -0
  151. lalapps/bin/lalfr-fmt +0 -0
  152. lalapps/bin/lalfr-paste +0 -0
  153. lalapps/bin/lalfr-print +0 -0
  154. lalapps/bin/lalfr-split +0 -0
  155. lalapps/bin/lalfr-stat +0 -0
  156. lalapps/bin/lalfr-stream +0 -0
  157. lalapps/bin/lalfr-vis +0 -0
  158. lalapps/bin/lalframe_version +0 -0
  159. lalapps/bin/lalinference_bench +0 -0
  160. lalapps/bin/lalinference_burst +0 -0
  161. lalapps/bin/lalinference_datadump +0 -0
  162. lalapps/bin/lalinference_injectedlike +0 -0
  163. lalapps/bin/lalinference_mpi_wrapper +59 -0
  164. lalapps/bin/lalinference_nest +0 -0
  165. lalapps/bin/lalinference_version +0 -0
  166. lalapps/bin/lalinspiral_version +0 -0
  167. lalapps/bin/lalmetaio_version +0 -0
  168. lalapps/bin/lalpulsar_ComputeAntennaPattern +0 -0
  169. lalapps/bin/lalpulsar_ComputeFstatBenchmark +0 -0
  170. lalapps/bin/lalpulsar_ComputeFstatLatticeCount +0 -0
  171. lalapps/bin/lalpulsar_ComputeFstatMCUpperLimit +0 -0
  172. lalapps/bin/lalpulsar_ComputeFstatistic_v2 +0 -0
  173. lalapps/bin/lalpulsar_ComputePSD +0 -0
  174. lalapps/bin/lalpulsar_DriveHoughMulti +0 -0
  175. lalapps/bin/lalpulsar_FstatMetric_v2 +0 -0
  176. lalapps/bin/lalpulsar_HierarchSearchGCT +0 -0
  177. lalapps/bin/lalpulsar_HierarchicalSearch +0 -0
  178. lalapps/bin/lalpulsar_MakeSFTs +0 -0
  179. lalapps/bin/lalpulsar_Makefakedata_v4 +0 -0
  180. lalapps/bin/lalpulsar_Makefakedata_v5 +0 -0
  181. lalapps/bin/lalpulsar_PredictFstat +0 -0
  182. lalapps/bin/lalpulsar_PrintDetectorState +0 -0
  183. lalapps/bin/lalpulsar_SFTclean +0 -0
  184. lalapps/bin/lalpulsar_SFTvalidate +0 -0
  185. lalapps/bin/lalpulsar_Weave +0 -0
  186. lalapps/bin/lalpulsar_WeaveCompare +0 -0
  187. lalapps/bin/lalpulsar_WeaveConcat +0 -0
  188. lalapps/bin/lalpulsar_WeaveSetup +0 -0
  189. lalapps/bin/lalpulsar_WriteSFTsfromSFDBs +0 -0
  190. lalapps/bin/lalpulsar_compareFstats +0 -0
  191. lalapps/bin/lalpulsar_compareSFTs +0 -0
  192. lalapps/bin/lalpulsar_create_time_correction_ephemeris +0 -0
  193. lalapps/bin/lalpulsar_crosscorr_v2 +0 -0
  194. lalapps/bin/lalpulsar_dumpSFT +0 -0
  195. lalapps/bin/lalpulsar_fits_header_getval +0 -0
  196. lalapps/bin/lalpulsar_fits_header_list +0 -0
  197. lalapps/bin/lalpulsar_fits_overview +0 -0
  198. lalapps/bin/lalpulsar_fits_table_list +0 -0
  199. lalapps/bin/lalpulsar_frequency_evolution +0 -0
  200. lalapps/bin/lalpulsar_heterodyne +0 -0
  201. lalapps/bin/lalpulsar_parameter_estimation_nested +0 -0
  202. lalapps/bin/lalpulsar_spec_avg +0 -0
  203. lalapps/bin/lalpulsar_spec_avg_long +0 -0
  204. lalapps/bin/lalpulsar_spec_coherence +0 -0
  205. lalapps/bin/lalpulsar_splitSFTs +0 -0
  206. lalapps/bin/lalpulsar_ssbtodetector +0 -0
  207. lalapps/bin/lalpulsar_synthesizeBstatMC +0 -0
  208. lalapps/bin/lalpulsar_synthesizeLVStats +0 -0
  209. lalapps/bin/lalpulsar_synthesizeTransientStats +0 -0
  210. lalapps/bin/lalpulsar_version +0 -0
  211. lalapps/bin/lalsim-bh-qnmode +0 -0
  212. lalapps/bin/lalsim-bh-ringdown +0 -0
  213. lalapps/bin/lalsim-bh-sphwf +0 -0
  214. lalapps/bin/lalsim-burst +0 -0
  215. lalapps/bin/lalsim-detector-noise +0 -0
  216. lalapps/bin/lalsim-detector-strain +0 -0
  217. lalapps/bin/lalsim-inject +0 -0
  218. lalapps/bin/lalsim-inspiral +0 -0
  219. lalapps/bin/lalsim-ns-eos-table +0 -0
  220. lalapps/bin/lalsim-ns-mass-radius +0 -0
  221. lalapps/bin/lalsim-ns-params +0 -0
  222. lalapps/bin/lalsim-sgwb +0 -0
  223. lalapps/bin/lalsim-unicorn +0 -0
  224. lalapps/bin/lalsimulation_version +0 -0
  225. lalapps/cosmicstring.py +691 -0
  226. lalapps/data/BNSMasses.dat +65022 -0
  227. lalapps/data/CorrelationMatrix.csv +15 -0
  228. lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF1_META.dat +1882 -0
  229. lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF2_META.dat +1939 -0
  230. lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF3_META.dat +1784 -0
  231. lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF4_META.dat +2074 -0
  232. lalapps/data/LALSimNeutronStarEOS_ALF1.dat +435 -0
  233. lalapps/data/LALSimNeutronStarEOS_ALF2.dat +453 -0
  234. lalapps/data/LALSimNeutronStarEOS_ALF3.dat +441 -0
  235. lalapps/data/LALSimNeutronStarEOS_ALF4.dat +441 -0
  236. lalapps/data/LALSimNeutronStarEOS_AP1.dat +212 -0
  237. lalapps/data/LALSimNeutronStarEOS_AP2.dat +212 -0
  238. lalapps/data/LALSimNeutronStarEOS_AP3.dat +212 -0
  239. lalapps/data/LALSimNeutronStarEOS_AP4.dat +210 -0
  240. lalapps/data/LALSimNeutronStarEOS_APR.dat +500 -0
  241. lalapps/data/LALSimNeutronStarEOS_APR4_EPP.dat +1447 -0
  242. lalapps/data/LALSimNeutronStarEOS_BBB2.dat +84 -0
  243. lalapps/data/LALSimNeutronStarEOS_BGN1H1.dat +123 -0
  244. lalapps/data/LALSimNeutronStarEOS_BHF_BBB2.dat +499 -0
  245. lalapps/data/LALSimNeutronStarEOS_BL_CHIRAL_META.dat +1534 -0
  246. lalapps/data/LALSimNeutronStarEOS_BPAL12.dat +61 -0
  247. lalapps/data/LALSimNeutronStarEOS_BSK19.dat +310 -0
  248. lalapps/data/LALSimNeutronStarEOS_BSK20.dat +310 -0
  249. lalapps/data/LALSimNeutronStarEOS_BSK21.dat +310 -0
  250. lalapps/data/LALSimNeutronStarEOS_ENG.dat +108 -0
  251. lalapps/data/LALSimNeutronStarEOS_FPS.dat +129 -0
  252. lalapps/data/LALSimNeutronStarEOS_GMSR_BSK14_BSK24.dat +1010 -0
  253. lalapps/data/LALSimNeutronStarEOS_GMSR_DHSL59_BSK24.dat +1009 -0
  254. lalapps/data/LALSimNeutronStarEOS_GMSR_DHSL69_BSK24.dat +1009 -0
  255. lalapps/data/LALSimNeutronStarEOS_GMSR_F0_BSK24.dat +1010 -0
  256. lalapps/data/LALSimNeutronStarEOS_GMSR_H1_BSK24.dat +1009 -0
  257. lalapps/data/LALSimNeutronStarEOS_GMSR_H2_BSK24.dat +1010 -0
  258. lalapps/data/LALSimNeutronStarEOS_GMSR_H3_BSK24.dat +1010 -0
  259. lalapps/data/LALSimNeutronStarEOS_GMSR_H4_BSK24.dat +1010 -0
  260. lalapps/data/LALSimNeutronStarEOS_GMSR_H5_BSK24.dat +1009 -0
  261. lalapps/data/LALSimNeutronStarEOS_GMSR_LN55_BSK24.dat +1010 -0
  262. lalapps/data/LALSimNeutronStarEOS_GMSR_SLY5_BSK24.dat +1010 -0
  263. lalapps/data/LALSimNeutronStarEOS_GNH3.dat +71 -0
  264. lalapps/data/LALSimNeutronStarEOS_GPPVA_DD2_BSK24.dat +1009 -0
  265. lalapps/data/LALSimNeutronStarEOS_GPPVA_DDME2_BSK24.dat +1010 -0
  266. lalapps/data/LALSimNeutronStarEOS_GPPVA_FSU2H_BSK24.dat +1009 -0
  267. lalapps/data/LALSimNeutronStarEOS_GPPVA_FSU2_BSK24.dat +1010 -0
  268. lalapps/data/LALSimNeutronStarEOS_GPPVA_NL3WRL55_BSK24.dat +1010 -0
  269. lalapps/data/LALSimNeutronStarEOS_GS1.dat +136 -0
  270. lalapps/data/LALSimNeutronStarEOS_GS2.dat +100 -0
  271. lalapps/data/LALSimNeutronStarEOS_H1.dat +114 -0
  272. lalapps/data/LALSimNeutronStarEOS_H2.dat +114 -0
  273. lalapps/data/LALSimNeutronStarEOS_H3.dat +98 -0
  274. lalapps/data/LALSimNeutronStarEOS_H4.dat +664 -0
  275. lalapps/data/LALSimNeutronStarEOS_H5.dat +703 -0
  276. lalapps/data/LALSimNeutronStarEOS_H6.dat +509 -0
  277. lalapps/data/LALSimNeutronStarEOS_H7.dat +703 -0
  278. lalapps/data/LALSimNeutronStarEOS_HQC18.dat +388 -0
  279. lalapps/data/LALSimNeutronStarEOS_KDE0V.dat +500 -0
  280. lalapps/data/LALSimNeutronStarEOS_KDE0V1.dat +500 -0
  281. lalapps/data/LALSimNeutronStarEOS_KDE0V1_BSK24.dat +1388 -0
  282. lalapps/data/LALSimNeutronStarEOS_KDE0V_BSK24.dat +1398 -0
  283. lalapps/data/LALSimNeutronStarEOS_MPA1.dat +102 -0
  284. lalapps/data/LALSimNeutronStarEOS_MS1.dat +122 -0
  285. lalapps/data/LALSimNeutronStarEOS_MS1B.dat +126 -0
  286. lalapps/data/LALSimNeutronStarEOS_MS1B_PP.dat +1447 -0
  287. lalapps/data/LALSimNeutronStarEOS_MS1_PP.dat +1447 -0
  288. lalapps/data/LALSimNeutronStarEOS_MS2.dat +48 -0
  289. lalapps/data/LALSimNeutronStarEOS_PAL6.dat +148 -0
  290. lalapps/data/LALSimNeutronStarEOS_PCL2.dat +134 -0
  291. lalapps/data/LALSimNeutronStarEOS_PCP_BSK24_BSK24.dat +1010 -0
  292. lalapps/data/LALSimNeutronStarEOS_PS.dat +165 -0
  293. lalapps/data/LALSimNeutronStarEOS_QMC700.dat +117 -0
  294. lalapps/data/LALSimNeutronStarEOS_RG_SLY4_BSK24.dat +1010 -0
  295. lalapps/data/LALSimNeutronStarEOS_RS.dat +500 -0
  296. lalapps/data/LALSimNeutronStarEOS_RS_BSK24.dat +1356 -0
  297. lalapps/data/LALSimNeutronStarEOS_SK255.dat +500 -0
  298. lalapps/data/LALSimNeutronStarEOS_SK255_BSK24.dat +1066 -0
  299. lalapps/data/LALSimNeutronStarEOS_SK272.dat +500 -0
  300. lalapps/data/LALSimNeutronStarEOS_SKA.dat +500 -0
  301. lalapps/data/LALSimNeutronStarEOS_SKA_BSK24.dat +1433 -0
  302. lalapps/data/LALSimNeutronStarEOS_SKB.dat +500 -0
  303. lalapps/data/LALSimNeutronStarEOS_SKB_BSK24.dat +1373 -0
  304. lalapps/data/LALSimNeutronStarEOS_SKI2.dat +500 -0
  305. lalapps/data/LALSimNeutronStarEOS_SKI2_BSK24.dat +1348 -0
  306. lalapps/data/LALSimNeutronStarEOS_SKI3.dat +500 -0
  307. lalapps/data/LALSimNeutronStarEOS_SKI3_BSK24.dat +1355 -0
  308. lalapps/data/LALSimNeutronStarEOS_SKI4.dat +497 -0
  309. lalapps/data/LALSimNeutronStarEOS_SKI4_BSK24.dat +1348 -0
  310. lalapps/data/LALSimNeutronStarEOS_SKI5.dat +500 -0
  311. lalapps/data/LALSimNeutronStarEOS_SKI6.dat +500 -0
  312. lalapps/data/LALSimNeutronStarEOS_SKI6_BSK24.dat +1358 -0
  313. lalapps/data/LALSimNeutronStarEOS_SKMP.dat +498 -0
  314. lalapps/data/LALSimNeutronStarEOS_SKOP.dat +500 -0
  315. lalapps/data/LALSimNeutronStarEOS_SKOP_BSK24.dat +1373 -0
  316. lalapps/data/LALSimNeutronStarEOS_SLY.dat +99 -0
  317. lalapps/data/LALSimNeutronStarEOS_SLY2.dat +500 -0
  318. lalapps/data/LALSimNeutronStarEOS_SLY230A.dat +500 -0
  319. lalapps/data/LALSimNeutronStarEOS_SLY230A_BSK24.dat +1116 -0
  320. lalapps/data/LALSimNeutronStarEOS_SLY2_BSK24.dat +1106 -0
  321. lalapps/data/LALSimNeutronStarEOS_SLY4.dat +100 -0
  322. lalapps/data/LALSimNeutronStarEOS_SLY9.dat +498 -0
  323. lalapps/data/LALSimNeutronStarEOS_SLY9_BSK24.dat +1083 -0
  324. lalapps/data/LALSimNeutronStarEOS_SQM1.dat +176 -0
  325. lalapps/data/LALSimNeutronStarEOS_SQM2.dat +180 -0
  326. lalapps/data/LALSimNeutronStarEOS_SQM3.dat +176 -0
  327. lalapps/data/LALSimNeutronStarEOS_WFF1.dat +109 -0
  328. lalapps/data/LALSimNeutronStarEOS_WFF2.dat +109 -0
  329. lalapps/data/LALSimNeutronStarEOS_WFF3.dat +107 -0
  330. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_DDLZ1_BSK24.dat +1227 -0
  331. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_DDME2_BSK24.dat +1272 -0
  332. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_DDMEX_BSK24.dat +1280 -0
  333. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_GM1_BSK24.dat +1288 -0
  334. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_MTVTC_BSK24.dat +1288 -0
  335. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_NL3_BSK24.dat +1230 -0
  336. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_PKDD_BSK24.dat +1288 -0
  337. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_TM1_BSK24.dat +1288 -0
  338. lalapps/data/LALSimNeutronStarEOS_XMLSLZ_TW99_BSK24.dat +1288 -0
  339. lalapps/data/LIGO-P1200087-v18-AdV_BNS_OPTIMIZED.txt +3000 -0
  340. lalapps/data/LIGO-P1200087-v18-AdV_DESIGN.txt +3000 -0
  341. lalapps/data/LIGO-P1200087-v18-AdV_EARLY_HIGH.txt +3000 -0
  342. lalapps/data/LIGO-P1200087-v18-AdV_EARLY_LOW.txt +3000 -0
  343. lalapps/data/LIGO-P1200087-v18-AdV_LATE_HIGH.txt +3000 -0
  344. lalapps/data/LIGO-P1200087-v18-AdV_LATE_LOW.txt +3000 -0
  345. lalapps/data/LIGO-P1200087-v18-AdV_MID_HIGH.txt +3000 -0
  346. lalapps/data/LIGO-P1200087-v18-AdV_MID_LOW.txt +3000 -0
  347. lalapps/data/LIGO-P1200087-v18-aLIGO_BNS_OPTIMIZED.txt +3000 -0
  348. lalapps/data/LIGO-P1200087-v18-aLIGO_DESIGN.txt +3000 -0
  349. lalapps/data/LIGO-P1200087-v18-aLIGO_EARLY_HIGH.txt +3000 -0
  350. lalapps/data/LIGO-P1200087-v18-aLIGO_EARLY_LOW.txt +3000 -0
  351. lalapps/data/LIGO-P1200087-v18-aLIGO_LATE_HIGH.txt +3000 -0
  352. lalapps/data/LIGO-P1200087-v18-aLIGO_LATE_LOW.txt +3000 -0
  353. lalapps/data/LIGO-P1200087-v18-aLIGO_MID_HIGH.txt +3000 -0
  354. lalapps/data/LIGO-P1200087-v18-aLIGO_MID_LOW.txt +3000 -0
  355. lalapps/data/LIGO-P1600143-v18-CE.txt +3000 -0
  356. lalapps/data/LIGO-P1600143-v18-CE_Pessimistic.txt +3000 -0
  357. lalapps/data/LIGO-P1600143-v18-CE_Wideband.txt +3000 -0
  358. lalapps/data/LIGO-P1600143-v18-ET_D.txt +3000 -0
  359. lalapps/data/LIGO-T0900288-v3-BHBH_20deg.txt +3000 -0
  360. lalapps/data/LIGO-T0900288-v3-High_Freq.txt +3000 -0
  361. lalapps/data/LIGO-T0900288-v3-NO_SRM.txt +3000 -0
  362. lalapps/data/LIGO-T0900288-v3-NSNS_Opt.txt +3000 -0
  363. lalapps/data/LIGO-T0900288-v3-ZERO_DET_high_P.txt +3000 -0
  364. lalapps/data/LIGO-T0900288-v3-ZERO_DET_low_P.txt +3000 -0
  365. lalapps/data/LIGO-T1600593-v1-KAGRA_Design.txt +4000 -0
  366. lalapps/data/LIGO-T1600593-v1-KAGRA_Early.txt +4000 -0
  367. lalapps/data/LIGO-T1600593-v1-KAGRA_Late.txt +4000 -0
  368. lalapps/data/LIGO-T1600593-v1-KAGRA_Mid.txt +4000 -0
  369. lalapps/data/LIGO-T1600593-v1-KAGRA_Opening.txt +4000 -0
  370. lalapps/data/LIGO-T1800042-v5-aLIGO_APLUS.txt +3000 -0
  371. lalapps/data/LIGO-T1800044-v5-aLIGO_DESIGN.txt +3000 -0
  372. lalapps/data/LIGO-T1800545-v1-AdV_O3low.txt +3000 -0
  373. lalapps/data/LIGO-T1800545-v1-AdV_O4.txt +3000 -0
  374. lalapps/data/LIGO-T1800545-v1-AdV_O4intermediate.txt +3000 -0
  375. lalapps/data/LIGO-T1800545-v1-KAGRA_128Mpc.txt +1000 -0
  376. lalapps/data/LIGO-T1800545-v1-KAGRA_25Mpc.txt +1000 -0
  377. lalapps/data/LIGO-T1800545-v1-KAGRA_80Mpc.txt +1000 -0
  378. lalapps/data/LIGO-T1800545-v1-aLIGO_140Mpc.txt +1000 -0
  379. lalapps/data/LIGO-T1800545-v1-aLIGO_175Mpc.txt +2792 -0
  380. lalapps/data/LIGO-T1800545-v1-aLIGO_O3low.txt +2792 -0
  381. lalapps/data/bimodalMeans.csv +3 -0
  382. lalapps/data/config_tiger_example.ini +150 -0
  383. lalapps/data/fiducialBBH.xml +67 -0
  384. lalapps/data/fiducialBNS.xml +67 -0
  385. lalapps/data/inspsrcs100Mpc.errors +38735 -0
  386. lalapps/data/lalinference_pipe_example.ini +573 -0
  387. lalapps/data/lib_pipe_example.ini +303 -0
  388. lalapps/data/power_pipe.ini +129 -0
  389. lalapps/data/unimodalMeans.csv +2 -0
  390. lalapps/git_version.py +64 -0
  391. lalburst/SimBurstUtils.py +324 -0
  392. lalburst/SnglBurstUtils.py +367 -0
  393. lalburst/__init__.py +7 -0
  394. lalburst/_lalburst.cpython-314-darwin.so +0 -0
  395. lalburst/_lalburst_swig.py +16 -0
  396. lalburst/binjfind.py +824 -0
  397. lalburst/bucluster.py +409 -0
  398. lalburst/burca.py +315 -0
  399. lalburst/burca_tailor.py +349 -0
  400. lalburst/cafe.py +579 -0
  401. lalburst/calc_likelihood.py +145 -0
  402. lalburst/cs_gamma.cpython-314-darwin.so +0 -0
  403. lalburst/date.py +118 -0
  404. lalburst/git_version.py +64 -0
  405. lalburst/offsetvector.py +278 -0
  406. lalburst/packing.py +170 -0
  407. lalburst/power.py +1457 -0
  408. lalburst/snglcluster.py +136 -0
  409. lalburst/snglcoinc.py +2637 -0
  410. lalburst/stringutils.py +607 -0
  411. lalburst/timeslides.py +236 -0
  412. lalframe/__init__.py +7 -0
  413. lalframe/_lalframe.cpython-314-darwin.so +0 -0
  414. lalframe/_lalframe_swig.py +14 -0
  415. lalframe/frread.py +324 -0
  416. lalframe/git_version.py +64 -0
  417. lalframe/utils/__init__.py +25 -0
  418. lalframe/utils/frtools.py +61 -0
  419. lalinference/__init__.py +7 -0
  420. lalinference/_bayespputils.cpython-314-darwin.so +0 -0
  421. lalinference/_lalinference.cpython-314-darwin.so +0 -0
  422. lalinference/_lalinference_swig.py +19 -0
  423. lalinference/bayespputils.py +7479 -0
  424. lalinference/bayestar/__init__.py +2 -0
  425. lalinference/bayestar/deprecation.py +72 -0
  426. lalinference/git_version.py +64 -0
  427. lalinference/imrtgr/__init__.py +0 -0
  428. lalinference/imrtgr/imrtgrutils.py +168 -0
  429. lalinference/imrtgr/nrutils.py +1366 -0
  430. lalinference/imrtgr/pneqns.py +250 -0
  431. lalinference/io/__init__.py +31 -0
  432. lalinference/io/hdf5.py +365 -0
  433. lalinference/lalinference_pipe_utils.py +3617 -0
  434. lalinference/nest2pos.py +151 -0
  435. lalinference/plot/__init__.py +34 -0
  436. lalinference/plot/spindisk.py +104 -0
  437. lalinference/tiger/__init__.py +0 -0
  438. lalinference/tiger/make_injtimes.py +634 -0
  439. lalinference/tiger/omegascans_dag.py +691 -0
  440. lalinference/tiger/postproc.py +1338 -0
  441. lalinference/wrapper.py +231 -0
  442. lalinspiral/__init__.py +7 -0
  443. lalinspiral/_lalinspiral.cpython-314-darwin.so +0 -0
  444. lalinspiral/_lalinspiral_swig.py +18 -0
  445. lalinspiral/_thinca.cpython-314-darwin.so +0 -0
  446. lalinspiral/git_version.py +64 -0
  447. lalinspiral/inspinjfind.py +485 -0
  448. lalinspiral/thinca.py +509 -0
  449. lalmetaio/__init__.py +7 -0
  450. lalmetaio/_lalmetaio.cpython-314-darwin.so +0 -0
  451. lalmetaio/_lalmetaio_swig.py +14 -0
  452. lalmetaio/git_version.py +64 -0
  453. lalpulsar/NstarTools.py +259 -0
  454. lalpulsar/PulsarParametersWrapper.py +938 -0
  455. lalpulsar/__init__.py +7 -0
  456. lalpulsar/_lalpulsar.cpython-314-darwin.so +0 -0
  457. lalpulsar/_lalpulsar_swig.py +17 -0
  458. lalpulsar/git_version.py +64 -0
  459. lalpulsar/knope_utils.py +6497 -0
  460. lalpulsar/lineFileParser.py +264 -0
  461. lalpulsar/metric_utils.py +78 -0
  462. lalpulsar/piecewise_model/__init__.py +7 -0
  463. lalpulsar/piecewise_model/basis_functions.py +156 -0
  464. lalpulsar/piecewise_model/class_definitions.py +323 -0
  465. lalpulsar/piecewise_model/errors.py +37 -0
  466. lalpulsar/piecewise_model/estimating_knots.py +833 -0
  467. lalpulsar/piecewise_model/gte_and_other_methods.py +189 -0
  468. lalpulsar/piecewise_model/mols_for_gte.py +269 -0
  469. lalpulsar/piecewise_model/pw_fstat.py +813 -0
  470. lalpulsar/piecewise_model/pw_model_simulations.py +156 -0
  471. lalpulsar/piecewise_model/sampling_methods.py +186 -0
  472. lalpulsar/piecewise_model/semicoherent_metric_methods.py +375 -0
  473. lalpulsar/piecewise_model/tbank_estimates.py +293 -0
  474. lalpulsar/public_sft_directory.py +82 -0
  475. lalpulsar/pulsarhtmlutils.py +1395 -0
  476. lalpulsar/pulsarpputils.py +3638 -0
  477. lalpulsar/simulateCW.py +602 -0
  478. lalpulsar/simulateHeterodynedCW.py +591 -0
  479. lalsimulation/__init__.py +7 -0
  480. lalsimulation/_lalsimulation.cpython-314-darwin.so +0 -0
  481. lalsimulation/_lalsimulation_swig.py +14 -0
  482. lalsimulation/git_version.py +64 -0
  483. lalsimulation/gwsignal/__init__.py +9 -0
  484. lalsimulation/gwsignal/core/__init__.py +2 -0
  485. lalsimulation/gwsignal/core/conditioning_subroutines.py +196 -0
  486. lalsimulation/gwsignal/core/errors.py +136 -0
  487. lalsimulation/gwsignal/core/gw.py +206 -0
  488. lalsimulation/gwsignal/core/parameter_conventions.py +122 -0
  489. lalsimulation/gwsignal/core/utils.py +329 -0
  490. lalsimulation/gwsignal/core/waveform.py +725 -0
  491. lalsimulation/gwsignal/core/waveform_conditioning.py +455 -0
  492. lalsimulation/gwsignal/models/__init__.py +29 -0
  493. lalsimulation/gwsignal/models/pyseobnr_model.py +452 -0
  494. lalsimulation/nrfits/NRSur3dq8Remnant.py +92 -0
  495. lalsimulation/nrfits/NRSur7dq4Remnant.py +469 -0
  496. lalsimulation/nrfits/__init__.py +1 -0
  497. lalsimulation/nrfits/eval_fits.py +364 -0
  498. lalsimulation/nrfits/nrfits.py +78 -0
  499. lalsimulation/nrfits/pn_spin_evolution_wrapper.py +92 -0
  500. lalsimulation/nrfits/quaternion_utils.py +74 -0
  501. lalsimulation/tilts_at_infinity/__init__.py +2 -0
  502. lalsimulation/tilts_at_infinity/calc_tilts_prec_avg_regularized.py +1424 -0
  503. lalsimulation/tilts_at_infinity/hybrid_spin_evolution.py +461 -0
  504. lalsimulation/tilts_at_infinity/tilts_at_infinity_utils.py +167 -0
  505. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesBurstPPAnalysis +305 -0
  506. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesBurstPostProc +1364 -0
  507. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesCombinePTMCMCh5s +100 -0
  508. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesCombinePosteriors +235 -0
  509. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesCompPos +1121 -0
  510. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesDIEvidence +68 -0
  511. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesGraceDBinfo +182 -0
  512. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesMCMC2pos +314 -0
  513. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPPAnalysis +322 -0
  514. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPlotSpinDisk +42 -0
  515. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPosToSimBurst +227 -0
  516. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPosToSimInspiral +307 -0
  517. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPostProc +1345 -0
  518. lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesThermoInt +107 -0
  519. lalsuite-7.26.2.dev20260106.data/scripts/imrtgr_imr_consistency_test +796 -0
  520. lalsuite-7.26.2.dev20260106.data/scripts/lal_cache +6 -0
  521. lalsuite-7.26.2.dev20260106.data/scripts/lal_fftw_wisdom +6 -0
  522. lalsuite-7.26.2.dev20260106.data/scripts/lal_fftwf_wisdom +6 -0
  523. lalsuite-7.26.2.dev20260106.data/scripts/lal_path2cache +148 -0
  524. lalsuite-7.26.2.dev20260106.data/scripts/lal_searchsum2cache +172 -0
  525. lalsuite-7.26.2.dev20260106.data/scripts/lal_simd_detect +6 -0
  526. lalsuite-7.26.2.dev20260106.data/scripts/lal_tconvert +6 -0
  527. lalsuite-7.26.2.dev20260106.data/scripts/lal_version +6 -0
  528. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeAntennaPattern +6 -0
  529. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatBenchmark +6 -0
  530. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatLatticeCount +6 -0
  531. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatMCUpperLimit +6 -0
  532. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatistic_v2 +6 -0
  533. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputePSD +6 -0
  534. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_CopySFTs +6 -0
  535. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_DistanceVsMass +6 -0
  536. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_DriveHoughMulti +6 -0
  537. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_FstatMetric_v2 +6 -0
  538. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_HierarchSearchGCT +6 -0
  539. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_HierarchicalSearch +6 -0
  540. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_MakeSFTDAG +6 -0
  541. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_MakeSFTs +6 -0
  542. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_Makefakedata_v4 +6 -0
  543. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_Makefakedata_v5 +6 -0
  544. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_PredictFstat +6 -0
  545. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_PrintDetectorState +6 -0
  546. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_SFTclean +6 -0
  547. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_SFTvalidate +6 -0
  548. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_StringAddFrame +6 -0
  549. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_StringSearch +6 -0
  550. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_Weave +6 -0
  551. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WeaveCompare +6 -0
  552. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WeaveConcat +6 -0
  553. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WeaveSetup +6 -0
  554. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WriteSFTsfromSFDBs +6 -0
  555. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_animate +6 -0
  556. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_binj +6 -0
  557. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_blindinj +6 -0
  558. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cache +6 -0
  559. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cafe +99 -0
  560. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_calfacs +6 -0
  561. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cbc_stochasticbank +6 -0
  562. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_chirplen +6 -0
  563. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_coh_PTF_inspiral +6 -0
  564. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_coinj +6 -0
  565. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_combine_crosscorr_toplists +6 -0
  566. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_compareFstats +6 -0
  567. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_compareSFTs +6 -0
  568. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cosmicstring_pipe +525 -0
  569. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_create_time_correction_ephemeris +6 -0
  570. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_dumpSFT +6 -0
  571. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_effdist +6 -0
  572. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_exc_resp +6 -0
  573. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fftw_wisdom +6 -0
  574. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fftwf_wisdom +6 -0
  575. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_header_getval +6 -0
  576. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_header_list +6 -0
  577. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_overview +6 -0
  578. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_table_list +6 -0
  579. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fr_ninja +6 -0
  580. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frextr +6 -0
  581. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frinfo +6 -0
  582. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frjoin +6 -0
  583. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frread +6 -0
  584. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frview +6 -0
  585. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_gwf2xml +6 -0
  586. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_heterodyne_pulsar +6 -0
  587. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspawgfile +6 -0
  588. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspfrinj +6 -0
  589. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspinj +6 -0
  590. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspiralDistance +6 -0
  591. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope +6 -0
  592. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope_automation_script +6 -0
  593. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope_collate_results +6 -0
  594. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope_result_page +6 -0
  595. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_makeblindinj +6 -0
  596. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_makeblindinj_himass +6 -0
  597. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ninja +6 -0
  598. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_path2cache +6 -0
  599. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_power +6 -0
  600. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_power_likelihood_pipe +219 -0
  601. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_power_pipe +417 -0
  602. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_pulsar_crosscorr_v2 +6 -0
  603. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_pulsar_frequency_evolution +6 -0
  604. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_pulsar_parameter_estimation_nested +6 -0
  605. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_random_bank +6 -0
  606. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_randombank +6 -0
  607. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_run_pulsar_crosscorr_v2 +6 -0
  608. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_searchsum2cache +6 -0
  609. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spec_avg +6 -0
  610. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spec_avg_long +6 -0
  611. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spec_coherence +6 -0
  612. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spininj +6 -0
  613. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_splitSFTs +6 -0
  614. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_splitbank +6 -0
  615. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ssbtodetector +6 -0
  616. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_apply_vetoes +171 -0
  617. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_calc_likelihood +172 -0
  618. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_contour_plotter +141 -0
  619. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_contour_plotter_largeloops +133 -0
  620. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_cs_gamma +110 -0
  621. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_cs_gamma_largeloops +119 -0
  622. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_final +1064 -0
  623. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_meas_likelihood +264 -0
  624. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_plot_binj +543 -0
  625. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_plot_likelihood +380 -0
  626. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_synthesizeBstatMC +6 -0
  627. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_synthesizeLVStats +6 -0
  628. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_synthesizeTransientStats +6 -0
  629. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_tconvert +6 -0
  630. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_tmpltbank +6 -0
  631. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_version +6 -0
  632. lalsuite-7.26.2.dev20260106.data/scripts/lalapps_xtefitstoframe +6 -0
  633. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_cluster +156 -0
  634. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_coinc +224 -0
  635. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_cut +425 -0
  636. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_gen_timeslides +254 -0
  637. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_inj_pic +254 -0
  638. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_injfind +170 -0
  639. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_plot_tisi +165 -0
  640. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_calc_likelihood +182 -0
  641. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_final +1369 -0
  642. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_meas_likelihood +206 -0
  643. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_plot_binj +934 -0
  644. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_plot_binjtf +302 -0
  645. lalsuite-7.26.2.dev20260106.data/scripts/lalburst_version +6 -0
  646. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-cat +6 -0
  647. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-cksum +6 -0
  648. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-cut +6 -0
  649. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-dump +6 -0
  650. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-fmt +6 -0
  651. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-paste +6 -0
  652. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-print +6 -0
  653. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-split +6 -0
  654. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-stat +6 -0
  655. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-stream +6 -0
  656. lalsuite-7.26.2.dev20260106.data/scripts/lalfr-vis +6 -0
  657. lalsuite-7.26.2.dev20260106.data/scripts/lalframe_version +6 -0
  658. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_bench +6 -0
  659. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_burst +6 -0
  660. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_burst_pp_pipe +220 -0
  661. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_coherence_test +139 -0
  662. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_compute_roq_weights +404 -0
  663. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_cpnest +58 -0
  664. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_datadump +6 -0
  665. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_evolve_spins_and_append_samples +202 -0
  666. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_injectedlike +6 -0
  667. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_merge_posteriors +57 -0
  668. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_mpi_wrapper +6 -0
  669. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_multi_pipe +144 -0
  670. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_nest +6 -0
  671. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_nest2pos +286 -0
  672. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_pipe +512 -0
  673. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_pp_pipe +229 -0
  674. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_review_test +362 -0
  675. lalsuite-7.26.2.dev20260106.data/scripts/lalinference_version +6 -0
  676. lalsuite-7.26.2.dev20260106.data/scripts/lalinspiral_injfind +206 -0
  677. lalsuite-7.26.2.dev20260106.data/scripts/lalinspiral_thinca +240 -0
  678. lalsuite-7.26.2.dev20260106.data/scripts/lalinspiral_version +6 -0
  679. lalsuite-7.26.2.dev20260106.data/scripts/lalmetaio_version +6 -0
  680. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeAntennaPattern +6 -0
  681. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatBenchmark +6 -0
  682. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatLatticeCount +6 -0
  683. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatMCUpperLimit +6 -0
  684. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatistic_v2 +6 -0
  685. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputePSD +6 -0
  686. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_CopyPublicSFTs +216 -0
  687. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_DriveHoughMulti +6 -0
  688. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_FstatMetric_v2 +6 -0
  689. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_HierarchSearchGCT +6 -0
  690. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_HierarchicalSearch +6 -0
  691. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_MakeSFTDAG +1142 -0
  692. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_MakeSFTs +6 -0
  693. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_Makefakedata_v4 +6 -0
  694. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_Makefakedata_v5 +6 -0
  695. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_MoveSFTs +208 -0
  696. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_PiecewiseSearch +963 -0
  697. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_PredictFstat +6 -0
  698. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_PrintDetectorState +6 -0
  699. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_SFTclean +6 -0
  700. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_SFTvalidate +6 -0
  701. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_Weave +6 -0
  702. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WeaveCompare +6 -0
  703. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WeaveConcat +6 -0
  704. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WeaveSetup +6 -0
  705. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WriteSFTsfromSFDBs +6 -0
  706. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_compareFstats +6 -0
  707. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_compareSFTs +6 -0
  708. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_create_time_correction_ephemeris +6 -0
  709. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_crosscorr_v2 +6 -0
  710. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_dumpSFT +6 -0
  711. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_header_getval +6 -0
  712. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_header_list +6 -0
  713. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_overview +6 -0
  714. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_table_list +6 -0
  715. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_frequency_evolution +6 -0
  716. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_heterodyne +6 -0
  717. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope +145 -0
  718. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope_automation_script +731 -0
  719. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope_collate_results +675 -0
  720. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope_result_page +2977 -0
  721. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_parameter_estimation_nested +6 -0
  722. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_spec_avg +6 -0
  723. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_spec_avg_long +6 -0
  724. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_spec_coherence +6 -0
  725. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_splitSFTs +6 -0
  726. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ssbtodetector +6 -0
  727. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_synthesizeBstatMC +6 -0
  728. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_synthesizeLVStats +6 -0
  729. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_synthesizeTransientStats +6 -0
  730. lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_version +6 -0
  731. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-bh-qnmode +6 -0
  732. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-bh-ringdown +6 -0
  733. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-bh-sphwf +6 -0
  734. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-burst +6 -0
  735. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-detector-noise +6 -0
  736. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-detector-strain +6 -0
  737. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-inject +6 -0
  738. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-inspiral +6 -0
  739. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-ns-eos-table +6 -0
  740. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-ns-mass-radius +6 -0
  741. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-ns-params +6 -0
  742. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-sgwb +6 -0
  743. lalsuite-7.26.2.dev20260106.data/scripts/lalsim-unicorn +6 -0
  744. lalsuite-7.26.2.dev20260106.data/scripts/lalsimulation_version +6 -0
  745. lalsuite-7.26.2.dev20260106.dist-info/METADATA +90 -0
  746. lalsuite-7.26.2.dev20260106.dist-info/RECORD +749 -0
  747. lalsuite-7.26.2.dev20260106.dist-info/WHEEL +6 -0
  748. lalsuite-7.26.2.dev20260106.dist-info/licenses/COPYING +339 -0
  749. lalsuite-7.26.2.dev20260106.dist-info/top_level.txt +9 -0
lal/antenna.py ADDED
@@ -0,0 +1,1200 @@
1
+ # Copyright (C) 2018 Matthew Pitkin
2
+ #
3
+ # This program is free software; you can redistribute it and/or modify it
4
+ # under the terms of the GNU General Public License as published by the
5
+ # Free Software Foundation; either version 2 of the License, or (at your
6
+ # option) any later version.
7
+ #
8
+ # This program is distributed in the hope that it will be useful, but
9
+ # WITHOUT ANY WARRANTY; without even the implied warranty of
10
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
11
+ # Public License for more details.
12
+ #
13
+ # You should have received a copy of the GNU General Public License along
14
+ # with this program; if not, write to the Free Software Foundation, Inc.,
15
+ # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
16
+
17
+
18
+ ## \defgroup lal_py_antenna Antenna
19
+ ## \ingroup lal_python
20
+ """This module provides a Python class for generating antenna response
21
+ functions. By default the class uses its own implementation of the antenna
22
+ response functions, but it also provides a wrapper to the equivalent
23
+ functions within LAL.
24
+ """
25
+ # \author Matthew Pitkin (<matthew.pitkin@ligo.org>)
26
+ #
27
+ # ### Synopsis ###
28
+ #
29
+ # ~~~
30
+ # from lal import antenna
31
+ # ~~~
32
+ #
33
+ # ### Examples ###
34
+ #
35
+ # A simple example of just getting the antenna response for LHO at a single
36
+ # time for a single sky position and polarization angle would be:
37
+ #
38
+ # \code
39
+ # from lal import antenna
40
+ # ra = 1.2 # right ascension in radians
41
+ # dec = -0.3 # declination in radians
42
+ # psi = 1.5 # polarization angle in radians
43
+ # times = 1000000000. # time (GPS seconds)
44
+ # resp = antenna.AntennaResponse('H1', ra, dec, psi=psi, times=times)
45
+ # print(resp.plus)
46
+ # \endcode
47
+ #
48
+ # To produce plots of the antenna responses over the sky for the different
49
+ # polarizations, assuming a detector at the North Pole, one could use:
50
+ #
51
+ # \code
52
+ # import numpy as np
53
+ # import lal
54
+ # from lal.antenna import AntennaResponse
55
+ # from mpl_toolkits.mplot3d import Axes3D
56
+ # import matplotlib.pyplot as pl
57
+ #
58
+ # # set a LALFrDetector object for the North Pole
59
+ # frdt = lal.FrDetector()
60
+ #
61
+ # frdt.name = 'NORTHPOLE'
62
+ # frdt.prefix = 'N1'
63
+ # frdt.vertexLongitudeRadians = 0.
64
+ # frdt.vertexLatitudeRadians = np.pi/2.
65
+ # frdt.vertexElevation = 0.
66
+ # frdt.xArmAltitudeRadians = 0.
67
+ # frdt.xArmAzimuthRadians = 0.
68
+ # frdt.yArmAltitudeRadians = 0.
69
+ # frdt.yArmAzimuthRadians = np.pi/2. # y-arm 90 degs from x-arm
70
+ # frdt.xArmMidpoint = 2000. # 4km long arms
71
+ # frdt.yArmMidpoint = 2000.
72
+ #
73
+ # # create lal.Detector object
74
+ # det = lal.Detector()
75
+ # lal.CreateDetector(det, frdt, lal.LALDETECTORTYPE_IFODIFF)
76
+ #
77
+ # # create RA/dec grids uniform on sphere
78
+ # ras = np.linspace(0, 2.*np.pi, 150)
79
+ # decs = np.arcsin(np.linspace(-1, 1, 150))
80
+ #
81
+ # # create antenna response on the sky grid
82
+ # resp = AntennaResponse(det, ras, decs, psi=0.0, times=900000000.0, vector=True,
83
+ # scalar=True)
84
+ #
85
+ # # get equatorial to cartesian factors
86
+ # xfac = np.cos(resp.dec_mesh)*np.cos(resp.ra_mesh)
87
+ # yfac = np.cos(resp.dec_mesh)*np.sin(resp.ra_mesh)
88
+ # zfac = np.sin(resp.dec_mesh)
89
+ #
90
+ # fig = pl.figure(figsize=(12, 7))
91
+ #
92
+ # for i, mode in enumerate(['plus', 'x', 'b', 'cross', 'y', 'l']):
93
+ # r = np.abs(resp.response[mode]) # get absolute values of response
94
+ #
95
+ # # convert from equatorial coordinates to cartesian
96
+ # X, Y, Z = r*xfac, r*yfac, r*zfac
97
+ #
98
+ # ax = fig.add_subplot(2, 3, i+1, projection='3d')
99
+ # ax.plot_surface(X, Y, Z, cmap=pl.cm.viridis, linewidth=0, rstride=1, cstride=1)
100
+ # ax.set_aspect('equal')
101
+ # ax.set_title(mode)
102
+ #
103
+ # fig.tight_layout()
104
+ #
105
+ # pl.show()
106
+ # \endcode
107
+ #
108
+ # which will display:
109
+ # <img src=""/>
110
+ #
111
+ # <!--
112
+ # To produce the above jpeg byte string for the image I have used:
113
+ # from io import BytesIO
114
+ # import base64
115
+ # figfile = BytesIO()
116
+ # fig.savefig(figfile, dpi=50, format='jpg')
117
+ # figfile.seek(0) # rewind to beginning of file
118
+ # figdata_jpg = base64.b64encode(figfile.getvalue()).decode('utf8')
119
+ # -->
120
+ ## @{
121
+
122
+
123
+ import numpy as np
124
+
125
+
126
+ # import SWIG-wrapped LAL
127
+ from lal import (LALDetectorIndexLHODIFF, LALDetectorIndexLLODIFF,
128
+ LALDetectorIndexGEO600DIFF, LALDetectorIndexVIRGODIFF,
129
+ LALDetectorIndexTAMA300DIFF, LALDetectorIndexKAGRADIFF,
130
+ LALDetectorIndexLIODIFF, LALDetectorIndexE1DIFF,
131
+ LALDetectorIndexE2DIFF, LALDetectorIndexE3DIFF,
132
+ CachedDetectors, LIGOTimeGPS, GreenwichMeanSiderealTime,
133
+ ComputeDetAMResponse, ComputeDetAMResponseExtraModes,
134
+ DAYSID_SI, Detector, TranslateHMStoRAD, TranslateDMStoRAD)
135
+
136
+ from . import git_version
137
+
138
+ __author__ = "Matthew Pitkin <matthew.pitkin@ligo.org>"
139
+ __version__ = git_version.verbose_msg
140
+ __date__ = git_version.date
141
+
142
+
143
+ ## mapping between detector names and LALCachedDetectors
144
+ DETMAP = {'H1': LALDetectorIndexLHODIFF,
145
+ 'H2': LALDetectorIndexLHODIFF,
146
+ 'LHO': LALDetectorIndexLHODIFF,
147
+ 'L1': LALDetectorIndexLLODIFF,
148
+ 'LLO': LALDetectorIndexLLODIFF,
149
+ 'G1': LALDetectorIndexGEO600DIFF,
150
+ 'GEO': LALDetectorIndexGEO600DIFF,
151
+ 'GEO600': LALDetectorIndexGEO600DIFF,
152
+ 'V1': LALDetectorIndexVIRGODIFF,
153
+ 'VIRGO': LALDetectorIndexVIRGODIFF,
154
+ 'T1': LALDetectorIndexTAMA300DIFF,
155
+ 'TAMA': LALDetectorIndexTAMA300DIFF,
156
+ 'TAMA300': LALDetectorIndexTAMA300DIFF,
157
+ 'K1': LALDetectorIndexKAGRADIFF,
158
+ 'KAGRA': LALDetectorIndexKAGRADIFF,
159
+ 'LCGT': LALDetectorIndexKAGRADIFF,
160
+ 'I1': LALDetectorIndexLIODIFF,
161
+ 'LIO': LALDetectorIndexLIODIFF,
162
+ 'E1': LALDetectorIndexE1DIFF,
163
+ 'E2': LALDetectorIndexE2DIFF,
164
+ 'E3': LALDetectorIndexE3DIFF}
165
+
166
+
167
+ ## The ranges of variables required for the antenna response (for look-up table generation)
168
+ VAR_RANGES = {'psi': [0., 2.*np.pi],
169
+ 'time': [0., DAYSID_SI],
170
+ 'ra': [0., 2.*np.pi],
171
+ 'dec': [-1., 1.]} # this range is actually in sin(dec)
172
+
173
+
174
+ class AntennaResponse(object):
175
+ def __init__(self, detector, ra, dec, psi=0., times=None, tensor=True,
176
+ vector=False, scalar=False, use_lal=False, lookup=False,
177
+ lookuppair=None, bins1=100, bins2=100):
178
+ """
179
+ Calculate the long-wavelength limit antenna response functions for a given
180
+ ground-based gravitational wave detector. The response can include tensor,
181
+ vector, and scalar modes.
182
+
183
+ @param detector: (str) a valid detector name (e.g., 'H1') or
184
+ lal.Detector object.
185
+ @param ra: (array_like) the right ascension of the source in radians,
186
+ or a string of the format 'hh:mm:ss.s'.
187
+ @param dec: (array_like) the declination of the source in radians, or a
188
+ string of the format 'dd:mm:ss.s'.
189
+ @param psi: (array_like) the polarization angle in radians. Defaults to
190
+ zero.
191
+ @param times: (array_like) an array of GPS time values at which to
192
+ calculate the response function.
193
+ @param tensor: (bool) set to calculate and store the tensor
194
+ polarization components (plus and cross). Defaults to True.
195
+ @param vector: (bool) set to calculate and store the vector
196
+ polarization components ("x" and "y"). Defaults to False.
197
+ @param scalar: (bool) set to calculate and store the scalar
198
+ polarization components (longitudinal and breathing). Defaults to
199
+ False.
200
+ @param use_lal: (bool) set to internally use the
201
+ XLALComputeDetAMResponse() and XLALComputeDetAMResponseExtraModes()
202
+ functions. Defaults to False.
203
+ @param lookup: (bool) set to generate and use a look-up table in a pair
204
+ of parameters for computing the antenna responses. Defaults to
205
+ False. If using the look-up table, the arrays of values being
206
+ "looked-up" must be in ascending order.
207
+ @param lookuppair: (list, tuple) a list of the two parameters that will
208
+ be used in the look-up table interpolation. Defaults to
209
+ <tt>['psi', 'time']</tt> (allowed values are <tt>'ra'</tt>,
210
+ <tt>'dec'</tt>, <tt>'psi'</tt>, or <tt>'time'</tt>)
211
+ @param bins1: (int) the number of bins in the grid in the first look-up
212
+ table parameter. Defaults to 100.
213
+ @param bins2: (int) the number of bins in the grid in the second
214
+ look-up table parameter. Defaults to 100.
215
+
216
+ Example usage for tensor polarizations:
217
+ ~~~
218
+ >>> from lal.antenna import AntennaResponse
219
+ >>> # compute tensor response for a single time
220
+ >>> resp = AntennaResponse('H1', ra=1.2, dec=-0.3, psi=2.9,
221
+ ...times=1000000000)
222
+ >>> print('Fplus: {}'.format(resp.plus))
223
+ Fplus: [0.32427018]
224
+ >>> print('Fcross: {}'.format(resp.cross))
225
+ Fcross: [-0.79809163]
226
+ >>> # re-use class to get response at multiple new times
227
+ >>> resp.compute_response([1010101010., 1234567890.])
228
+ >>> print('Fplus: {}'.format(resp.plus))
229
+ Fplus: [ 0.09498567 -0.45495654]
230
+ >>> print('Fcross: {}'.format(resp.cross))
231
+ Fcross: [0.1706959 0.21690418]
232
+ ~~~
233
+
234
+ Example usage for tensor, vector and scalar polarizations (at a series
235
+ of times):
236
+ ~~~
237
+ >>> import numpy as np
238
+ >>> times = np.linspace(1000000000.0, 1000086340.0, 1440)
239
+ >>> resp = AntennaResponse('H1', ra=1.2, dec=-0.3, psi=2.9,
240
+ ...scalar=True, vector=True, times=times)
241
+ >>> resp.plus
242
+ array([0.32427018, 0.32805983, 0.3318344 , ..., 0.32780195, 0.33157755,
243
+ 0.33533786])
244
+ >>> resp.cross
245
+ array([-0.79809163, -0.79607858, -0.79404097, ..., -0.7962166 ,
246
+ -0.79418066, -0.79212028])
247
+ >>> resp.x # vector "x" polarization
248
+ array([-0.46915186, -0.46773594, -0.46627224, ..., -0.46783399,
249
+ -0.46637354, -0.46486538])
250
+ >>> resp.y # vector "y" polarization
251
+ array([-0.17075718, -0.17475991, -0.17875012, ..., -0.17448742,
252
+ -0.17847849, -0.18245689])
253
+ >>> resp.b # scalar "breathing" mode
254
+ array([0.05365678, 0.05573073, 0.05780282, ..., 0.05558939, 0.05766162,
255
+ 0.05973181])
256
+ >>> resp.l # scalar "longitudinal mode"
257
+ array([-0.05365678, -0.05573073, -0.05780282, ..., -0.05558939,
258
+ -0.05766162, -0.05973181])
259
+ ~~~
260
+ """
261
+
262
+ # response function dictionary
263
+ self.response = {'plus': None, # tensor plus polarization
264
+ 'cross': None, # tensor cross polarization
265
+ 'x': None, # vector "x" polarization
266
+ 'y': None, # vector "y" polarization
267
+ 'b': None, # scalar breathing mode polarizarion
268
+ 'l': None} # scalar longitudinal mode polarization
269
+
270
+ # parameter names and order in arrays
271
+ self.parameters = ['ra', 'dec', 'psi', 'time']
272
+
273
+ # set values
274
+ self.detector = detector
275
+ self.ra = ra
276
+ self.dec = dec
277
+ self.psi = psi
278
+ self.times = times
279
+
280
+ # polarization modes
281
+ self.tensor = tensor
282
+ self.vector = vector
283
+ self.scalar = scalar
284
+
285
+ # set whether to use internal LAL functions
286
+ self.use_lal = use_lal
287
+
288
+ # set whether to allocate and use a look-up table
289
+ if lookup:
290
+ if lookuppair is None: # use default pair
291
+ self.set_lookup_pair(bins1=bins1, bins2=bins2)
292
+ else:
293
+ self.set_lookup_pair(pair=lookuppair, bins1=bins1, bins2=bins2)
294
+ self.lookup = lookup
295
+
296
+ # calculate antenna responses
297
+ self.compute_response()
298
+
299
+ @property
300
+ def detector(self):
301
+ return self._detector
302
+
303
+ @detector.setter
304
+ def detector(self, det):
305
+ """
306
+ Set the detector for which to calculate the antenna response.
307
+
308
+ @param det: (str) a valid detector name.
309
+ """
310
+
311
+ if isinstance(det, Detector):
312
+ self._detector = det.frDetector.prefix
313
+ self.laldetector = det
314
+ elif isinstance(det, str):
315
+ if det.upper() not in DETMAP.keys():
316
+ raise ValueError("Detector is not a valid detector name")
317
+
318
+ self._detector = det.upper()
319
+
320
+ # set the LAL detector object
321
+ self.laldetector = self.detector
322
+ else:
323
+ raise TypeError("Detector must be a string or lal.Detector object")
324
+
325
+ @property
326
+ def laldetector(self):
327
+ return self._laldetector
328
+
329
+ @laldetector.setter
330
+ def laldetector(self, det):
331
+ """
332
+ Set the lal.Detector.
333
+
334
+ @param det: (str) a valid detector name.
335
+ """
336
+
337
+ if isinstance(det, Detector):
338
+ self._laldetector = det.response
339
+ elif isinstance(det, str):
340
+ try:
341
+ detector = DETMAP[det.upper()]
342
+ except KeyError:
343
+ raise KeyError("Key {} is not a valid detector name.".format(det))
344
+
345
+ self._laldetector = CachedDetectors[detector].response
346
+ else:
347
+ raise TypeError("Detector must be a string or lal.Detector object")
348
+
349
+ @property
350
+ def ra(self):
351
+ return self._ra
352
+
353
+ @ra.setter
354
+ def ra(self, raval):
355
+ """
356
+ Set the right ascension.
357
+ """
358
+
359
+ if raval is None:
360
+ self._ra = None
361
+ return
362
+ elif isinstance(raval, float) or isinstance(raval, int):
363
+ self._ra = np.array([raval], dtype='float64')
364
+ elif isinstance(raval, list) or isinstance(raval, np.ndarray):
365
+ self._ra = np.copy(raval).astype('float64')
366
+ elif isinstance(raval, str):
367
+ try:
368
+ rarad = TranslateHMStoRAD(raval)
369
+ self._ra = np.array([rarad], dtype='float64')
370
+ except RuntimeError:
371
+ raise ValueError("Could not convert '{}' to a right "
372
+ "ascension".format(raval))
373
+ else:
374
+ raise TypeError("Right ascension must be an array")
375
+
376
+ @property
377
+ def dec(self):
378
+ return self._dec
379
+
380
+ @property
381
+ def costheta(self):
382
+ return self._costheta
383
+
384
+ @property
385
+ def sintheta(self):
386
+ return self._sintheta
387
+
388
+ @dec.setter
389
+ def dec(self, decval):
390
+ """
391
+ Set the declination.
392
+ """
393
+
394
+ if decval is None:
395
+ self._dec = None
396
+ self._costheta = None
397
+ self._sintheta = None
398
+ return
399
+ elif isinstance(decval, float) or isinstance(decval, int):
400
+ self._dec = np.array([decval], dtype='float64')
401
+ elif isinstance(decval, list) or isinstance(decval, np.ndarray):
402
+ self._dec = np.copy(decval).astype('float64')
403
+ elif isinstance(decval, str):
404
+ try:
405
+ decrad = TranslateDMStoRAD(decval)
406
+ self._dec = np.array([decrad], dtype='float64')
407
+ except RuntimeError:
408
+ raise ValueError("Could not convert '{}' to a "
409
+ "declination".format(decval))
410
+ else:
411
+ raise TypeError("Declination must be an array")
412
+
413
+ self._costheta = np.cos(0.5*np.pi - self._dec)
414
+ self._sintheta = np.sin(0.5*np.pi - self._dec)
415
+
416
+ @property
417
+ def psi(self):
418
+ return self._psi
419
+
420
+ @property
421
+ def cospsi(self):
422
+ return self._cospsi
423
+
424
+ @property
425
+ def sinpsi(self):
426
+ return self._sinpsi
427
+
428
+ @psi.setter
429
+ def psi(self, psival):
430
+ """
431
+ Set the value of the gravitational wave polarization angle psi.
432
+
433
+ @param psival: (float) the polarization angle (radians)
434
+ """
435
+
436
+ if psival is None:
437
+ self._psi = None
438
+ self._cospsi = None
439
+ self._sinpsi = None
440
+ return
441
+ elif isinstance(psival, float) or isinstance(psival, int):
442
+ self._psi = np.array([psival], dtype='float64')
443
+ elif isinstance(psival, list) or isinstance(psival, np.ndarray):
444
+ self._psi = np.copy(psival).astype('float64')
445
+ else:
446
+ raise TypeError("Polarization must be an array")
447
+
448
+ self._psi = np.mod(self._psi, 2.*np.pi) # wrap at 0 and 2pi
449
+ self._cospsi = np.cos(self._psi)
450
+ self._sinpsi = np.sin(self._psi)
451
+
452
+ @property
453
+ def times(self):
454
+ return self._times
455
+
456
+ @property
457
+ def gmsttimes(self):
458
+ try:
459
+ return self._gmsttimes
460
+ except AttributeError:
461
+ return None
462
+
463
+ @times.setter
464
+ def times(self, timearr):
465
+ """
466
+ Set array of times and GPS times.
467
+ """
468
+
469
+ # check if times is just a float or int, and if so convert into an array
470
+ if timearr is None:
471
+ self._times = None
472
+ self._gmsttimes = None
473
+ return
474
+ elif isinstance(timearr, float) or isinstance(timearr, int):
475
+ self._times = np.array([timearr], dtype='float64')
476
+ elif isinstance(timearr, list) or isinstance(timearr, np.ndarray):
477
+ self._times = np.copy(timearr).astype('float64')
478
+ else:
479
+ raise TypeError("Times must be an array")
480
+
481
+ # get an array of GMSTs
482
+ self._gmsttimes = np.ones_like(self._times) * np.nan # Greenwich Mean Siderial time (radians)
483
+ for i, time in enumerate(self._times):
484
+ gps = LIGOTimeGPS(time) # GPS time
485
+ gmstrad = GreenwichMeanSiderealTime(gps)
486
+ self._gmsttimes[i] = gmstrad
487
+
488
+ @property
489
+ def shape(self):
490
+ try:
491
+ return self._ra_mesh.shape
492
+ except Exception:
493
+ if (self.ra is not None and self.dec is not None and
494
+ self.psi is not None and self.times is not None):
495
+ return (len(self.ra), len(self.dec), len(self.psi),
496
+ len(self.times))
497
+ else:
498
+ return ()
499
+
500
+ @property
501
+ def cosphi(self):
502
+ return self._cosphi
503
+
504
+ @property
505
+ def sinphi(self):
506
+ return self._sinphi
507
+
508
+ @property
509
+ def tensor(self):
510
+ return self._tensor
511
+
512
+ @tensor.setter
513
+ def tensor(self, tensorval):
514
+ """
515
+ Set whether to include tensor polarizations.
516
+ """
517
+
518
+ if not isinstance(tensorval, bool):
519
+ raise TypeError("Must be boolean value")
520
+
521
+ self._tensor = tensorval
522
+
523
+ @property
524
+ def vector(self):
525
+ return self._vector
526
+
527
+ @vector.setter
528
+ def vector(self, vectorval):
529
+ """
530
+ Set whether to include vector polarizations.
531
+ """
532
+
533
+ if not isinstance(vectorval, bool):
534
+ raise TypeError("Must be boolean value")
535
+
536
+ self._vector = vectorval
537
+
538
+ @property
539
+ def scalar(self):
540
+ return self._scalar
541
+
542
+ @scalar.setter
543
+ def scalar(self, scalarval):
544
+ """
545
+ Set whether to include scalar polarizations.
546
+ """
547
+
548
+ if not isinstance(scalarval, bool):
549
+ raise TypeError("Must be boolean value")
550
+
551
+ self._scalar = scalarval
552
+
553
+ @property
554
+ def use_lal(self):
555
+ return self._use_lal
556
+
557
+ @use_lal.setter
558
+ def use_lal(self, val):
559
+ """
560
+ Set whether to use LAL antenna response functions.
561
+ """
562
+
563
+ if not isinstance(val, bool):
564
+ raise TypeError("Must be a boolean value")
565
+
566
+ self._use_lal = val
567
+
568
+ @property
569
+ def lookup_pair(self):
570
+ return self._lookup_pair
571
+
572
+ @lookup_pair.setter
573
+ def lookup_pair(self, pair):
574
+ if not isinstance(pair, (list, tuple)):
575
+ raise TypeError('Pair must be a list or tuple')
576
+
577
+ if len(pair) != 2:
578
+ raise ValueError('Pair must only contain two values')
579
+
580
+ for val in pair:
581
+ if val.lower() not in self.parameters:
582
+ raise ValueError('Parameter {} in pair not '
583
+ 'recognized'.format(val))
584
+
585
+ self._lookup_pair = [val.lower() for val in pair]
586
+
587
+ # make sure pair is in same order as parameters
588
+ self._lookup_pair = [val for val in self.parameters
589
+ if val in self._lookup_pair]
590
+
591
+ # set parameters that are not in the look-up pair
592
+ self._not_lookup_pair = [val.lower() for val in self.parameters
593
+ if val not in self._lookup_pair]
594
+ self._not_lookup_pair_idx = [self.parameters.index(val)
595
+ for val in self._not_lookup_pair]
596
+
597
+ def set_lookup_pair(self, pair=['psi', 'time'], bins1=100, bins2=100):
598
+ """
599
+ Set the pair of parameters to use for the look-up table.
600
+ """
601
+
602
+ self.lookup_pair = pair
603
+ self._lookup_pair_dict = {}
604
+
605
+ for val, nbins in zip(pair, [bins1, bins2]):
606
+ if not isinstance(nbins, int):
607
+ raise TypeError("Value must be an integer")
608
+
609
+ if nbins < 2:
610
+ raise ValueError("There must be at least 2 bins")
611
+
612
+ self._lookup_pair_dict[val] = {}
613
+
614
+ vrange = VAR_RANGES[val]
615
+
616
+ # set array of bins
617
+ if val == 'dec':
618
+ # range is in sin(dec) to give uniform grid on sky sphere, so
619
+ # convert into dec
620
+ vararray = np.arcsin(np.linspace(vrange[0], vrange[1], nbins))
621
+ else:
622
+ vararray = np.linspace(vrange[0], vrange[1], nbins)
623
+
624
+ self._lookup_pair_dict[val]['array'] = vararray
625
+ self._lookup_pair_dict[val]['nbins'] = nbins
626
+
627
+ @property
628
+ def bins1(self):
629
+ return self._lookup_pair_dict[self.lookup_pair[0]]['nbins']
630
+
631
+ @property
632
+ def array1(self):
633
+ return self._lookup_pair_dict[self.lookup_pair[0]]['array']
634
+
635
+ @property
636
+ def bins2(self):
637
+ return self._lookup_pair_dict[self.lookup_pair[1]]['nbins']
638
+
639
+ @property
640
+ def array2(self):
641
+ return self._lookup_pair_dict[self.lookup_pair[1]]['array']
642
+
643
+ @property
644
+ def lookup(self):
645
+ return self._lookup
646
+
647
+ @lookup.setter
648
+ def lookup(self, val):
649
+ """
650
+ Set the 2d look-up table.
651
+ """
652
+
653
+ self._timeepoch = 1000000000. # a GPS epoch
654
+
655
+ if not isinstance(val, bool):
656
+ raise TypeError("Value must be a boolean")
657
+
658
+ self._lookup = False # set to False so look-up table can be calculated
659
+
660
+ # set the look-up table
661
+ if val:
662
+ try:
663
+ from scipy.interpolate import RectBivariateSpline
664
+ except ImportError:
665
+ raise ImportError("Cannot import scipy")
666
+
667
+ curra = self.ra # save current RA value
668
+ curdec = self.dec # save current dec value
669
+ curpsi = self.psi # save current psi value
670
+ try:
671
+ curtimes = self.times # save current times
672
+ except AttributeError:
673
+ raise AttributeError("A time must be set for the look-up table")
674
+
675
+ if 'psi' in self.lookup_pair:
676
+ self.psi = self._lookup_pair_dict['psi']['array']
677
+ if 'time' in self.lookup_pair:
678
+ self.times = (self._timeepoch +
679
+ self._lookup_pair_dict['time']['array'])
680
+ if 'ra' in self.lookup_pair:
681
+ self.ra = self._lookup_pair_dict['ra']['array']
682
+ if 'dec' in self.lookup_pair:
683
+ self.dec = self._lookup_pair_dict['dec']['array']
684
+
685
+ self._not_lookup_pair_lens = [] # lengths of the non-look-up table values
686
+ for val in self._not_lookup_pair:
687
+ if val == 'ra':
688
+ self._not_lookup_pair_lens.append(len(curra))
689
+ if val == 'dec':
690
+ self._not_lookup_pair_lens.append(len(curdec))
691
+ if val == 'psi':
692
+ self._not_lookup_pair_lens.append(len(curpsi))
693
+ if val in 'time':
694
+ self._not_lookup_pair_lens.append(len(curtimes))
695
+
696
+ # set look-up table functions
697
+ self._lookup_func = {}
698
+ if self.tensor:
699
+ self._lookup_func['plus'] = np.empty(self._not_lookup_pair_lens, dtype=object)
700
+ self._lookup_func['cross'] = np.empty(self._not_lookup_pair_lens, dtype=object)
701
+
702
+ if self.vector:
703
+ self._lookup_func['x'] = np.empty(self._not_lookup_pair_lens, dtype=object)
704
+ self._lookup_func['y'] = np.empty(self._not_lookup_pair_lens, dtype=object)
705
+
706
+ if self.scalar:
707
+ self._lookup_func['b'] = np.empty(self._not_lookup_pair_lens, dtype=object)
708
+ self._lookup_func['l'] = np.empty(self._not_lookup_pair_lens, dtype=object)
709
+
710
+ for i in range(self._not_lookup_pair_lens[0]):
711
+ if self._not_lookup_pair[0] == 'ra':
712
+ self.ra = curra[i]
713
+ if self._not_lookup_pair[0] == 'dec':
714
+ self.dec = curdec[i]
715
+ if self._not_lookup_pair[0] == 'psi':
716
+ self.psi = curpsi[i]
717
+ if self._not_lookup_pair[0] == 'time':
718
+ self.times = curtimes[i]
719
+
720
+ for j in range(self._not_lookup_pair_lens[1]):
721
+ if self._not_lookup_pair[1] == 'ra':
722
+ self.ra = curra[j]
723
+ if self._not_lookup_pair[1] == 'dec':
724
+ self.dec = curdec[j]
725
+ if self._not_lookup_pair[1] == 'psi':
726
+ self.psi = curpsi[j]
727
+ if self._not_lookup_pair[1] == 'time':
728
+ self.times = curtimes[j]
729
+
730
+ self.compute_response()
731
+ if self.tensor:
732
+ self._lookup_func['plus'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
733
+ self._lookup_pair_dict[self.lookup_pair[1]]['array'],
734
+ self.plus)
735
+ self._lookup_func['cross'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
736
+ self._lookup_pair_dict[self.lookup_pair[1]]['array'],
737
+ self.cross)
738
+
739
+ if self.vector:
740
+ self._lookup_func['x'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
741
+ self._lookup_pair_dict[self.lookup_pair[1]]['array'],
742
+ self.x)
743
+ self._lookup_func['y'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
744
+ self._lookup_pair_dict[self.lookup_pair[1]]['array'],
745
+ self.y)
746
+
747
+ if self.scalar:
748
+ self._lookup_func['b'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
749
+ self._lookup_pair_dict[self.lookup_pair[1]]['array'],
750
+ self.b)
751
+ self._lookup_func['l'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
752
+ self._lookup_pair_dict[self.lookup_pair[1]]['array'],
753
+ self.l)
754
+
755
+ # reset values
756
+ self.psi = curpsi
757
+ self.times = curtimes
758
+ self.ra = curra
759
+ self.dec = curdec
760
+ self._lookup = True
761
+
762
+ @property
763
+ def plus(self):
764
+ return self.response['plus']
765
+
766
+ @property
767
+ def tensor_plus(self):
768
+ return self.plus
769
+
770
+ @plus.setter
771
+ def plus(self, resp):
772
+ if self.tensor:
773
+ self.response['plus'] = resp
774
+
775
+ @property
776
+ def cross(self):
777
+ return self.response['cross']
778
+
779
+ @property
780
+ def tensor_cross(self):
781
+ return self.cross
782
+
783
+ @cross.setter
784
+ def cross(self, resp):
785
+ if self.tensor:
786
+ self.response['cross'] = resp
787
+
788
+ @property
789
+ def x(self):
790
+ return self.response['x']
791
+
792
+ @property
793
+ def vector_x(self):
794
+ return self.x
795
+
796
+ @x.setter
797
+ def x(self, resp):
798
+ if self.vector:
799
+ self.response['x'] = resp
800
+
801
+ @property
802
+ def y(self):
803
+ return self.response['y']
804
+
805
+ @property
806
+ def vector_y(self):
807
+ return self.y
808
+
809
+ @y.setter
810
+ def y(self, resp):
811
+ if self.vector:
812
+ self.response['y'] = resp
813
+
814
+ @property
815
+ def b(self):
816
+ return self.response['b']
817
+
818
+ @property
819
+ def scalar_b(self):
820
+ return self.b
821
+
822
+ @b.setter
823
+ def b(self, resp):
824
+ if self.scalar:
825
+ self.response['b'] = resp
826
+
827
+ @property
828
+ def l(self):
829
+ return self.response['l']
830
+
831
+ @property
832
+ def scalar_l(self):
833
+ return self.l
834
+
835
+ @l.setter
836
+ def l(self, resp):
837
+ if self.scalar:
838
+ self.response['l'] = resp
839
+
840
+ def _set_mesh(self):
841
+ """
842
+ Convert one-dimensional arrays into a mesh. The meshes dimensions are
843
+ ordered as right ascension, declination, psi, and time.
844
+ """
845
+
846
+ # mesh order RA, dec, psi, time
847
+ if (self.ra is None or self.dec is None or
848
+ self.psi is None or self.times is None):
849
+ return
850
+
851
+ ramesh, decmesh, psimesh, timemesh = np.meshgrid(self.ra, self.dec,
852
+ self.psi,
853
+ self.gmsttimes,
854
+ indexing='ij')
855
+
856
+ self.ra_mesh = ramesh
857
+ self.time_mesh = timemesh
858
+ self.dec_mesh = decmesh
859
+ self.psi_mesh = psimesh
860
+
861
+ @property
862
+ def ra_mesh(self):
863
+ return self._ra_mesh
864
+
865
+ @ra_mesh.setter
866
+ def ra_mesh(self, val):
867
+ if isinstance(val, np.ndarray):
868
+ # remove singleton dimemsions
869
+ self._ra_mesh = val.squeeze()
870
+ else:
871
+ self._ra_mesh = val
872
+
873
+ try:
874
+ self._phi_mesh = np.mod(self._ra_mesh, 2.*np.pi) - self._time_mesh
875
+ except Exception:
876
+ return
877
+
878
+ self._cosphi_mesh = np.cos(self._phi_mesh)
879
+ self._sinphi_mesh = np.sin(self._phi_mesh)
880
+
881
+ @property
882
+ def time_mesh(self):
883
+ return self._time_mesh
884
+
885
+ @time_mesh.setter
886
+ def time_mesh(self, val):
887
+ if isinstance(val, np.ndarray):
888
+ # remove singleton dimemsions
889
+ self._time_mesh = val.squeeze()
890
+ else:
891
+ self._time_mesh = val
892
+
893
+ try:
894
+ self._phi_mesh = self._ra_mesh - self._time_mesh
895
+ except Exception:
896
+ return
897
+
898
+ self._cosphi_mesh = np.cos(self._phi_mesh)
899
+ self._sinphi_mesh = np.sin(self._phi_mesh)
900
+
901
+ @property
902
+ def dec_mesh(self):
903
+ return self._dec_mesh
904
+
905
+ @dec_mesh.setter
906
+ def dec_mesh(self, val):
907
+ if isinstance(val, np.ndarray):
908
+ # remove singleton dimemsions
909
+ self._dec_mesh = val.squeeze()
910
+ else:
911
+ self._dec_mesh = val
912
+
913
+ self._costheta_mesh = np.cos(0.5*np.pi - self.dec_mesh)
914
+ self._sintheta_mesh = np.sin(0.5*np.pi - self.dec_mesh)
915
+
916
+ @property
917
+ def psi_mesh(self):
918
+ return self._psi_mesh
919
+
920
+ @psi_mesh.setter
921
+ def psi_mesh(self, val):
922
+ if isinstance(val, np.ndarray):
923
+ # remove singleton dimemsions
924
+ self._psi_mesh = val.squeeze()
925
+ else:
926
+ self._psi_mesh = val
927
+
928
+ self._cospsi_mesh = np.cos(self._psi_mesh)
929
+ self._sinpsi_mesh = np.sin(self._psi_mesh)
930
+
931
+ def compute_response(self, times=None):
932
+ """
933
+ Compute the detector response.
934
+
935
+ @param times: (array_like) an array of GPS times at which to compute
936
+ the response function. If not set the times set at initialization
937
+ of the class, or using the <tt>times</tt> property.
938
+ """
939
+
940
+ if times is not None:
941
+ self.times = times
942
+
943
+ if (self.ra is None or self.dec is None or self.psi is None or
944
+ self.times is None):
945
+ return
946
+
947
+ if self.use_lal: # use the internal LAL functions
948
+ self._compute_response_lal()
949
+ elif self.lookup: # use look-up table
950
+ self._compute_response_lookup()
951
+ else: # use default response
952
+ self._compute_response()
953
+
954
+ def _compute_response(self):
955
+ """
956
+ Compute antenna pattern.
957
+ """
958
+
959
+ self._set_mesh()
960
+
961
+ # set any required additional einsum indices
962
+ einsum_indices = ''
963
+ eindices = 'klmn' # up to four indices
964
+ for i in range(len(self.shape)):
965
+ einsum_indices += eindices[i]
966
+
967
+ # numpy einsum string inputs
968
+ einstr1 = 'i{},j{}->ij{}'.format(*3*[einsum_indices])
969
+ einstr2 = 'ij{},ij->{}'.format(*2*[einsum_indices])
970
+
971
+ M = np.array([self._sinphi_mesh*self._cospsi_mesh - self._cosphi_mesh*self._costheta_mesh*self._sinpsi_mesh,
972
+ -self._cosphi_mesh*self._cospsi_mesh - self._sinphi_mesh*self._costheta_mesh*self._sinpsi_mesh,
973
+ self._sintheta_mesh*self._sinpsi_mesh])
974
+ N = np.array([-self._sinphi_mesh*self._sinpsi_mesh - self._cosphi_mesh*self._costheta_mesh*self._cospsi_mesh,
975
+ self._cosphi_mesh*self._sinpsi_mesh - self._sinphi_mesh*self._costheta_mesh*self._cospsi_mesh,
976
+ self._sintheta_mesh*self._cospsi_mesh])
977
+
978
+ mm = np.einsum(einstr1, M, M)
979
+ mn = np.einsum(einstr1, M, N)
980
+ nm = np.einsum(einstr1, N, M)
981
+ nn = np.einsum(einstr1, N, N)
982
+
983
+ if self.tensor:
984
+ # set tensor polarization components
985
+ self.plus = np.einsum(einstr2, mm - nn, self.laldetector)
986
+ self.cross = np.einsum(einstr2, mn + nm, self.laldetector)
987
+
988
+ if self.vector or self.scalar:
989
+ # set scalar and/or vector polarization components
990
+ Q = np.array([-self._sintheta_mesh*self._cosphi_mesh,
991
+ -self._sintheta_mesh*self._sinphi_mesh,
992
+ -self._costheta_mesh])
993
+
994
+ if self.vector:
995
+ mq = np.einsum(einstr1, M, Q)
996
+ qm = np.einsum(einstr1, Q, M)
997
+ nq = np.einsum(einstr1, N, Q)
998
+ qn = np.einsum(einstr1, Q, N)
999
+
1000
+ self.x = np.einsum(einstr2, mq + qm, self.laldetector)
1001
+ self.y = np.einsum(einstr2, nq + qn, self.laldetector)
1002
+
1003
+ if self.scalar:
1004
+ qq = np.einsum(einstr1, Q, Q)
1005
+
1006
+ self.b = np.einsum(einstr2, mm + nn, self.laldetector)
1007
+ self.l = np.einsum(einstr2, qq, self.laldetector)
1008
+
1009
+ def _compute_response_lal(self):
1010
+ """
1011
+ Compute antenna pattern using LAL functions.
1012
+ """
1013
+
1014
+ self._set_mesh()
1015
+
1016
+ slen = np.prod(self.shape) if len(self.shape) != 0 else 1
1017
+
1018
+ # allocate memory
1019
+ if slen != 1:
1020
+ fp = np.zeros(self.shape)
1021
+ fc = np.zeros(self.shape)
1022
+
1023
+ if self.tensor and not self.vector and not self.scalar:
1024
+ # only requiring tensor mode
1025
+ antenna_func = ComputeDetAMResponse
1026
+
1027
+ if slen == 1:
1028
+ fp, fc = antenna_func(self.laldetector,
1029
+ self._ra_mesh.item(),
1030
+ self._dec_mesh.item(),
1031
+ self._psi_mesh.item(),
1032
+ self._time_mesh.item())
1033
+ else:
1034
+ for i in range(slen):
1035
+ idxs = np.unravel_index(i, self.shape)
1036
+
1037
+ fp[idxs], fc[idxs] = antenna_func(self.laldetector,
1038
+ self._ra_mesh[idxs],
1039
+ self._dec_mesh[idxs],
1040
+ self._psi_mesh[idxs],
1041
+ self._time_mesh[idxs])
1042
+
1043
+ self.plus = fp
1044
+ self.cross = fc
1045
+ else:
1046
+ antenna_func = ComputeDetAMResponseExtraModes
1047
+
1048
+ if slen == 1:
1049
+ fp, fc, fb, fl, fx, fy = antenna_func(self.laldetector,
1050
+ self._ra_mesh.item(),
1051
+ self._dec_mesh.item(),
1052
+ self._psi_mesh.item(),
1053
+ self._time_mesh.item())
1054
+ else:
1055
+ fb = np.zeros(self.shape)
1056
+ fl = np.zeros(self.shape)
1057
+ fx = np.zeros(self.shape)
1058
+ fy = np.zeros(self.shape)
1059
+
1060
+ for i in range(slen):
1061
+ idxs = np.unravel_index(i, self.shape)
1062
+
1063
+ F = antenna_func(self.laldetector,
1064
+ self._ra_mesh[idxs],
1065
+ self._dec_mesh[idxs],
1066
+ self._psi_mesh[idxs],
1067
+ self._time_mesh[idxs])
1068
+
1069
+ fp[idxs] = F[0]
1070
+ fc[idxs] = F[1]
1071
+ fb[idxs] = F[2]
1072
+ fl[idxs] = F[3]
1073
+ fx[idxs] = F[4]
1074
+ fy[idxs] = F[5]
1075
+
1076
+ if self.tensor:
1077
+ self.plus = fp
1078
+ self.cross = fc
1079
+
1080
+ if self.vector:
1081
+ self.x = fx
1082
+ self.y = fy
1083
+
1084
+ if self.scalar:
1085
+ self.b = fb
1086
+ self.l = fl
1087
+
1088
+ def _compute_response_lookup(self):
1089
+ # allocate memory
1090
+ lushape = (len(self.ra), len(self.dec), len(self.psi), len(self.times))
1091
+
1092
+ if self.tensor:
1093
+ fp = np.zeros(lushape)
1094
+ fc = np.zeros(lushape)
1095
+
1096
+ if self.scalar:
1097
+ fb = np.zeros(lushape)
1098
+ fl = np.zeros(lushape)
1099
+
1100
+ if self.vector:
1101
+ fx = np.zeros(lushape)
1102
+ fy = np.zeros(lushape)
1103
+
1104
+ # set pair of parameters in look-up table
1105
+ pairs = []
1106
+ unsorted_idxs = None
1107
+ for i, val in enumerate(self.lookup_pair):
1108
+ if val == 'ra':
1109
+ pairs.append(self.ra)
1110
+ if val == 'dec':
1111
+ pairs.append(self.dec)
1112
+ if val == 'psi':
1113
+ pairs.append(self.psi)
1114
+ if val == 'time':
1115
+ # times mod-ed by a sidereal day
1116
+ mtimes = np.mod(self.times - self._timeepoch, DAYSID_SI)
1117
+ unsorted_idxs = np.argsort(np.argsort(mtimes)) # unsorted indices
1118
+ mtimes.sort() # sort times for interpolation
1119
+ pairs.append(mtimes)
1120
+
1121
+ # get reshape tuple
1122
+ sshape = [len(self.ra), len(self.dec), len(self.psi), len(self.times)]
1123
+ sshape[self._not_lookup_pair_idx[0]] = 1
1124
+ sshape[self._not_lookup_pair_idx[1]] = 1
1125
+ sshape = tuple(sshape)
1126
+
1127
+ # create slice
1128
+ pos = 4*[slice(None)]
1129
+ for i in range(self._not_lookup_pair_lens[0]):
1130
+ # set slice
1131
+ pos[self._not_lookup_pair_idx[0]] = slice(i, i+1)
1132
+ for j in range(self._not_lookup_pair_lens[1]):
1133
+ # set slice
1134
+ pos[self._not_lookup_pair_idx[1]] = slice(j, j+1)
1135
+
1136
+ if self.tensor:
1137
+ fp[tuple(pos)] = self._lookup_func['plus'][i, j](*pairs).reshape(sshape)
1138
+ fc[tuple(pos)] = self._lookup_func['cross'][i, j](*pairs).reshape(sshape)
1139
+
1140
+ if self.scalar:
1141
+ fb[tuple(pos)] = self._lookup_func['b'][i, j](*pairs).reshape(sshape)
1142
+ fl[tuple(pos)] = self._lookup_func['l'][i, j](*pairs).reshape(sshape)
1143
+
1144
+ if self.vector:
1145
+ fx[tuple(pos)] = self._lookup_func['x'][i, j](*pairs).reshape(sshape)
1146
+ fy[tuple(pos)] = self._lookup_func['y'][i, j](*pairs).reshape(sshape)
1147
+
1148
+ if unsorted_idxs is not None:
1149
+ if self.tensor:
1150
+ self.plus = fp[:, :, :, unsorted_idxs].squeeze()
1151
+ self.cross = fc[:, :, :, unsorted_idxs].squeeze()
1152
+
1153
+ if self.scalar:
1154
+ self.b = fb[:, :, :, unsorted_idxs].squeeze()
1155
+ self.l = fl[:, :, :, unsorted_idxs].squeeze()
1156
+
1157
+ if self.vector:
1158
+ self.x = fx[:, :, :, unsorted_idxs].squeeze()
1159
+ self.y = fy[:, :, :, unsorted_idxs].squeeze()
1160
+ else:
1161
+ if self.tensor:
1162
+ self.plus = fp.squeeze()
1163
+ self.cross = fc.squeeze()
1164
+
1165
+ if self.scalar:
1166
+ self.b = fb.squeeze()
1167
+ self.l = fl.squeeze()
1168
+
1169
+ if self.vector:
1170
+ self.x = fx.squeeze()
1171
+ self.y = fy.squeeze()
1172
+
1173
+ def __len__(self):
1174
+ return len(self.times)
1175
+
1176
+ def __call__(self, times, ra=None, dec=None, psi=None, detector=None):
1177
+ """
1178
+ Return the antenna response function as a dictionary.
1179
+ """
1180
+
1181
+ if detector is not None:
1182
+ self.detector = detector
1183
+
1184
+ if ra is not None:
1185
+ self.ra = ra
1186
+
1187
+ if dec is not None:
1188
+ self.dec = dec
1189
+
1190
+ if psi is not None:
1191
+ self.psi = psi
1192
+
1193
+ self.times = times
1194
+
1195
+ # compute response
1196
+ self.compute_response()
1197
+
1198
+ return self.response
1199
+
1200
+ ## @}