lalsuite 7.26.2.dev20260106__cp314-cp314-macosx_13_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lal/.dylibs/Python +0 -0
- lal/.dylibs/libaec.0.dylib +0 -0
- lal/.dylibs/libbrotlicommon.1.2.0.dylib +0 -0
- lal/.dylibs/libbrotlidec.1.2.0.dylib +0 -0
- lal/.dylibs/libcfitsio.10.4.4.1.dylib +0 -0
- lal/.dylibs/libcrypto.3.dylib +0 -0
- lal/.dylibs/libcurl.4.dylib +0 -0
- lal/.dylibs/libfftw3.3.dylib +0 -0
- lal/.dylibs/libfftw3f.3.dylib +0 -0
- lal/.dylibs/libframel.8.48.4.dylib +0 -0
- lal/.dylibs/libgsl.28.dylib +0 -0
- lal/.dylibs/libgslcblas.0.dylib +0 -0
- lal/.dylibs/libhdf5.310.dylib +0 -0
- lal/.dylibs/libhdf5_hl.310.dylib +0 -0
- lal/.dylibs/libiconv.2.dylib +0 -0
- lal/.dylibs/libidn2.0.dylib +0 -0
- lal/.dylibs/libintl.8.dylib +0 -0
- lal/.dylibs/liblal.20.dylib +0 -0
- lal/.dylibs/liblalburst.8.dylib +0 -0
- lal/.dylibs/liblalframe.14.dylib +0 -0
- lal/.dylibs/liblalinference.23.dylib +0 -0
- lal/.dylibs/liblalinspiral.18.dylib +0 -0
- lal/.dylibs/liblalmetaio.11.dylib +0 -0
- lal/.dylibs/liblalpulsar.30.dylib +0 -0
- lal/.dylibs/liblalsimulation.37.dylib +0 -0
- lal/.dylibs/liblalsupport.14.dylib +0 -0
- lal/.dylibs/libmetaio.1.dylib +0 -0
- lal/.dylibs/libnghttp2.14.dylib +0 -0
- lal/.dylibs/libpsl.5.dylib +0 -0
- lal/.dylibs/libssl.3.dylib +0 -0
- lal/.dylibs/libsz.2.dylib +0 -0
- lal/.dylibs/libunistring.5.dylib +0 -0
- lal/.dylibs/libz.1.3.1.dylib +0 -0
- lal/.dylibs/libzstd.1.5.7.dylib +0 -0
- lal/__init__.py +145 -0
- lal/_lal.cpython-314-darwin.so +0 -0
- lal/_lal_swig.py +12 -0
- lal/antenna.py +1200 -0
- lal/git_version.py +64 -0
- lal/gpstime.py +233 -0
- lal/iterutils.py +408 -0
- lal/pipeline.py +3139 -0
- lal/rate.py +2455 -0
- lal/series.py +244 -0
- lal/utils/__init__.py +29 -0
- lal/utils/cache.py +379 -0
- lal/utils/series.py +277 -0
- lalapps/__init__.py +26 -0
- lalapps/bin/lal_cache +0 -0
- lalapps/bin/lal_fftw_wisdom +0 -0
- lalapps/bin/lal_fftwf_wisdom +0 -0
- lalapps/bin/lal_simd_detect +0 -0
- lalapps/bin/lal_tconvert +0 -0
- lalapps/bin/lal_version +0 -0
- lalapps/bin/lalapps_ComputeAntennaPattern +16 -0
- lalapps/bin/lalapps_ComputeFstatBenchmark +16 -0
- lalapps/bin/lalapps_ComputeFstatLatticeCount +16 -0
- lalapps/bin/lalapps_ComputeFstatMCUpperLimit +16 -0
- lalapps/bin/lalapps_ComputeFstatistic_v2 +16 -0
- lalapps/bin/lalapps_ComputePSD +16 -0
- lalapps/bin/lalapps_CopySFTs +16 -0
- lalapps/bin/lalapps_DistanceVsMass +0 -0
- lalapps/bin/lalapps_DriveHoughMulti +16 -0
- lalapps/bin/lalapps_FstatMetric_v2 +16 -0
- lalapps/bin/lalapps_HierarchSearchGCT +16 -0
- lalapps/bin/lalapps_HierarchicalSearch +16 -0
- lalapps/bin/lalapps_MakeSFTDAG +16 -0
- lalapps/bin/lalapps_MakeSFTs +16 -0
- lalapps/bin/lalapps_Makefakedata_v4 +16 -0
- lalapps/bin/lalapps_Makefakedata_v5 +16 -0
- lalapps/bin/lalapps_PredictFstat +16 -0
- lalapps/bin/lalapps_PrintDetectorState +16 -0
- lalapps/bin/lalapps_SFTclean +16 -0
- lalapps/bin/lalapps_SFTvalidate +16 -0
- lalapps/bin/lalapps_StringAddFrame +0 -0
- lalapps/bin/lalapps_StringSearch +0 -0
- lalapps/bin/lalapps_Weave +16 -0
- lalapps/bin/lalapps_WeaveCompare +16 -0
- lalapps/bin/lalapps_WeaveConcat +16 -0
- lalapps/bin/lalapps_WeaveSetup +16 -0
- lalapps/bin/lalapps_WriteSFTsfromSFDBs +16 -0
- lalapps/bin/lalapps_animate +0 -0
- lalapps/bin/lalapps_binj +0 -0
- lalapps/bin/lalapps_blindinj +0 -0
- lalapps/bin/lalapps_cache +16 -0
- lalapps/bin/lalapps_calfacs +0 -0
- lalapps/bin/lalapps_cbc_stochasticbank +0 -0
- lalapps/bin/lalapps_chirplen +0 -0
- lalapps/bin/lalapps_coh_PTF_inspiral +0 -0
- lalapps/bin/lalapps_coinj +0 -0
- lalapps/bin/lalapps_combine_crosscorr_toplists +16 -0
- lalapps/bin/lalapps_compareFstats +16 -0
- lalapps/bin/lalapps_compareSFTs +16 -0
- lalapps/bin/lalapps_create_time_correction_ephemeris +16 -0
- lalapps/bin/lalapps_dumpSFT +16 -0
- lalapps/bin/lalapps_effdist +0 -0
- lalapps/bin/lalapps_exc_resp +0 -0
- lalapps/bin/lalapps_fftw_wisdom +16 -0
- lalapps/bin/lalapps_fftwf_wisdom +16 -0
- lalapps/bin/lalapps_fits_header_getval +16 -0
- lalapps/bin/lalapps_fits_header_list +16 -0
- lalapps/bin/lalapps_fits_overview +16 -0
- lalapps/bin/lalapps_fits_table_list +16 -0
- lalapps/bin/lalapps_fr_ninja +0 -0
- lalapps/bin/lalapps_frextr +0 -0
- lalapps/bin/lalapps_frinfo +0 -0
- lalapps/bin/lalapps_frjoin +0 -0
- lalapps/bin/lalapps_frread +0 -0
- lalapps/bin/lalapps_frview +0 -0
- lalapps/bin/lalapps_gwf2xml +0 -0
- lalapps/bin/lalapps_heterodyne_pulsar +16 -0
- lalapps/bin/lalapps_inspawgfile +0 -0
- lalapps/bin/lalapps_inspfrinj +0 -0
- lalapps/bin/lalapps_inspinj +0 -0
- lalapps/bin/lalapps_inspiralDistance +0 -0
- lalapps/bin/lalapps_knope +16 -0
- lalapps/bin/lalapps_knope_automation_script +16 -0
- lalapps/bin/lalapps_knope_collate_results +16 -0
- lalapps/bin/lalapps_knope_result_page +16 -0
- lalapps/bin/lalapps_makeblindinj +85 -0
- lalapps/bin/lalapps_makeblindinj_himass +67 -0
- lalapps/bin/lalapps_ninja +0 -0
- lalapps/bin/lalapps_path2cache +16 -0
- lalapps/bin/lalapps_power +0 -0
- lalapps/bin/lalapps_pulsar_crosscorr_v2 +16 -0
- lalapps/bin/lalapps_pulsar_frequency_evolution +16 -0
- lalapps/bin/lalapps_pulsar_parameter_estimation_nested +16 -0
- lalapps/bin/lalapps_random_bank +0 -0
- lalapps/bin/lalapps_randombank +0 -0
- lalapps/bin/lalapps_run_pulsar_crosscorr_v2 +16 -0
- lalapps/bin/lalapps_searchsum2cache +16 -0
- lalapps/bin/lalapps_spec_avg +16 -0
- lalapps/bin/lalapps_spec_avg_long +16 -0
- lalapps/bin/lalapps_spec_coherence +16 -0
- lalapps/bin/lalapps_spininj +0 -0
- lalapps/bin/lalapps_splitSFTs +16 -0
- lalapps/bin/lalapps_splitbank +0 -0
- lalapps/bin/lalapps_ssbtodetector +16 -0
- lalapps/bin/lalapps_synthesizeBstatMC +16 -0
- lalapps/bin/lalapps_synthesizeLVStats +16 -0
- lalapps/bin/lalapps_synthesizeTransientStats +16 -0
- lalapps/bin/lalapps_tconvert +16 -0
- lalapps/bin/lalapps_tmpltbank +0 -0
- lalapps/bin/lalapps_version +0 -0
- lalapps/bin/lalapps_xtefitstoframe +0 -0
- lalapps/bin/lalburst_version +0 -0
- lalapps/bin/lalfr-cat +0 -0
- lalapps/bin/lalfr-cksum +0 -0
- lalapps/bin/lalfr-cut +0 -0
- lalapps/bin/lalfr-dump +0 -0
- lalapps/bin/lalfr-fmt +0 -0
- lalapps/bin/lalfr-paste +0 -0
- lalapps/bin/lalfr-print +0 -0
- lalapps/bin/lalfr-split +0 -0
- lalapps/bin/lalfr-stat +0 -0
- lalapps/bin/lalfr-stream +0 -0
- lalapps/bin/lalfr-vis +0 -0
- lalapps/bin/lalframe_version +0 -0
- lalapps/bin/lalinference_bench +0 -0
- lalapps/bin/lalinference_burst +0 -0
- lalapps/bin/lalinference_datadump +0 -0
- lalapps/bin/lalinference_injectedlike +0 -0
- lalapps/bin/lalinference_mpi_wrapper +59 -0
- lalapps/bin/lalinference_nest +0 -0
- lalapps/bin/lalinference_version +0 -0
- lalapps/bin/lalinspiral_version +0 -0
- lalapps/bin/lalmetaio_version +0 -0
- lalapps/bin/lalpulsar_ComputeAntennaPattern +0 -0
- lalapps/bin/lalpulsar_ComputeFstatBenchmark +0 -0
- lalapps/bin/lalpulsar_ComputeFstatLatticeCount +0 -0
- lalapps/bin/lalpulsar_ComputeFstatMCUpperLimit +0 -0
- lalapps/bin/lalpulsar_ComputeFstatistic_v2 +0 -0
- lalapps/bin/lalpulsar_ComputePSD +0 -0
- lalapps/bin/lalpulsar_DriveHoughMulti +0 -0
- lalapps/bin/lalpulsar_FstatMetric_v2 +0 -0
- lalapps/bin/lalpulsar_HierarchSearchGCT +0 -0
- lalapps/bin/lalpulsar_HierarchicalSearch +0 -0
- lalapps/bin/lalpulsar_MakeSFTs +0 -0
- lalapps/bin/lalpulsar_Makefakedata_v4 +0 -0
- lalapps/bin/lalpulsar_Makefakedata_v5 +0 -0
- lalapps/bin/lalpulsar_PredictFstat +0 -0
- lalapps/bin/lalpulsar_PrintDetectorState +0 -0
- lalapps/bin/lalpulsar_SFTclean +0 -0
- lalapps/bin/lalpulsar_SFTvalidate +0 -0
- lalapps/bin/lalpulsar_Weave +0 -0
- lalapps/bin/lalpulsar_WeaveCompare +0 -0
- lalapps/bin/lalpulsar_WeaveConcat +0 -0
- lalapps/bin/lalpulsar_WeaveSetup +0 -0
- lalapps/bin/lalpulsar_WriteSFTsfromSFDBs +0 -0
- lalapps/bin/lalpulsar_compareFstats +0 -0
- lalapps/bin/lalpulsar_compareSFTs +0 -0
- lalapps/bin/lalpulsar_create_time_correction_ephemeris +0 -0
- lalapps/bin/lalpulsar_crosscorr_v2 +0 -0
- lalapps/bin/lalpulsar_dumpSFT +0 -0
- lalapps/bin/lalpulsar_fits_header_getval +0 -0
- lalapps/bin/lalpulsar_fits_header_list +0 -0
- lalapps/bin/lalpulsar_fits_overview +0 -0
- lalapps/bin/lalpulsar_fits_table_list +0 -0
- lalapps/bin/lalpulsar_frequency_evolution +0 -0
- lalapps/bin/lalpulsar_heterodyne +0 -0
- lalapps/bin/lalpulsar_parameter_estimation_nested +0 -0
- lalapps/bin/lalpulsar_spec_avg +0 -0
- lalapps/bin/lalpulsar_spec_avg_long +0 -0
- lalapps/bin/lalpulsar_spec_coherence +0 -0
- lalapps/bin/lalpulsar_splitSFTs +0 -0
- lalapps/bin/lalpulsar_ssbtodetector +0 -0
- lalapps/bin/lalpulsar_synthesizeBstatMC +0 -0
- lalapps/bin/lalpulsar_synthesizeLVStats +0 -0
- lalapps/bin/lalpulsar_synthesizeTransientStats +0 -0
- lalapps/bin/lalpulsar_version +0 -0
- lalapps/bin/lalsim-bh-qnmode +0 -0
- lalapps/bin/lalsim-bh-ringdown +0 -0
- lalapps/bin/lalsim-bh-sphwf +0 -0
- lalapps/bin/lalsim-burst +0 -0
- lalapps/bin/lalsim-detector-noise +0 -0
- lalapps/bin/lalsim-detector-strain +0 -0
- lalapps/bin/lalsim-inject +0 -0
- lalapps/bin/lalsim-inspiral +0 -0
- lalapps/bin/lalsim-ns-eos-table +0 -0
- lalapps/bin/lalsim-ns-mass-radius +0 -0
- lalapps/bin/lalsim-ns-params +0 -0
- lalapps/bin/lalsim-sgwb +0 -0
- lalapps/bin/lalsim-unicorn +0 -0
- lalapps/bin/lalsimulation_version +0 -0
- lalapps/cosmicstring.py +691 -0
- lalapps/data/BNSMasses.dat +65022 -0
- lalapps/data/CorrelationMatrix.csv +15 -0
- lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF1_META.dat +1882 -0
- lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF2_META.dat +1939 -0
- lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF3_META.dat +1784 -0
- lalapps/data/LALSimNeutronStarEOS_ABHT_QMC_RMF4_META.dat +2074 -0
- lalapps/data/LALSimNeutronStarEOS_ALF1.dat +435 -0
- lalapps/data/LALSimNeutronStarEOS_ALF2.dat +453 -0
- lalapps/data/LALSimNeutronStarEOS_ALF3.dat +441 -0
- lalapps/data/LALSimNeutronStarEOS_ALF4.dat +441 -0
- lalapps/data/LALSimNeutronStarEOS_AP1.dat +212 -0
- lalapps/data/LALSimNeutronStarEOS_AP2.dat +212 -0
- lalapps/data/LALSimNeutronStarEOS_AP3.dat +212 -0
- lalapps/data/LALSimNeutronStarEOS_AP4.dat +210 -0
- lalapps/data/LALSimNeutronStarEOS_APR.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_APR4_EPP.dat +1447 -0
- lalapps/data/LALSimNeutronStarEOS_BBB2.dat +84 -0
- lalapps/data/LALSimNeutronStarEOS_BGN1H1.dat +123 -0
- lalapps/data/LALSimNeutronStarEOS_BHF_BBB2.dat +499 -0
- lalapps/data/LALSimNeutronStarEOS_BL_CHIRAL_META.dat +1534 -0
- lalapps/data/LALSimNeutronStarEOS_BPAL12.dat +61 -0
- lalapps/data/LALSimNeutronStarEOS_BSK19.dat +310 -0
- lalapps/data/LALSimNeutronStarEOS_BSK20.dat +310 -0
- lalapps/data/LALSimNeutronStarEOS_BSK21.dat +310 -0
- lalapps/data/LALSimNeutronStarEOS_ENG.dat +108 -0
- lalapps/data/LALSimNeutronStarEOS_FPS.dat +129 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_BSK14_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_DHSL59_BSK24.dat +1009 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_DHSL69_BSK24.dat +1009 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_F0_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_H1_BSK24.dat +1009 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_H2_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_H3_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_H4_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_H5_BSK24.dat +1009 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_LN55_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GMSR_SLY5_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GNH3.dat +71 -0
- lalapps/data/LALSimNeutronStarEOS_GPPVA_DD2_BSK24.dat +1009 -0
- lalapps/data/LALSimNeutronStarEOS_GPPVA_DDME2_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GPPVA_FSU2H_BSK24.dat +1009 -0
- lalapps/data/LALSimNeutronStarEOS_GPPVA_FSU2_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GPPVA_NL3WRL55_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_GS1.dat +136 -0
- lalapps/data/LALSimNeutronStarEOS_GS2.dat +100 -0
- lalapps/data/LALSimNeutronStarEOS_H1.dat +114 -0
- lalapps/data/LALSimNeutronStarEOS_H2.dat +114 -0
- lalapps/data/LALSimNeutronStarEOS_H3.dat +98 -0
- lalapps/data/LALSimNeutronStarEOS_H4.dat +664 -0
- lalapps/data/LALSimNeutronStarEOS_H5.dat +703 -0
- lalapps/data/LALSimNeutronStarEOS_H6.dat +509 -0
- lalapps/data/LALSimNeutronStarEOS_H7.dat +703 -0
- lalapps/data/LALSimNeutronStarEOS_HQC18.dat +388 -0
- lalapps/data/LALSimNeutronStarEOS_KDE0V.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_KDE0V1.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_KDE0V1_BSK24.dat +1388 -0
- lalapps/data/LALSimNeutronStarEOS_KDE0V_BSK24.dat +1398 -0
- lalapps/data/LALSimNeutronStarEOS_MPA1.dat +102 -0
- lalapps/data/LALSimNeutronStarEOS_MS1.dat +122 -0
- lalapps/data/LALSimNeutronStarEOS_MS1B.dat +126 -0
- lalapps/data/LALSimNeutronStarEOS_MS1B_PP.dat +1447 -0
- lalapps/data/LALSimNeutronStarEOS_MS1_PP.dat +1447 -0
- lalapps/data/LALSimNeutronStarEOS_MS2.dat +48 -0
- lalapps/data/LALSimNeutronStarEOS_PAL6.dat +148 -0
- lalapps/data/LALSimNeutronStarEOS_PCL2.dat +134 -0
- lalapps/data/LALSimNeutronStarEOS_PCP_BSK24_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_PS.dat +165 -0
- lalapps/data/LALSimNeutronStarEOS_QMC700.dat +117 -0
- lalapps/data/LALSimNeutronStarEOS_RG_SLY4_BSK24.dat +1010 -0
- lalapps/data/LALSimNeutronStarEOS_RS.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_RS_BSK24.dat +1356 -0
- lalapps/data/LALSimNeutronStarEOS_SK255.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SK255_BSK24.dat +1066 -0
- lalapps/data/LALSimNeutronStarEOS_SK272.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKA.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKA_BSK24.dat +1433 -0
- lalapps/data/LALSimNeutronStarEOS_SKB.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKB_BSK24.dat +1373 -0
- lalapps/data/LALSimNeutronStarEOS_SKI2.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKI2_BSK24.dat +1348 -0
- lalapps/data/LALSimNeutronStarEOS_SKI3.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKI3_BSK24.dat +1355 -0
- lalapps/data/LALSimNeutronStarEOS_SKI4.dat +497 -0
- lalapps/data/LALSimNeutronStarEOS_SKI4_BSK24.dat +1348 -0
- lalapps/data/LALSimNeutronStarEOS_SKI5.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKI6.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKI6_BSK24.dat +1358 -0
- lalapps/data/LALSimNeutronStarEOS_SKMP.dat +498 -0
- lalapps/data/LALSimNeutronStarEOS_SKOP.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SKOP_BSK24.dat +1373 -0
- lalapps/data/LALSimNeutronStarEOS_SLY.dat +99 -0
- lalapps/data/LALSimNeutronStarEOS_SLY2.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SLY230A.dat +500 -0
- lalapps/data/LALSimNeutronStarEOS_SLY230A_BSK24.dat +1116 -0
- lalapps/data/LALSimNeutronStarEOS_SLY2_BSK24.dat +1106 -0
- lalapps/data/LALSimNeutronStarEOS_SLY4.dat +100 -0
- lalapps/data/LALSimNeutronStarEOS_SLY9.dat +498 -0
- lalapps/data/LALSimNeutronStarEOS_SLY9_BSK24.dat +1083 -0
- lalapps/data/LALSimNeutronStarEOS_SQM1.dat +176 -0
- lalapps/data/LALSimNeutronStarEOS_SQM2.dat +180 -0
- lalapps/data/LALSimNeutronStarEOS_SQM3.dat +176 -0
- lalapps/data/LALSimNeutronStarEOS_WFF1.dat +109 -0
- lalapps/data/LALSimNeutronStarEOS_WFF2.dat +109 -0
- lalapps/data/LALSimNeutronStarEOS_WFF3.dat +107 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_DDLZ1_BSK24.dat +1227 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_DDME2_BSK24.dat +1272 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_DDMEX_BSK24.dat +1280 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_GM1_BSK24.dat +1288 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_MTVTC_BSK24.dat +1288 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_NL3_BSK24.dat +1230 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_PKDD_BSK24.dat +1288 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_TM1_BSK24.dat +1288 -0
- lalapps/data/LALSimNeutronStarEOS_XMLSLZ_TW99_BSK24.dat +1288 -0
- lalapps/data/LIGO-P1200087-v18-AdV_BNS_OPTIMIZED.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_DESIGN.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_EARLY_HIGH.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_EARLY_LOW.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_LATE_HIGH.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_LATE_LOW.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_MID_HIGH.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-AdV_MID_LOW.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_BNS_OPTIMIZED.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_DESIGN.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_EARLY_HIGH.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_EARLY_LOW.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_LATE_HIGH.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_LATE_LOW.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_MID_HIGH.txt +3000 -0
- lalapps/data/LIGO-P1200087-v18-aLIGO_MID_LOW.txt +3000 -0
- lalapps/data/LIGO-P1600143-v18-CE.txt +3000 -0
- lalapps/data/LIGO-P1600143-v18-CE_Pessimistic.txt +3000 -0
- lalapps/data/LIGO-P1600143-v18-CE_Wideband.txt +3000 -0
- lalapps/data/LIGO-P1600143-v18-ET_D.txt +3000 -0
- lalapps/data/LIGO-T0900288-v3-BHBH_20deg.txt +3000 -0
- lalapps/data/LIGO-T0900288-v3-High_Freq.txt +3000 -0
- lalapps/data/LIGO-T0900288-v3-NO_SRM.txt +3000 -0
- lalapps/data/LIGO-T0900288-v3-NSNS_Opt.txt +3000 -0
- lalapps/data/LIGO-T0900288-v3-ZERO_DET_high_P.txt +3000 -0
- lalapps/data/LIGO-T0900288-v3-ZERO_DET_low_P.txt +3000 -0
- lalapps/data/LIGO-T1600593-v1-KAGRA_Design.txt +4000 -0
- lalapps/data/LIGO-T1600593-v1-KAGRA_Early.txt +4000 -0
- lalapps/data/LIGO-T1600593-v1-KAGRA_Late.txt +4000 -0
- lalapps/data/LIGO-T1600593-v1-KAGRA_Mid.txt +4000 -0
- lalapps/data/LIGO-T1600593-v1-KAGRA_Opening.txt +4000 -0
- lalapps/data/LIGO-T1800042-v5-aLIGO_APLUS.txt +3000 -0
- lalapps/data/LIGO-T1800044-v5-aLIGO_DESIGN.txt +3000 -0
- lalapps/data/LIGO-T1800545-v1-AdV_O3low.txt +3000 -0
- lalapps/data/LIGO-T1800545-v1-AdV_O4.txt +3000 -0
- lalapps/data/LIGO-T1800545-v1-AdV_O4intermediate.txt +3000 -0
- lalapps/data/LIGO-T1800545-v1-KAGRA_128Mpc.txt +1000 -0
- lalapps/data/LIGO-T1800545-v1-KAGRA_25Mpc.txt +1000 -0
- lalapps/data/LIGO-T1800545-v1-KAGRA_80Mpc.txt +1000 -0
- lalapps/data/LIGO-T1800545-v1-aLIGO_140Mpc.txt +1000 -0
- lalapps/data/LIGO-T1800545-v1-aLIGO_175Mpc.txt +2792 -0
- lalapps/data/LIGO-T1800545-v1-aLIGO_O3low.txt +2792 -0
- lalapps/data/bimodalMeans.csv +3 -0
- lalapps/data/config_tiger_example.ini +150 -0
- lalapps/data/fiducialBBH.xml +67 -0
- lalapps/data/fiducialBNS.xml +67 -0
- lalapps/data/inspsrcs100Mpc.errors +38735 -0
- lalapps/data/lalinference_pipe_example.ini +573 -0
- lalapps/data/lib_pipe_example.ini +303 -0
- lalapps/data/power_pipe.ini +129 -0
- lalapps/data/unimodalMeans.csv +2 -0
- lalapps/git_version.py +64 -0
- lalburst/SimBurstUtils.py +324 -0
- lalburst/SnglBurstUtils.py +367 -0
- lalburst/__init__.py +7 -0
- lalburst/_lalburst.cpython-314-darwin.so +0 -0
- lalburst/_lalburst_swig.py +16 -0
- lalburst/binjfind.py +824 -0
- lalburst/bucluster.py +409 -0
- lalburst/burca.py +315 -0
- lalburst/burca_tailor.py +349 -0
- lalburst/cafe.py +579 -0
- lalburst/calc_likelihood.py +145 -0
- lalburst/cs_gamma.cpython-314-darwin.so +0 -0
- lalburst/date.py +118 -0
- lalburst/git_version.py +64 -0
- lalburst/offsetvector.py +278 -0
- lalburst/packing.py +170 -0
- lalburst/power.py +1457 -0
- lalburst/snglcluster.py +136 -0
- lalburst/snglcoinc.py +2637 -0
- lalburst/stringutils.py +607 -0
- lalburst/timeslides.py +236 -0
- lalframe/__init__.py +7 -0
- lalframe/_lalframe.cpython-314-darwin.so +0 -0
- lalframe/_lalframe_swig.py +14 -0
- lalframe/frread.py +324 -0
- lalframe/git_version.py +64 -0
- lalframe/utils/__init__.py +25 -0
- lalframe/utils/frtools.py +61 -0
- lalinference/__init__.py +7 -0
- lalinference/_bayespputils.cpython-314-darwin.so +0 -0
- lalinference/_lalinference.cpython-314-darwin.so +0 -0
- lalinference/_lalinference_swig.py +19 -0
- lalinference/bayespputils.py +7479 -0
- lalinference/bayestar/__init__.py +2 -0
- lalinference/bayestar/deprecation.py +72 -0
- lalinference/git_version.py +64 -0
- lalinference/imrtgr/__init__.py +0 -0
- lalinference/imrtgr/imrtgrutils.py +168 -0
- lalinference/imrtgr/nrutils.py +1366 -0
- lalinference/imrtgr/pneqns.py +250 -0
- lalinference/io/__init__.py +31 -0
- lalinference/io/hdf5.py +365 -0
- lalinference/lalinference_pipe_utils.py +3617 -0
- lalinference/nest2pos.py +151 -0
- lalinference/plot/__init__.py +34 -0
- lalinference/plot/spindisk.py +104 -0
- lalinference/tiger/__init__.py +0 -0
- lalinference/tiger/make_injtimes.py +634 -0
- lalinference/tiger/omegascans_dag.py +691 -0
- lalinference/tiger/postproc.py +1338 -0
- lalinference/wrapper.py +231 -0
- lalinspiral/__init__.py +7 -0
- lalinspiral/_lalinspiral.cpython-314-darwin.so +0 -0
- lalinspiral/_lalinspiral_swig.py +18 -0
- lalinspiral/_thinca.cpython-314-darwin.so +0 -0
- lalinspiral/git_version.py +64 -0
- lalinspiral/inspinjfind.py +485 -0
- lalinspiral/thinca.py +509 -0
- lalmetaio/__init__.py +7 -0
- lalmetaio/_lalmetaio.cpython-314-darwin.so +0 -0
- lalmetaio/_lalmetaio_swig.py +14 -0
- lalmetaio/git_version.py +64 -0
- lalpulsar/NstarTools.py +259 -0
- lalpulsar/PulsarParametersWrapper.py +938 -0
- lalpulsar/__init__.py +7 -0
- lalpulsar/_lalpulsar.cpython-314-darwin.so +0 -0
- lalpulsar/_lalpulsar_swig.py +17 -0
- lalpulsar/git_version.py +64 -0
- lalpulsar/knope_utils.py +6497 -0
- lalpulsar/lineFileParser.py +264 -0
- lalpulsar/metric_utils.py +78 -0
- lalpulsar/piecewise_model/__init__.py +7 -0
- lalpulsar/piecewise_model/basis_functions.py +156 -0
- lalpulsar/piecewise_model/class_definitions.py +323 -0
- lalpulsar/piecewise_model/errors.py +37 -0
- lalpulsar/piecewise_model/estimating_knots.py +833 -0
- lalpulsar/piecewise_model/gte_and_other_methods.py +189 -0
- lalpulsar/piecewise_model/mols_for_gte.py +269 -0
- lalpulsar/piecewise_model/pw_fstat.py +813 -0
- lalpulsar/piecewise_model/pw_model_simulations.py +156 -0
- lalpulsar/piecewise_model/sampling_methods.py +186 -0
- lalpulsar/piecewise_model/semicoherent_metric_methods.py +375 -0
- lalpulsar/piecewise_model/tbank_estimates.py +293 -0
- lalpulsar/public_sft_directory.py +82 -0
- lalpulsar/pulsarhtmlutils.py +1395 -0
- lalpulsar/pulsarpputils.py +3638 -0
- lalpulsar/simulateCW.py +602 -0
- lalpulsar/simulateHeterodynedCW.py +591 -0
- lalsimulation/__init__.py +7 -0
- lalsimulation/_lalsimulation.cpython-314-darwin.so +0 -0
- lalsimulation/_lalsimulation_swig.py +14 -0
- lalsimulation/git_version.py +64 -0
- lalsimulation/gwsignal/__init__.py +9 -0
- lalsimulation/gwsignal/core/__init__.py +2 -0
- lalsimulation/gwsignal/core/conditioning_subroutines.py +196 -0
- lalsimulation/gwsignal/core/errors.py +136 -0
- lalsimulation/gwsignal/core/gw.py +206 -0
- lalsimulation/gwsignal/core/parameter_conventions.py +122 -0
- lalsimulation/gwsignal/core/utils.py +329 -0
- lalsimulation/gwsignal/core/waveform.py +725 -0
- lalsimulation/gwsignal/core/waveform_conditioning.py +455 -0
- lalsimulation/gwsignal/models/__init__.py +29 -0
- lalsimulation/gwsignal/models/pyseobnr_model.py +452 -0
- lalsimulation/nrfits/NRSur3dq8Remnant.py +92 -0
- lalsimulation/nrfits/NRSur7dq4Remnant.py +469 -0
- lalsimulation/nrfits/__init__.py +1 -0
- lalsimulation/nrfits/eval_fits.py +364 -0
- lalsimulation/nrfits/nrfits.py +78 -0
- lalsimulation/nrfits/pn_spin_evolution_wrapper.py +92 -0
- lalsimulation/nrfits/quaternion_utils.py +74 -0
- lalsimulation/tilts_at_infinity/__init__.py +2 -0
- lalsimulation/tilts_at_infinity/calc_tilts_prec_avg_regularized.py +1424 -0
- lalsimulation/tilts_at_infinity/hybrid_spin_evolution.py +461 -0
- lalsimulation/tilts_at_infinity/tilts_at_infinity_utils.py +167 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesBurstPPAnalysis +305 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesBurstPostProc +1364 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesCombinePTMCMCh5s +100 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesCombinePosteriors +235 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesCompPos +1121 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesDIEvidence +68 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesGraceDBinfo +182 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesMCMC2pos +314 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPPAnalysis +322 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPlotSpinDisk +42 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPosToSimBurst +227 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPosToSimInspiral +307 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesPostProc +1345 -0
- lalsuite-7.26.2.dev20260106.data/scripts/cbcBayesThermoInt +107 -0
- lalsuite-7.26.2.dev20260106.data/scripts/imrtgr_imr_consistency_test +796 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_cache +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_fftw_wisdom +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_fftwf_wisdom +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_path2cache +148 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_searchsum2cache +172 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_simd_detect +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_tconvert +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lal_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeAntennaPattern +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatBenchmark +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatLatticeCount +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatMCUpperLimit +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputeFstatistic_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ComputePSD +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_CopySFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_DistanceVsMass +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_DriveHoughMulti +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_FstatMetric_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_HierarchSearchGCT +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_HierarchicalSearch +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_MakeSFTDAG +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_MakeSFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_Makefakedata_v4 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_Makefakedata_v5 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_PredictFstat +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_PrintDetectorState +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_SFTclean +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_SFTvalidate +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_StringAddFrame +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_StringSearch +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_Weave +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WeaveCompare +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WeaveConcat +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WeaveSetup +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_WriteSFTsfromSFDBs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_animate +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_binj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_blindinj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cache +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cafe +99 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_calfacs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cbc_stochasticbank +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_chirplen +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_coh_PTF_inspiral +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_coinj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_combine_crosscorr_toplists +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_compareFstats +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_compareSFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_cosmicstring_pipe +525 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_create_time_correction_ephemeris +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_dumpSFT +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_effdist +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_exc_resp +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fftw_wisdom +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fftwf_wisdom +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_header_getval +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_header_list +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_overview +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fits_table_list +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_fr_ninja +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frextr +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frinfo +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frjoin +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frread +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_frview +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_gwf2xml +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_heterodyne_pulsar +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspawgfile +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspfrinj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspinj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_inspiralDistance +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope_automation_script +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope_collate_results +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_knope_result_page +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_makeblindinj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_makeblindinj_himass +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ninja +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_path2cache +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_power +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_power_likelihood_pipe +219 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_power_pipe +417 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_pulsar_crosscorr_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_pulsar_frequency_evolution +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_pulsar_parameter_estimation_nested +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_random_bank +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_randombank +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_run_pulsar_crosscorr_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_searchsum2cache +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spec_avg +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spec_avg_long +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spec_coherence +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_spininj +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_splitSFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_splitbank +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_ssbtodetector +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_apply_vetoes +171 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_calc_likelihood +172 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_contour_plotter +141 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_contour_plotter_largeloops +133 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_cs_gamma +110 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_cs_gamma_largeloops +119 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_final +1064 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_meas_likelihood +264 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_plot_binj +543 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_string_plot_likelihood +380 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_synthesizeBstatMC +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_synthesizeLVStats +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_synthesizeTransientStats +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_tconvert +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_tmpltbank +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalapps_xtefitstoframe +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_cluster +156 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_coinc +224 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_cut +425 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_gen_timeslides +254 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_inj_pic +254 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_injfind +170 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_plot_tisi +165 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_calc_likelihood +182 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_final +1369 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_meas_likelihood +206 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_plot_binj +934 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_power_plot_binjtf +302 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalburst_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-cat +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-cksum +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-cut +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-dump +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-fmt +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-paste +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-print +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-split +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-stat +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-stream +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalfr-vis +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalframe_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_bench +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_burst +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_burst_pp_pipe +220 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_coherence_test +139 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_compute_roq_weights +404 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_cpnest +58 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_datadump +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_evolve_spins_and_append_samples +202 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_injectedlike +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_merge_posteriors +57 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_mpi_wrapper +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_multi_pipe +144 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_nest +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_nest2pos +286 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_pipe +512 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_pp_pipe +229 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_review_test +362 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinference_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinspiral_injfind +206 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinspiral_thinca +240 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalinspiral_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalmetaio_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeAntennaPattern +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatBenchmark +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatLatticeCount +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatMCUpperLimit +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputeFstatistic_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ComputePSD +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_CopyPublicSFTs +216 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_DriveHoughMulti +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_FstatMetric_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_HierarchSearchGCT +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_HierarchicalSearch +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_MakeSFTDAG +1142 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_MakeSFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_Makefakedata_v4 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_Makefakedata_v5 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_MoveSFTs +208 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_PiecewiseSearch +963 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_PredictFstat +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_PrintDetectorState +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_SFTclean +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_SFTvalidate +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_Weave +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WeaveCompare +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WeaveConcat +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WeaveSetup +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_WriteSFTsfromSFDBs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_compareFstats +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_compareSFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_create_time_correction_ephemeris +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_crosscorr_v2 +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_dumpSFT +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_header_getval +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_header_list +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_overview +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_fits_table_list +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_frequency_evolution +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_heterodyne +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope +145 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope_automation_script +731 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope_collate_results +675 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_knope_result_page +2977 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_parameter_estimation_nested +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_spec_avg +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_spec_avg_long +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_spec_coherence +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_splitSFTs +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_ssbtodetector +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_synthesizeBstatMC +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_synthesizeLVStats +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_synthesizeTransientStats +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalpulsar_version +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-bh-qnmode +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-bh-ringdown +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-bh-sphwf +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-burst +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-detector-noise +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-detector-strain +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-inject +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-inspiral +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-ns-eos-table +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-ns-mass-radius +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-ns-params +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-sgwb +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsim-unicorn +6 -0
- lalsuite-7.26.2.dev20260106.data/scripts/lalsimulation_version +6 -0
- lalsuite-7.26.2.dev20260106.dist-info/METADATA +90 -0
- lalsuite-7.26.2.dev20260106.dist-info/RECORD +749 -0
- lalsuite-7.26.2.dev20260106.dist-info/WHEEL +6 -0
- lalsuite-7.26.2.dev20260106.dist-info/licenses/COPYING +339 -0
- lalsuite-7.26.2.dev20260106.dist-info/top_level.txt +9 -0
lal/antenna.py
ADDED
|
@@ -0,0 +1,1200 @@
|
|
|
1
|
+
# Copyright (C) 2018 Matthew Pitkin
|
|
2
|
+
#
|
|
3
|
+
# This program is free software; you can redistribute it and/or modify it
|
|
4
|
+
# under the terms of the GNU General Public License as published by the
|
|
5
|
+
# Free Software Foundation; either version 2 of the License, or (at your
|
|
6
|
+
# option) any later version.
|
|
7
|
+
#
|
|
8
|
+
# This program is distributed in the hope that it will be useful, but
|
|
9
|
+
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
10
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
11
|
+
# Public License for more details.
|
|
12
|
+
#
|
|
13
|
+
# You should have received a copy of the GNU General Public License along
|
|
14
|
+
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
15
|
+
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
## \defgroup lal_py_antenna Antenna
|
|
19
|
+
## \ingroup lal_python
|
|
20
|
+
"""This module provides a Python class for generating antenna response
|
|
21
|
+
functions. By default the class uses its own implementation of the antenna
|
|
22
|
+
response functions, but it also provides a wrapper to the equivalent
|
|
23
|
+
functions within LAL.
|
|
24
|
+
"""
|
|
25
|
+
# \author Matthew Pitkin (<matthew.pitkin@ligo.org>)
|
|
26
|
+
#
|
|
27
|
+
# ### Synopsis ###
|
|
28
|
+
#
|
|
29
|
+
# ~~~
|
|
30
|
+
# from lal import antenna
|
|
31
|
+
# ~~~
|
|
32
|
+
#
|
|
33
|
+
# ### Examples ###
|
|
34
|
+
#
|
|
35
|
+
# A simple example of just getting the antenna response for LHO at a single
|
|
36
|
+
# time for a single sky position and polarization angle would be:
|
|
37
|
+
#
|
|
38
|
+
# \code
|
|
39
|
+
# from lal import antenna
|
|
40
|
+
# ra = 1.2 # right ascension in radians
|
|
41
|
+
# dec = -0.3 # declination in radians
|
|
42
|
+
# psi = 1.5 # polarization angle in radians
|
|
43
|
+
# times = 1000000000. # time (GPS seconds)
|
|
44
|
+
# resp = antenna.AntennaResponse('H1', ra, dec, psi=psi, times=times)
|
|
45
|
+
# print(resp.plus)
|
|
46
|
+
# \endcode
|
|
47
|
+
#
|
|
48
|
+
# To produce plots of the antenna responses over the sky for the different
|
|
49
|
+
# polarizations, assuming a detector at the North Pole, one could use:
|
|
50
|
+
#
|
|
51
|
+
# \code
|
|
52
|
+
# import numpy as np
|
|
53
|
+
# import lal
|
|
54
|
+
# from lal.antenna import AntennaResponse
|
|
55
|
+
# from mpl_toolkits.mplot3d import Axes3D
|
|
56
|
+
# import matplotlib.pyplot as pl
|
|
57
|
+
#
|
|
58
|
+
# # set a LALFrDetector object for the North Pole
|
|
59
|
+
# frdt = lal.FrDetector()
|
|
60
|
+
#
|
|
61
|
+
# frdt.name = 'NORTHPOLE'
|
|
62
|
+
# frdt.prefix = 'N1'
|
|
63
|
+
# frdt.vertexLongitudeRadians = 0.
|
|
64
|
+
# frdt.vertexLatitudeRadians = np.pi/2.
|
|
65
|
+
# frdt.vertexElevation = 0.
|
|
66
|
+
# frdt.xArmAltitudeRadians = 0.
|
|
67
|
+
# frdt.xArmAzimuthRadians = 0.
|
|
68
|
+
# frdt.yArmAltitudeRadians = 0.
|
|
69
|
+
# frdt.yArmAzimuthRadians = np.pi/2. # y-arm 90 degs from x-arm
|
|
70
|
+
# frdt.xArmMidpoint = 2000. # 4km long arms
|
|
71
|
+
# frdt.yArmMidpoint = 2000.
|
|
72
|
+
#
|
|
73
|
+
# # create lal.Detector object
|
|
74
|
+
# det = lal.Detector()
|
|
75
|
+
# lal.CreateDetector(det, frdt, lal.LALDETECTORTYPE_IFODIFF)
|
|
76
|
+
#
|
|
77
|
+
# # create RA/dec grids uniform on sphere
|
|
78
|
+
# ras = np.linspace(0, 2.*np.pi, 150)
|
|
79
|
+
# decs = np.arcsin(np.linspace(-1, 1, 150))
|
|
80
|
+
#
|
|
81
|
+
# # create antenna response on the sky grid
|
|
82
|
+
# resp = AntennaResponse(det, ras, decs, psi=0.0, times=900000000.0, vector=True,
|
|
83
|
+
# scalar=True)
|
|
84
|
+
#
|
|
85
|
+
# # get equatorial to cartesian factors
|
|
86
|
+
# xfac = np.cos(resp.dec_mesh)*np.cos(resp.ra_mesh)
|
|
87
|
+
# yfac = np.cos(resp.dec_mesh)*np.sin(resp.ra_mesh)
|
|
88
|
+
# zfac = np.sin(resp.dec_mesh)
|
|
89
|
+
#
|
|
90
|
+
# fig = pl.figure(figsize=(12, 7))
|
|
91
|
+
#
|
|
92
|
+
# for i, mode in enumerate(['plus', 'x', 'b', 'cross', 'y', 'l']):
|
|
93
|
+
# r = np.abs(resp.response[mode]) # get absolute values of response
|
|
94
|
+
#
|
|
95
|
+
# # convert from equatorial coordinates to cartesian
|
|
96
|
+
# X, Y, Z = r*xfac, r*yfac, r*zfac
|
|
97
|
+
#
|
|
98
|
+
# ax = fig.add_subplot(2, 3, i+1, projection='3d')
|
|
99
|
+
# ax.plot_surface(X, Y, Z, cmap=pl.cm.viridis, linewidth=0, rstride=1, cstride=1)
|
|
100
|
+
# ax.set_aspect('equal')
|
|
101
|
+
# ax.set_title(mode)
|
|
102
|
+
#
|
|
103
|
+
# fig.tight_layout()
|
|
104
|
+
#
|
|
105
|
+
# pl.show()
|
|
106
|
+
# \endcode
|
|
107
|
+
#
|
|
108
|
+
# which will display:
|
|
109
|
+
# <img src=""/>
|
|
110
|
+
#
|
|
111
|
+
# <!--
|
|
112
|
+
# To produce the above jpeg byte string for the image I have used:
|
|
113
|
+
# from io import BytesIO
|
|
114
|
+
# import base64
|
|
115
|
+
# figfile = BytesIO()
|
|
116
|
+
# fig.savefig(figfile, dpi=50, format='jpg')
|
|
117
|
+
# figfile.seek(0) # rewind to beginning of file
|
|
118
|
+
# figdata_jpg = base64.b64encode(figfile.getvalue()).decode('utf8')
|
|
119
|
+
# -->
|
|
120
|
+
## @{
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
import numpy as np
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
# import SWIG-wrapped LAL
|
|
127
|
+
from lal import (LALDetectorIndexLHODIFF, LALDetectorIndexLLODIFF,
|
|
128
|
+
LALDetectorIndexGEO600DIFF, LALDetectorIndexVIRGODIFF,
|
|
129
|
+
LALDetectorIndexTAMA300DIFF, LALDetectorIndexKAGRADIFF,
|
|
130
|
+
LALDetectorIndexLIODIFF, LALDetectorIndexE1DIFF,
|
|
131
|
+
LALDetectorIndexE2DIFF, LALDetectorIndexE3DIFF,
|
|
132
|
+
CachedDetectors, LIGOTimeGPS, GreenwichMeanSiderealTime,
|
|
133
|
+
ComputeDetAMResponse, ComputeDetAMResponseExtraModes,
|
|
134
|
+
DAYSID_SI, Detector, TranslateHMStoRAD, TranslateDMStoRAD)
|
|
135
|
+
|
|
136
|
+
from . import git_version
|
|
137
|
+
|
|
138
|
+
__author__ = "Matthew Pitkin <matthew.pitkin@ligo.org>"
|
|
139
|
+
__version__ = git_version.verbose_msg
|
|
140
|
+
__date__ = git_version.date
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
## mapping between detector names and LALCachedDetectors
|
|
144
|
+
DETMAP = {'H1': LALDetectorIndexLHODIFF,
|
|
145
|
+
'H2': LALDetectorIndexLHODIFF,
|
|
146
|
+
'LHO': LALDetectorIndexLHODIFF,
|
|
147
|
+
'L1': LALDetectorIndexLLODIFF,
|
|
148
|
+
'LLO': LALDetectorIndexLLODIFF,
|
|
149
|
+
'G1': LALDetectorIndexGEO600DIFF,
|
|
150
|
+
'GEO': LALDetectorIndexGEO600DIFF,
|
|
151
|
+
'GEO600': LALDetectorIndexGEO600DIFF,
|
|
152
|
+
'V1': LALDetectorIndexVIRGODIFF,
|
|
153
|
+
'VIRGO': LALDetectorIndexVIRGODIFF,
|
|
154
|
+
'T1': LALDetectorIndexTAMA300DIFF,
|
|
155
|
+
'TAMA': LALDetectorIndexTAMA300DIFF,
|
|
156
|
+
'TAMA300': LALDetectorIndexTAMA300DIFF,
|
|
157
|
+
'K1': LALDetectorIndexKAGRADIFF,
|
|
158
|
+
'KAGRA': LALDetectorIndexKAGRADIFF,
|
|
159
|
+
'LCGT': LALDetectorIndexKAGRADIFF,
|
|
160
|
+
'I1': LALDetectorIndexLIODIFF,
|
|
161
|
+
'LIO': LALDetectorIndexLIODIFF,
|
|
162
|
+
'E1': LALDetectorIndexE1DIFF,
|
|
163
|
+
'E2': LALDetectorIndexE2DIFF,
|
|
164
|
+
'E3': LALDetectorIndexE3DIFF}
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
## The ranges of variables required for the antenna response (for look-up table generation)
|
|
168
|
+
VAR_RANGES = {'psi': [0., 2.*np.pi],
|
|
169
|
+
'time': [0., DAYSID_SI],
|
|
170
|
+
'ra': [0., 2.*np.pi],
|
|
171
|
+
'dec': [-1., 1.]} # this range is actually in sin(dec)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
class AntennaResponse(object):
|
|
175
|
+
def __init__(self, detector, ra, dec, psi=0., times=None, tensor=True,
|
|
176
|
+
vector=False, scalar=False, use_lal=False, lookup=False,
|
|
177
|
+
lookuppair=None, bins1=100, bins2=100):
|
|
178
|
+
"""
|
|
179
|
+
Calculate the long-wavelength limit antenna response functions for a given
|
|
180
|
+
ground-based gravitational wave detector. The response can include tensor,
|
|
181
|
+
vector, and scalar modes.
|
|
182
|
+
|
|
183
|
+
@param detector: (str) a valid detector name (e.g., 'H1') or
|
|
184
|
+
lal.Detector object.
|
|
185
|
+
@param ra: (array_like) the right ascension of the source in radians,
|
|
186
|
+
or a string of the format 'hh:mm:ss.s'.
|
|
187
|
+
@param dec: (array_like) the declination of the source in radians, or a
|
|
188
|
+
string of the format 'dd:mm:ss.s'.
|
|
189
|
+
@param psi: (array_like) the polarization angle in radians. Defaults to
|
|
190
|
+
zero.
|
|
191
|
+
@param times: (array_like) an array of GPS time values at which to
|
|
192
|
+
calculate the response function.
|
|
193
|
+
@param tensor: (bool) set to calculate and store the tensor
|
|
194
|
+
polarization components (plus and cross). Defaults to True.
|
|
195
|
+
@param vector: (bool) set to calculate and store the vector
|
|
196
|
+
polarization components ("x" and "y"). Defaults to False.
|
|
197
|
+
@param scalar: (bool) set to calculate and store the scalar
|
|
198
|
+
polarization components (longitudinal and breathing). Defaults to
|
|
199
|
+
False.
|
|
200
|
+
@param use_lal: (bool) set to internally use the
|
|
201
|
+
XLALComputeDetAMResponse() and XLALComputeDetAMResponseExtraModes()
|
|
202
|
+
functions. Defaults to False.
|
|
203
|
+
@param lookup: (bool) set to generate and use a look-up table in a pair
|
|
204
|
+
of parameters for computing the antenna responses. Defaults to
|
|
205
|
+
False. If using the look-up table, the arrays of values being
|
|
206
|
+
"looked-up" must be in ascending order.
|
|
207
|
+
@param lookuppair: (list, tuple) a list of the two parameters that will
|
|
208
|
+
be used in the look-up table interpolation. Defaults to
|
|
209
|
+
<tt>['psi', 'time']</tt> (allowed values are <tt>'ra'</tt>,
|
|
210
|
+
<tt>'dec'</tt>, <tt>'psi'</tt>, or <tt>'time'</tt>)
|
|
211
|
+
@param bins1: (int) the number of bins in the grid in the first look-up
|
|
212
|
+
table parameter. Defaults to 100.
|
|
213
|
+
@param bins2: (int) the number of bins in the grid in the second
|
|
214
|
+
look-up table parameter. Defaults to 100.
|
|
215
|
+
|
|
216
|
+
Example usage for tensor polarizations:
|
|
217
|
+
~~~
|
|
218
|
+
>>> from lal.antenna import AntennaResponse
|
|
219
|
+
>>> # compute tensor response for a single time
|
|
220
|
+
>>> resp = AntennaResponse('H1', ra=1.2, dec=-0.3, psi=2.9,
|
|
221
|
+
...times=1000000000)
|
|
222
|
+
>>> print('Fplus: {}'.format(resp.plus))
|
|
223
|
+
Fplus: [0.32427018]
|
|
224
|
+
>>> print('Fcross: {}'.format(resp.cross))
|
|
225
|
+
Fcross: [-0.79809163]
|
|
226
|
+
>>> # re-use class to get response at multiple new times
|
|
227
|
+
>>> resp.compute_response([1010101010., 1234567890.])
|
|
228
|
+
>>> print('Fplus: {}'.format(resp.plus))
|
|
229
|
+
Fplus: [ 0.09498567 -0.45495654]
|
|
230
|
+
>>> print('Fcross: {}'.format(resp.cross))
|
|
231
|
+
Fcross: [0.1706959 0.21690418]
|
|
232
|
+
~~~
|
|
233
|
+
|
|
234
|
+
Example usage for tensor, vector and scalar polarizations (at a series
|
|
235
|
+
of times):
|
|
236
|
+
~~~
|
|
237
|
+
>>> import numpy as np
|
|
238
|
+
>>> times = np.linspace(1000000000.0, 1000086340.0, 1440)
|
|
239
|
+
>>> resp = AntennaResponse('H1', ra=1.2, dec=-0.3, psi=2.9,
|
|
240
|
+
...scalar=True, vector=True, times=times)
|
|
241
|
+
>>> resp.plus
|
|
242
|
+
array([0.32427018, 0.32805983, 0.3318344 , ..., 0.32780195, 0.33157755,
|
|
243
|
+
0.33533786])
|
|
244
|
+
>>> resp.cross
|
|
245
|
+
array([-0.79809163, -0.79607858, -0.79404097, ..., -0.7962166 ,
|
|
246
|
+
-0.79418066, -0.79212028])
|
|
247
|
+
>>> resp.x # vector "x" polarization
|
|
248
|
+
array([-0.46915186, -0.46773594, -0.46627224, ..., -0.46783399,
|
|
249
|
+
-0.46637354, -0.46486538])
|
|
250
|
+
>>> resp.y # vector "y" polarization
|
|
251
|
+
array([-0.17075718, -0.17475991, -0.17875012, ..., -0.17448742,
|
|
252
|
+
-0.17847849, -0.18245689])
|
|
253
|
+
>>> resp.b # scalar "breathing" mode
|
|
254
|
+
array([0.05365678, 0.05573073, 0.05780282, ..., 0.05558939, 0.05766162,
|
|
255
|
+
0.05973181])
|
|
256
|
+
>>> resp.l # scalar "longitudinal mode"
|
|
257
|
+
array([-0.05365678, -0.05573073, -0.05780282, ..., -0.05558939,
|
|
258
|
+
-0.05766162, -0.05973181])
|
|
259
|
+
~~~
|
|
260
|
+
"""
|
|
261
|
+
|
|
262
|
+
# response function dictionary
|
|
263
|
+
self.response = {'plus': None, # tensor plus polarization
|
|
264
|
+
'cross': None, # tensor cross polarization
|
|
265
|
+
'x': None, # vector "x" polarization
|
|
266
|
+
'y': None, # vector "y" polarization
|
|
267
|
+
'b': None, # scalar breathing mode polarizarion
|
|
268
|
+
'l': None} # scalar longitudinal mode polarization
|
|
269
|
+
|
|
270
|
+
# parameter names and order in arrays
|
|
271
|
+
self.parameters = ['ra', 'dec', 'psi', 'time']
|
|
272
|
+
|
|
273
|
+
# set values
|
|
274
|
+
self.detector = detector
|
|
275
|
+
self.ra = ra
|
|
276
|
+
self.dec = dec
|
|
277
|
+
self.psi = psi
|
|
278
|
+
self.times = times
|
|
279
|
+
|
|
280
|
+
# polarization modes
|
|
281
|
+
self.tensor = tensor
|
|
282
|
+
self.vector = vector
|
|
283
|
+
self.scalar = scalar
|
|
284
|
+
|
|
285
|
+
# set whether to use internal LAL functions
|
|
286
|
+
self.use_lal = use_lal
|
|
287
|
+
|
|
288
|
+
# set whether to allocate and use a look-up table
|
|
289
|
+
if lookup:
|
|
290
|
+
if lookuppair is None: # use default pair
|
|
291
|
+
self.set_lookup_pair(bins1=bins1, bins2=bins2)
|
|
292
|
+
else:
|
|
293
|
+
self.set_lookup_pair(pair=lookuppair, bins1=bins1, bins2=bins2)
|
|
294
|
+
self.lookup = lookup
|
|
295
|
+
|
|
296
|
+
# calculate antenna responses
|
|
297
|
+
self.compute_response()
|
|
298
|
+
|
|
299
|
+
@property
|
|
300
|
+
def detector(self):
|
|
301
|
+
return self._detector
|
|
302
|
+
|
|
303
|
+
@detector.setter
|
|
304
|
+
def detector(self, det):
|
|
305
|
+
"""
|
|
306
|
+
Set the detector for which to calculate the antenna response.
|
|
307
|
+
|
|
308
|
+
@param det: (str) a valid detector name.
|
|
309
|
+
"""
|
|
310
|
+
|
|
311
|
+
if isinstance(det, Detector):
|
|
312
|
+
self._detector = det.frDetector.prefix
|
|
313
|
+
self.laldetector = det
|
|
314
|
+
elif isinstance(det, str):
|
|
315
|
+
if det.upper() not in DETMAP.keys():
|
|
316
|
+
raise ValueError("Detector is not a valid detector name")
|
|
317
|
+
|
|
318
|
+
self._detector = det.upper()
|
|
319
|
+
|
|
320
|
+
# set the LAL detector object
|
|
321
|
+
self.laldetector = self.detector
|
|
322
|
+
else:
|
|
323
|
+
raise TypeError("Detector must be a string or lal.Detector object")
|
|
324
|
+
|
|
325
|
+
@property
|
|
326
|
+
def laldetector(self):
|
|
327
|
+
return self._laldetector
|
|
328
|
+
|
|
329
|
+
@laldetector.setter
|
|
330
|
+
def laldetector(self, det):
|
|
331
|
+
"""
|
|
332
|
+
Set the lal.Detector.
|
|
333
|
+
|
|
334
|
+
@param det: (str) a valid detector name.
|
|
335
|
+
"""
|
|
336
|
+
|
|
337
|
+
if isinstance(det, Detector):
|
|
338
|
+
self._laldetector = det.response
|
|
339
|
+
elif isinstance(det, str):
|
|
340
|
+
try:
|
|
341
|
+
detector = DETMAP[det.upper()]
|
|
342
|
+
except KeyError:
|
|
343
|
+
raise KeyError("Key {} is not a valid detector name.".format(det))
|
|
344
|
+
|
|
345
|
+
self._laldetector = CachedDetectors[detector].response
|
|
346
|
+
else:
|
|
347
|
+
raise TypeError("Detector must be a string or lal.Detector object")
|
|
348
|
+
|
|
349
|
+
@property
|
|
350
|
+
def ra(self):
|
|
351
|
+
return self._ra
|
|
352
|
+
|
|
353
|
+
@ra.setter
|
|
354
|
+
def ra(self, raval):
|
|
355
|
+
"""
|
|
356
|
+
Set the right ascension.
|
|
357
|
+
"""
|
|
358
|
+
|
|
359
|
+
if raval is None:
|
|
360
|
+
self._ra = None
|
|
361
|
+
return
|
|
362
|
+
elif isinstance(raval, float) or isinstance(raval, int):
|
|
363
|
+
self._ra = np.array([raval], dtype='float64')
|
|
364
|
+
elif isinstance(raval, list) or isinstance(raval, np.ndarray):
|
|
365
|
+
self._ra = np.copy(raval).astype('float64')
|
|
366
|
+
elif isinstance(raval, str):
|
|
367
|
+
try:
|
|
368
|
+
rarad = TranslateHMStoRAD(raval)
|
|
369
|
+
self._ra = np.array([rarad], dtype='float64')
|
|
370
|
+
except RuntimeError:
|
|
371
|
+
raise ValueError("Could not convert '{}' to a right "
|
|
372
|
+
"ascension".format(raval))
|
|
373
|
+
else:
|
|
374
|
+
raise TypeError("Right ascension must be an array")
|
|
375
|
+
|
|
376
|
+
@property
|
|
377
|
+
def dec(self):
|
|
378
|
+
return self._dec
|
|
379
|
+
|
|
380
|
+
@property
|
|
381
|
+
def costheta(self):
|
|
382
|
+
return self._costheta
|
|
383
|
+
|
|
384
|
+
@property
|
|
385
|
+
def sintheta(self):
|
|
386
|
+
return self._sintheta
|
|
387
|
+
|
|
388
|
+
@dec.setter
|
|
389
|
+
def dec(self, decval):
|
|
390
|
+
"""
|
|
391
|
+
Set the declination.
|
|
392
|
+
"""
|
|
393
|
+
|
|
394
|
+
if decval is None:
|
|
395
|
+
self._dec = None
|
|
396
|
+
self._costheta = None
|
|
397
|
+
self._sintheta = None
|
|
398
|
+
return
|
|
399
|
+
elif isinstance(decval, float) or isinstance(decval, int):
|
|
400
|
+
self._dec = np.array([decval], dtype='float64')
|
|
401
|
+
elif isinstance(decval, list) or isinstance(decval, np.ndarray):
|
|
402
|
+
self._dec = np.copy(decval).astype('float64')
|
|
403
|
+
elif isinstance(decval, str):
|
|
404
|
+
try:
|
|
405
|
+
decrad = TranslateDMStoRAD(decval)
|
|
406
|
+
self._dec = np.array([decrad], dtype='float64')
|
|
407
|
+
except RuntimeError:
|
|
408
|
+
raise ValueError("Could not convert '{}' to a "
|
|
409
|
+
"declination".format(decval))
|
|
410
|
+
else:
|
|
411
|
+
raise TypeError("Declination must be an array")
|
|
412
|
+
|
|
413
|
+
self._costheta = np.cos(0.5*np.pi - self._dec)
|
|
414
|
+
self._sintheta = np.sin(0.5*np.pi - self._dec)
|
|
415
|
+
|
|
416
|
+
@property
|
|
417
|
+
def psi(self):
|
|
418
|
+
return self._psi
|
|
419
|
+
|
|
420
|
+
@property
|
|
421
|
+
def cospsi(self):
|
|
422
|
+
return self._cospsi
|
|
423
|
+
|
|
424
|
+
@property
|
|
425
|
+
def sinpsi(self):
|
|
426
|
+
return self._sinpsi
|
|
427
|
+
|
|
428
|
+
@psi.setter
|
|
429
|
+
def psi(self, psival):
|
|
430
|
+
"""
|
|
431
|
+
Set the value of the gravitational wave polarization angle psi.
|
|
432
|
+
|
|
433
|
+
@param psival: (float) the polarization angle (radians)
|
|
434
|
+
"""
|
|
435
|
+
|
|
436
|
+
if psival is None:
|
|
437
|
+
self._psi = None
|
|
438
|
+
self._cospsi = None
|
|
439
|
+
self._sinpsi = None
|
|
440
|
+
return
|
|
441
|
+
elif isinstance(psival, float) or isinstance(psival, int):
|
|
442
|
+
self._psi = np.array([psival], dtype='float64')
|
|
443
|
+
elif isinstance(psival, list) or isinstance(psival, np.ndarray):
|
|
444
|
+
self._psi = np.copy(psival).astype('float64')
|
|
445
|
+
else:
|
|
446
|
+
raise TypeError("Polarization must be an array")
|
|
447
|
+
|
|
448
|
+
self._psi = np.mod(self._psi, 2.*np.pi) # wrap at 0 and 2pi
|
|
449
|
+
self._cospsi = np.cos(self._psi)
|
|
450
|
+
self._sinpsi = np.sin(self._psi)
|
|
451
|
+
|
|
452
|
+
@property
|
|
453
|
+
def times(self):
|
|
454
|
+
return self._times
|
|
455
|
+
|
|
456
|
+
@property
|
|
457
|
+
def gmsttimes(self):
|
|
458
|
+
try:
|
|
459
|
+
return self._gmsttimes
|
|
460
|
+
except AttributeError:
|
|
461
|
+
return None
|
|
462
|
+
|
|
463
|
+
@times.setter
|
|
464
|
+
def times(self, timearr):
|
|
465
|
+
"""
|
|
466
|
+
Set array of times and GPS times.
|
|
467
|
+
"""
|
|
468
|
+
|
|
469
|
+
# check if times is just a float or int, and if so convert into an array
|
|
470
|
+
if timearr is None:
|
|
471
|
+
self._times = None
|
|
472
|
+
self._gmsttimes = None
|
|
473
|
+
return
|
|
474
|
+
elif isinstance(timearr, float) or isinstance(timearr, int):
|
|
475
|
+
self._times = np.array([timearr], dtype='float64')
|
|
476
|
+
elif isinstance(timearr, list) or isinstance(timearr, np.ndarray):
|
|
477
|
+
self._times = np.copy(timearr).astype('float64')
|
|
478
|
+
else:
|
|
479
|
+
raise TypeError("Times must be an array")
|
|
480
|
+
|
|
481
|
+
# get an array of GMSTs
|
|
482
|
+
self._gmsttimes = np.ones_like(self._times) * np.nan # Greenwich Mean Siderial time (radians)
|
|
483
|
+
for i, time in enumerate(self._times):
|
|
484
|
+
gps = LIGOTimeGPS(time) # GPS time
|
|
485
|
+
gmstrad = GreenwichMeanSiderealTime(gps)
|
|
486
|
+
self._gmsttimes[i] = gmstrad
|
|
487
|
+
|
|
488
|
+
@property
|
|
489
|
+
def shape(self):
|
|
490
|
+
try:
|
|
491
|
+
return self._ra_mesh.shape
|
|
492
|
+
except Exception:
|
|
493
|
+
if (self.ra is not None and self.dec is not None and
|
|
494
|
+
self.psi is not None and self.times is not None):
|
|
495
|
+
return (len(self.ra), len(self.dec), len(self.psi),
|
|
496
|
+
len(self.times))
|
|
497
|
+
else:
|
|
498
|
+
return ()
|
|
499
|
+
|
|
500
|
+
@property
|
|
501
|
+
def cosphi(self):
|
|
502
|
+
return self._cosphi
|
|
503
|
+
|
|
504
|
+
@property
|
|
505
|
+
def sinphi(self):
|
|
506
|
+
return self._sinphi
|
|
507
|
+
|
|
508
|
+
@property
|
|
509
|
+
def tensor(self):
|
|
510
|
+
return self._tensor
|
|
511
|
+
|
|
512
|
+
@tensor.setter
|
|
513
|
+
def tensor(self, tensorval):
|
|
514
|
+
"""
|
|
515
|
+
Set whether to include tensor polarizations.
|
|
516
|
+
"""
|
|
517
|
+
|
|
518
|
+
if not isinstance(tensorval, bool):
|
|
519
|
+
raise TypeError("Must be boolean value")
|
|
520
|
+
|
|
521
|
+
self._tensor = tensorval
|
|
522
|
+
|
|
523
|
+
@property
|
|
524
|
+
def vector(self):
|
|
525
|
+
return self._vector
|
|
526
|
+
|
|
527
|
+
@vector.setter
|
|
528
|
+
def vector(self, vectorval):
|
|
529
|
+
"""
|
|
530
|
+
Set whether to include vector polarizations.
|
|
531
|
+
"""
|
|
532
|
+
|
|
533
|
+
if not isinstance(vectorval, bool):
|
|
534
|
+
raise TypeError("Must be boolean value")
|
|
535
|
+
|
|
536
|
+
self._vector = vectorval
|
|
537
|
+
|
|
538
|
+
@property
|
|
539
|
+
def scalar(self):
|
|
540
|
+
return self._scalar
|
|
541
|
+
|
|
542
|
+
@scalar.setter
|
|
543
|
+
def scalar(self, scalarval):
|
|
544
|
+
"""
|
|
545
|
+
Set whether to include scalar polarizations.
|
|
546
|
+
"""
|
|
547
|
+
|
|
548
|
+
if not isinstance(scalarval, bool):
|
|
549
|
+
raise TypeError("Must be boolean value")
|
|
550
|
+
|
|
551
|
+
self._scalar = scalarval
|
|
552
|
+
|
|
553
|
+
@property
|
|
554
|
+
def use_lal(self):
|
|
555
|
+
return self._use_lal
|
|
556
|
+
|
|
557
|
+
@use_lal.setter
|
|
558
|
+
def use_lal(self, val):
|
|
559
|
+
"""
|
|
560
|
+
Set whether to use LAL antenna response functions.
|
|
561
|
+
"""
|
|
562
|
+
|
|
563
|
+
if not isinstance(val, bool):
|
|
564
|
+
raise TypeError("Must be a boolean value")
|
|
565
|
+
|
|
566
|
+
self._use_lal = val
|
|
567
|
+
|
|
568
|
+
@property
|
|
569
|
+
def lookup_pair(self):
|
|
570
|
+
return self._lookup_pair
|
|
571
|
+
|
|
572
|
+
@lookup_pair.setter
|
|
573
|
+
def lookup_pair(self, pair):
|
|
574
|
+
if not isinstance(pair, (list, tuple)):
|
|
575
|
+
raise TypeError('Pair must be a list or tuple')
|
|
576
|
+
|
|
577
|
+
if len(pair) != 2:
|
|
578
|
+
raise ValueError('Pair must only contain two values')
|
|
579
|
+
|
|
580
|
+
for val in pair:
|
|
581
|
+
if val.lower() not in self.parameters:
|
|
582
|
+
raise ValueError('Parameter {} in pair not '
|
|
583
|
+
'recognized'.format(val))
|
|
584
|
+
|
|
585
|
+
self._lookup_pair = [val.lower() for val in pair]
|
|
586
|
+
|
|
587
|
+
# make sure pair is in same order as parameters
|
|
588
|
+
self._lookup_pair = [val for val in self.parameters
|
|
589
|
+
if val in self._lookup_pair]
|
|
590
|
+
|
|
591
|
+
# set parameters that are not in the look-up pair
|
|
592
|
+
self._not_lookup_pair = [val.lower() for val in self.parameters
|
|
593
|
+
if val not in self._lookup_pair]
|
|
594
|
+
self._not_lookup_pair_idx = [self.parameters.index(val)
|
|
595
|
+
for val in self._not_lookup_pair]
|
|
596
|
+
|
|
597
|
+
def set_lookup_pair(self, pair=['psi', 'time'], bins1=100, bins2=100):
|
|
598
|
+
"""
|
|
599
|
+
Set the pair of parameters to use for the look-up table.
|
|
600
|
+
"""
|
|
601
|
+
|
|
602
|
+
self.lookup_pair = pair
|
|
603
|
+
self._lookup_pair_dict = {}
|
|
604
|
+
|
|
605
|
+
for val, nbins in zip(pair, [bins1, bins2]):
|
|
606
|
+
if not isinstance(nbins, int):
|
|
607
|
+
raise TypeError("Value must be an integer")
|
|
608
|
+
|
|
609
|
+
if nbins < 2:
|
|
610
|
+
raise ValueError("There must be at least 2 bins")
|
|
611
|
+
|
|
612
|
+
self._lookup_pair_dict[val] = {}
|
|
613
|
+
|
|
614
|
+
vrange = VAR_RANGES[val]
|
|
615
|
+
|
|
616
|
+
# set array of bins
|
|
617
|
+
if val == 'dec':
|
|
618
|
+
# range is in sin(dec) to give uniform grid on sky sphere, so
|
|
619
|
+
# convert into dec
|
|
620
|
+
vararray = np.arcsin(np.linspace(vrange[0], vrange[1], nbins))
|
|
621
|
+
else:
|
|
622
|
+
vararray = np.linspace(vrange[0], vrange[1], nbins)
|
|
623
|
+
|
|
624
|
+
self._lookup_pair_dict[val]['array'] = vararray
|
|
625
|
+
self._lookup_pair_dict[val]['nbins'] = nbins
|
|
626
|
+
|
|
627
|
+
@property
|
|
628
|
+
def bins1(self):
|
|
629
|
+
return self._lookup_pair_dict[self.lookup_pair[0]]['nbins']
|
|
630
|
+
|
|
631
|
+
@property
|
|
632
|
+
def array1(self):
|
|
633
|
+
return self._lookup_pair_dict[self.lookup_pair[0]]['array']
|
|
634
|
+
|
|
635
|
+
@property
|
|
636
|
+
def bins2(self):
|
|
637
|
+
return self._lookup_pair_dict[self.lookup_pair[1]]['nbins']
|
|
638
|
+
|
|
639
|
+
@property
|
|
640
|
+
def array2(self):
|
|
641
|
+
return self._lookup_pair_dict[self.lookup_pair[1]]['array']
|
|
642
|
+
|
|
643
|
+
@property
|
|
644
|
+
def lookup(self):
|
|
645
|
+
return self._lookup
|
|
646
|
+
|
|
647
|
+
@lookup.setter
|
|
648
|
+
def lookup(self, val):
|
|
649
|
+
"""
|
|
650
|
+
Set the 2d look-up table.
|
|
651
|
+
"""
|
|
652
|
+
|
|
653
|
+
self._timeepoch = 1000000000. # a GPS epoch
|
|
654
|
+
|
|
655
|
+
if not isinstance(val, bool):
|
|
656
|
+
raise TypeError("Value must be a boolean")
|
|
657
|
+
|
|
658
|
+
self._lookup = False # set to False so look-up table can be calculated
|
|
659
|
+
|
|
660
|
+
# set the look-up table
|
|
661
|
+
if val:
|
|
662
|
+
try:
|
|
663
|
+
from scipy.interpolate import RectBivariateSpline
|
|
664
|
+
except ImportError:
|
|
665
|
+
raise ImportError("Cannot import scipy")
|
|
666
|
+
|
|
667
|
+
curra = self.ra # save current RA value
|
|
668
|
+
curdec = self.dec # save current dec value
|
|
669
|
+
curpsi = self.psi # save current psi value
|
|
670
|
+
try:
|
|
671
|
+
curtimes = self.times # save current times
|
|
672
|
+
except AttributeError:
|
|
673
|
+
raise AttributeError("A time must be set for the look-up table")
|
|
674
|
+
|
|
675
|
+
if 'psi' in self.lookup_pair:
|
|
676
|
+
self.psi = self._lookup_pair_dict['psi']['array']
|
|
677
|
+
if 'time' in self.lookup_pair:
|
|
678
|
+
self.times = (self._timeepoch +
|
|
679
|
+
self._lookup_pair_dict['time']['array'])
|
|
680
|
+
if 'ra' in self.lookup_pair:
|
|
681
|
+
self.ra = self._lookup_pair_dict['ra']['array']
|
|
682
|
+
if 'dec' in self.lookup_pair:
|
|
683
|
+
self.dec = self._lookup_pair_dict['dec']['array']
|
|
684
|
+
|
|
685
|
+
self._not_lookup_pair_lens = [] # lengths of the non-look-up table values
|
|
686
|
+
for val in self._not_lookup_pair:
|
|
687
|
+
if val == 'ra':
|
|
688
|
+
self._not_lookup_pair_lens.append(len(curra))
|
|
689
|
+
if val == 'dec':
|
|
690
|
+
self._not_lookup_pair_lens.append(len(curdec))
|
|
691
|
+
if val == 'psi':
|
|
692
|
+
self._not_lookup_pair_lens.append(len(curpsi))
|
|
693
|
+
if val in 'time':
|
|
694
|
+
self._not_lookup_pair_lens.append(len(curtimes))
|
|
695
|
+
|
|
696
|
+
# set look-up table functions
|
|
697
|
+
self._lookup_func = {}
|
|
698
|
+
if self.tensor:
|
|
699
|
+
self._lookup_func['plus'] = np.empty(self._not_lookup_pair_lens, dtype=object)
|
|
700
|
+
self._lookup_func['cross'] = np.empty(self._not_lookup_pair_lens, dtype=object)
|
|
701
|
+
|
|
702
|
+
if self.vector:
|
|
703
|
+
self._lookup_func['x'] = np.empty(self._not_lookup_pair_lens, dtype=object)
|
|
704
|
+
self._lookup_func['y'] = np.empty(self._not_lookup_pair_lens, dtype=object)
|
|
705
|
+
|
|
706
|
+
if self.scalar:
|
|
707
|
+
self._lookup_func['b'] = np.empty(self._not_lookup_pair_lens, dtype=object)
|
|
708
|
+
self._lookup_func['l'] = np.empty(self._not_lookup_pair_lens, dtype=object)
|
|
709
|
+
|
|
710
|
+
for i in range(self._not_lookup_pair_lens[0]):
|
|
711
|
+
if self._not_lookup_pair[0] == 'ra':
|
|
712
|
+
self.ra = curra[i]
|
|
713
|
+
if self._not_lookup_pair[0] == 'dec':
|
|
714
|
+
self.dec = curdec[i]
|
|
715
|
+
if self._not_lookup_pair[0] == 'psi':
|
|
716
|
+
self.psi = curpsi[i]
|
|
717
|
+
if self._not_lookup_pair[0] == 'time':
|
|
718
|
+
self.times = curtimes[i]
|
|
719
|
+
|
|
720
|
+
for j in range(self._not_lookup_pair_lens[1]):
|
|
721
|
+
if self._not_lookup_pair[1] == 'ra':
|
|
722
|
+
self.ra = curra[j]
|
|
723
|
+
if self._not_lookup_pair[1] == 'dec':
|
|
724
|
+
self.dec = curdec[j]
|
|
725
|
+
if self._not_lookup_pair[1] == 'psi':
|
|
726
|
+
self.psi = curpsi[j]
|
|
727
|
+
if self._not_lookup_pair[1] == 'time':
|
|
728
|
+
self.times = curtimes[j]
|
|
729
|
+
|
|
730
|
+
self.compute_response()
|
|
731
|
+
if self.tensor:
|
|
732
|
+
self._lookup_func['plus'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
|
|
733
|
+
self._lookup_pair_dict[self.lookup_pair[1]]['array'],
|
|
734
|
+
self.plus)
|
|
735
|
+
self._lookup_func['cross'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
|
|
736
|
+
self._lookup_pair_dict[self.lookup_pair[1]]['array'],
|
|
737
|
+
self.cross)
|
|
738
|
+
|
|
739
|
+
if self.vector:
|
|
740
|
+
self._lookup_func['x'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
|
|
741
|
+
self._lookup_pair_dict[self.lookup_pair[1]]['array'],
|
|
742
|
+
self.x)
|
|
743
|
+
self._lookup_func['y'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
|
|
744
|
+
self._lookup_pair_dict[self.lookup_pair[1]]['array'],
|
|
745
|
+
self.y)
|
|
746
|
+
|
|
747
|
+
if self.scalar:
|
|
748
|
+
self._lookup_func['b'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
|
|
749
|
+
self._lookup_pair_dict[self.lookup_pair[1]]['array'],
|
|
750
|
+
self.b)
|
|
751
|
+
self._lookup_func['l'][i, j] = RectBivariateSpline(self._lookup_pair_dict[self.lookup_pair[0]]['array'],
|
|
752
|
+
self._lookup_pair_dict[self.lookup_pair[1]]['array'],
|
|
753
|
+
self.l)
|
|
754
|
+
|
|
755
|
+
# reset values
|
|
756
|
+
self.psi = curpsi
|
|
757
|
+
self.times = curtimes
|
|
758
|
+
self.ra = curra
|
|
759
|
+
self.dec = curdec
|
|
760
|
+
self._lookup = True
|
|
761
|
+
|
|
762
|
+
@property
|
|
763
|
+
def plus(self):
|
|
764
|
+
return self.response['plus']
|
|
765
|
+
|
|
766
|
+
@property
|
|
767
|
+
def tensor_plus(self):
|
|
768
|
+
return self.plus
|
|
769
|
+
|
|
770
|
+
@plus.setter
|
|
771
|
+
def plus(self, resp):
|
|
772
|
+
if self.tensor:
|
|
773
|
+
self.response['plus'] = resp
|
|
774
|
+
|
|
775
|
+
@property
|
|
776
|
+
def cross(self):
|
|
777
|
+
return self.response['cross']
|
|
778
|
+
|
|
779
|
+
@property
|
|
780
|
+
def tensor_cross(self):
|
|
781
|
+
return self.cross
|
|
782
|
+
|
|
783
|
+
@cross.setter
|
|
784
|
+
def cross(self, resp):
|
|
785
|
+
if self.tensor:
|
|
786
|
+
self.response['cross'] = resp
|
|
787
|
+
|
|
788
|
+
@property
|
|
789
|
+
def x(self):
|
|
790
|
+
return self.response['x']
|
|
791
|
+
|
|
792
|
+
@property
|
|
793
|
+
def vector_x(self):
|
|
794
|
+
return self.x
|
|
795
|
+
|
|
796
|
+
@x.setter
|
|
797
|
+
def x(self, resp):
|
|
798
|
+
if self.vector:
|
|
799
|
+
self.response['x'] = resp
|
|
800
|
+
|
|
801
|
+
@property
|
|
802
|
+
def y(self):
|
|
803
|
+
return self.response['y']
|
|
804
|
+
|
|
805
|
+
@property
|
|
806
|
+
def vector_y(self):
|
|
807
|
+
return self.y
|
|
808
|
+
|
|
809
|
+
@y.setter
|
|
810
|
+
def y(self, resp):
|
|
811
|
+
if self.vector:
|
|
812
|
+
self.response['y'] = resp
|
|
813
|
+
|
|
814
|
+
@property
|
|
815
|
+
def b(self):
|
|
816
|
+
return self.response['b']
|
|
817
|
+
|
|
818
|
+
@property
|
|
819
|
+
def scalar_b(self):
|
|
820
|
+
return self.b
|
|
821
|
+
|
|
822
|
+
@b.setter
|
|
823
|
+
def b(self, resp):
|
|
824
|
+
if self.scalar:
|
|
825
|
+
self.response['b'] = resp
|
|
826
|
+
|
|
827
|
+
@property
|
|
828
|
+
def l(self):
|
|
829
|
+
return self.response['l']
|
|
830
|
+
|
|
831
|
+
@property
|
|
832
|
+
def scalar_l(self):
|
|
833
|
+
return self.l
|
|
834
|
+
|
|
835
|
+
@l.setter
|
|
836
|
+
def l(self, resp):
|
|
837
|
+
if self.scalar:
|
|
838
|
+
self.response['l'] = resp
|
|
839
|
+
|
|
840
|
+
def _set_mesh(self):
|
|
841
|
+
"""
|
|
842
|
+
Convert one-dimensional arrays into a mesh. The meshes dimensions are
|
|
843
|
+
ordered as right ascension, declination, psi, and time.
|
|
844
|
+
"""
|
|
845
|
+
|
|
846
|
+
# mesh order RA, dec, psi, time
|
|
847
|
+
if (self.ra is None or self.dec is None or
|
|
848
|
+
self.psi is None or self.times is None):
|
|
849
|
+
return
|
|
850
|
+
|
|
851
|
+
ramesh, decmesh, psimesh, timemesh = np.meshgrid(self.ra, self.dec,
|
|
852
|
+
self.psi,
|
|
853
|
+
self.gmsttimes,
|
|
854
|
+
indexing='ij')
|
|
855
|
+
|
|
856
|
+
self.ra_mesh = ramesh
|
|
857
|
+
self.time_mesh = timemesh
|
|
858
|
+
self.dec_mesh = decmesh
|
|
859
|
+
self.psi_mesh = psimesh
|
|
860
|
+
|
|
861
|
+
@property
|
|
862
|
+
def ra_mesh(self):
|
|
863
|
+
return self._ra_mesh
|
|
864
|
+
|
|
865
|
+
@ra_mesh.setter
|
|
866
|
+
def ra_mesh(self, val):
|
|
867
|
+
if isinstance(val, np.ndarray):
|
|
868
|
+
# remove singleton dimemsions
|
|
869
|
+
self._ra_mesh = val.squeeze()
|
|
870
|
+
else:
|
|
871
|
+
self._ra_mesh = val
|
|
872
|
+
|
|
873
|
+
try:
|
|
874
|
+
self._phi_mesh = np.mod(self._ra_mesh, 2.*np.pi) - self._time_mesh
|
|
875
|
+
except Exception:
|
|
876
|
+
return
|
|
877
|
+
|
|
878
|
+
self._cosphi_mesh = np.cos(self._phi_mesh)
|
|
879
|
+
self._sinphi_mesh = np.sin(self._phi_mesh)
|
|
880
|
+
|
|
881
|
+
@property
|
|
882
|
+
def time_mesh(self):
|
|
883
|
+
return self._time_mesh
|
|
884
|
+
|
|
885
|
+
@time_mesh.setter
|
|
886
|
+
def time_mesh(self, val):
|
|
887
|
+
if isinstance(val, np.ndarray):
|
|
888
|
+
# remove singleton dimemsions
|
|
889
|
+
self._time_mesh = val.squeeze()
|
|
890
|
+
else:
|
|
891
|
+
self._time_mesh = val
|
|
892
|
+
|
|
893
|
+
try:
|
|
894
|
+
self._phi_mesh = self._ra_mesh - self._time_mesh
|
|
895
|
+
except Exception:
|
|
896
|
+
return
|
|
897
|
+
|
|
898
|
+
self._cosphi_mesh = np.cos(self._phi_mesh)
|
|
899
|
+
self._sinphi_mesh = np.sin(self._phi_mesh)
|
|
900
|
+
|
|
901
|
+
@property
|
|
902
|
+
def dec_mesh(self):
|
|
903
|
+
return self._dec_mesh
|
|
904
|
+
|
|
905
|
+
@dec_mesh.setter
|
|
906
|
+
def dec_mesh(self, val):
|
|
907
|
+
if isinstance(val, np.ndarray):
|
|
908
|
+
# remove singleton dimemsions
|
|
909
|
+
self._dec_mesh = val.squeeze()
|
|
910
|
+
else:
|
|
911
|
+
self._dec_mesh = val
|
|
912
|
+
|
|
913
|
+
self._costheta_mesh = np.cos(0.5*np.pi - self.dec_mesh)
|
|
914
|
+
self._sintheta_mesh = np.sin(0.5*np.pi - self.dec_mesh)
|
|
915
|
+
|
|
916
|
+
@property
|
|
917
|
+
def psi_mesh(self):
|
|
918
|
+
return self._psi_mesh
|
|
919
|
+
|
|
920
|
+
@psi_mesh.setter
|
|
921
|
+
def psi_mesh(self, val):
|
|
922
|
+
if isinstance(val, np.ndarray):
|
|
923
|
+
# remove singleton dimemsions
|
|
924
|
+
self._psi_mesh = val.squeeze()
|
|
925
|
+
else:
|
|
926
|
+
self._psi_mesh = val
|
|
927
|
+
|
|
928
|
+
self._cospsi_mesh = np.cos(self._psi_mesh)
|
|
929
|
+
self._sinpsi_mesh = np.sin(self._psi_mesh)
|
|
930
|
+
|
|
931
|
+
def compute_response(self, times=None):
|
|
932
|
+
"""
|
|
933
|
+
Compute the detector response.
|
|
934
|
+
|
|
935
|
+
@param times: (array_like) an array of GPS times at which to compute
|
|
936
|
+
the response function. If not set the times set at initialization
|
|
937
|
+
of the class, or using the <tt>times</tt> property.
|
|
938
|
+
"""
|
|
939
|
+
|
|
940
|
+
if times is not None:
|
|
941
|
+
self.times = times
|
|
942
|
+
|
|
943
|
+
if (self.ra is None or self.dec is None or self.psi is None or
|
|
944
|
+
self.times is None):
|
|
945
|
+
return
|
|
946
|
+
|
|
947
|
+
if self.use_lal: # use the internal LAL functions
|
|
948
|
+
self._compute_response_lal()
|
|
949
|
+
elif self.lookup: # use look-up table
|
|
950
|
+
self._compute_response_lookup()
|
|
951
|
+
else: # use default response
|
|
952
|
+
self._compute_response()
|
|
953
|
+
|
|
954
|
+
def _compute_response(self):
|
|
955
|
+
"""
|
|
956
|
+
Compute antenna pattern.
|
|
957
|
+
"""
|
|
958
|
+
|
|
959
|
+
self._set_mesh()
|
|
960
|
+
|
|
961
|
+
# set any required additional einsum indices
|
|
962
|
+
einsum_indices = ''
|
|
963
|
+
eindices = 'klmn' # up to four indices
|
|
964
|
+
for i in range(len(self.shape)):
|
|
965
|
+
einsum_indices += eindices[i]
|
|
966
|
+
|
|
967
|
+
# numpy einsum string inputs
|
|
968
|
+
einstr1 = 'i{},j{}->ij{}'.format(*3*[einsum_indices])
|
|
969
|
+
einstr2 = 'ij{},ij->{}'.format(*2*[einsum_indices])
|
|
970
|
+
|
|
971
|
+
M = np.array([self._sinphi_mesh*self._cospsi_mesh - self._cosphi_mesh*self._costheta_mesh*self._sinpsi_mesh,
|
|
972
|
+
-self._cosphi_mesh*self._cospsi_mesh - self._sinphi_mesh*self._costheta_mesh*self._sinpsi_mesh,
|
|
973
|
+
self._sintheta_mesh*self._sinpsi_mesh])
|
|
974
|
+
N = np.array([-self._sinphi_mesh*self._sinpsi_mesh - self._cosphi_mesh*self._costheta_mesh*self._cospsi_mesh,
|
|
975
|
+
self._cosphi_mesh*self._sinpsi_mesh - self._sinphi_mesh*self._costheta_mesh*self._cospsi_mesh,
|
|
976
|
+
self._sintheta_mesh*self._cospsi_mesh])
|
|
977
|
+
|
|
978
|
+
mm = np.einsum(einstr1, M, M)
|
|
979
|
+
mn = np.einsum(einstr1, M, N)
|
|
980
|
+
nm = np.einsum(einstr1, N, M)
|
|
981
|
+
nn = np.einsum(einstr1, N, N)
|
|
982
|
+
|
|
983
|
+
if self.tensor:
|
|
984
|
+
# set tensor polarization components
|
|
985
|
+
self.plus = np.einsum(einstr2, mm - nn, self.laldetector)
|
|
986
|
+
self.cross = np.einsum(einstr2, mn + nm, self.laldetector)
|
|
987
|
+
|
|
988
|
+
if self.vector or self.scalar:
|
|
989
|
+
# set scalar and/or vector polarization components
|
|
990
|
+
Q = np.array([-self._sintheta_mesh*self._cosphi_mesh,
|
|
991
|
+
-self._sintheta_mesh*self._sinphi_mesh,
|
|
992
|
+
-self._costheta_mesh])
|
|
993
|
+
|
|
994
|
+
if self.vector:
|
|
995
|
+
mq = np.einsum(einstr1, M, Q)
|
|
996
|
+
qm = np.einsum(einstr1, Q, M)
|
|
997
|
+
nq = np.einsum(einstr1, N, Q)
|
|
998
|
+
qn = np.einsum(einstr1, Q, N)
|
|
999
|
+
|
|
1000
|
+
self.x = np.einsum(einstr2, mq + qm, self.laldetector)
|
|
1001
|
+
self.y = np.einsum(einstr2, nq + qn, self.laldetector)
|
|
1002
|
+
|
|
1003
|
+
if self.scalar:
|
|
1004
|
+
qq = np.einsum(einstr1, Q, Q)
|
|
1005
|
+
|
|
1006
|
+
self.b = np.einsum(einstr2, mm + nn, self.laldetector)
|
|
1007
|
+
self.l = np.einsum(einstr2, qq, self.laldetector)
|
|
1008
|
+
|
|
1009
|
+
def _compute_response_lal(self):
|
|
1010
|
+
"""
|
|
1011
|
+
Compute antenna pattern using LAL functions.
|
|
1012
|
+
"""
|
|
1013
|
+
|
|
1014
|
+
self._set_mesh()
|
|
1015
|
+
|
|
1016
|
+
slen = np.prod(self.shape) if len(self.shape) != 0 else 1
|
|
1017
|
+
|
|
1018
|
+
# allocate memory
|
|
1019
|
+
if slen != 1:
|
|
1020
|
+
fp = np.zeros(self.shape)
|
|
1021
|
+
fc = np.zeros(self.shape)
|
|
1022
|
+
|
|
1023
|
+
if self.tensor and not self.vector and not self.scalar:
|
|
1024
|
+
# only requiring tensor mode
|
|
1025
|
+
antenna_func = ComputeDetAMResponse
|
|
1026
|
+
|
|
1027
|
+
if slen == 1:
|
|
1028
|
+
fp, fc = antenna_func(self.laldetector,
|
|
1029
|
+
self._ra_mesh.item(),
|
|
1030
|
+
self._dec_mesh.item(),
|
|
1031
|
+
self._psi_mesh.item(),
|
|
1032
|
+
self._time_mesh.item())
|
|
1033
|
+
else:
|
|
1034
|
+
for i in range(slen):
|
|
1035
|
+
idxs = np.unravel_index(i, self.shape)
|
|
1036
|
+
|
|
1037
|
+
fp[idxs], fc[idxs] = antenna_func(self.laldetector,
|
|
1038
|
+
self._ra_mesh[idxs],
|
|
1039
|
+
self._dec_mesh[idxs],
|
|
1040
|
+
self._psi_mesh[idxs],
|
|
1041
|
+
self._time_mesh[idxs])
|
|
1042
|
+
|
|
1043
|
+
self.plus = fp
|
|
1044
|
+
self.cross = fc
|
|
1045
|
+
else:
|
|
1046
|
+
antenna_func = ComputeDetAMResponseExtraModes
|
|
1047
|
+
|
|
1048
|
+
if slen == 1:
|
|
1049
|
+
fp, fc, fb, fl, fx, fy = antenna_func(self.laldetector,
|
|
1050
|
+
self._ra_mesh.item(),
|
|
1051
|
+
self._dec_mesh.item(),
|
|
1052
|
+
self._psi_mesh.item(),
|
|
1053
|
+
self._time_mesh.item())
|
|
1054
|
+
else:
|
|
1055
|
+
fb = np.zeros(self.shape)
|
|
1056
|
+
fl = np.zeros(self.shape)
|
|
1057
|
+
fx = np.zeros(self.shape)
|
|
1058
|
+
fy = np.zeros(self.shape)
|
|
1059
|
+
|
|
1060
|
+
for i in range(slen):
|
|
1061
|
+
idxs = np.unravel_index(i, self.shape)
|
|
1062
|
+
|
|
1063
|
+
F = antenna_func(self.laldetector,
|
|
1064
|
+
self._ra_mesh[idxs],
|
|
1065
|
+
self._dec_mesh[idxs],
|
|
1066
|
+
self._psi_mesh[idxs],
|
|
1067
|
+
self._time_mesh[idxs])
|
|
1068
|
+
|
|
1069
|
+
fp[idxs] = F[0]
|
|
1070
|
+
fc[idxs] = F[1]
|
|
1071
|
+
fb[idxs] = F[2]
|
|
1072
|
+
fl[idxs] = F[3]
|
|
1073
|
+
fx[idxs] = F[4]
|
|
1074
|
+
fy[idxs] = F[5]
|
|
1075
|
+
|
|
1076
|
+
if self.tensor:
|
|
1077
|
+
self.plus = fp
|
|
1078
|
+
self.cross = fc
|
|
1079
|
+
|
|
1080
|
+
if self.vector:
|
|
1081
|
+
self.x = fx
|
|
1082
|
+
self.y = fy
|
|
1083
|
+
|
|
1084
|
+
if self.scalar:
|
|
1085
|
+
self.b = fb
|
|
1086
|
+
self.l = fl
|
|
1087
|
+
|
|
1088
|
+
def _compute_response_lookup(self):
|
|
1089
|
+
# allocate memory
|
|
1090
|
+
lushape = (len(self.ra), len(self.dec), len(self.psi), len(self.times))
|
|
1091
|
+
|
|
1092
|
+
if self.tensor:
|
|
1093
|
+
fp = np.zeros(lushape)
|
|
1094
|
+
fc = np.zeros(lushape)
|
|
1095
|
+
|
|
1096
|
+
if self.scalar:
|
|
1097
|
+
fb = np.zeros(lushape)
|
|
1098
|
+
fl = np.zeros(lushape)
|
|
1099
|
+
|
|
1100
|
+
if self.vector:
|
|
1101
|
+
fx = np.zeros(lushape)
|
|
1102
|
+
fy = np.zeros(lushape)
|
|
1103
|
+
|
|
1104
|
+
# set pair of parameters in look-up table
|
|
1105
|
+
pairs = []
|
|
1106
|
+
unsorted_idxs = None
|
|
1107
|
+
for i, val in enumerate(self.lookup_pair):
|
|
1108
|
+
if val == 'ra':
|
|
1109
|
+
pairs.append(self.ra)
|
|
1110
|
+
if val == 'dec':
|
|
1111
|
+
pairs.append(self.dec)
|
|
1112
|
+
if val == 'psi':
|
|
1113
|
+
pairs.append(self.psi)
|
|
1114
|
+
if val == 'time':
|
|
1115
|
+
# times mod-ed by a sidereal day
|
|
1116
|
+
mtimes = np.mod(self.times - self._timeepoch, DAYSID_SI)
|
|
1117
|
+
unsorted_idxs = np.argsort(np.argsort(mtimes)) # unsorted indices
|
|
1118
|
+
mtimes.sort() # sort times for interpolation
|
|
1119
|
+
pairs.append(mtimes)
|
|
1120
|
+
|
|
1121
|
+
# get reshape tuple
|
|
1122
|
+
sshape = [len(self.ra), len(self.dec), len(self.psi), len(self.times)]
|
|
1123
|
+
sshape[self._not_lookup_pair_idx[0]] = 1
|
|
1124
|
+
sshape[self._not_lookup_pair_idx[1]] = 1
|
|
1125
|
+
sshape = tuple(sshape)
|
|
1126
|
+
|
|
1127
|
+
# create slice
|
|
1128
|
+
pos = 4*[slice(None)]
|
|
1129
|
+
for i in range(self._not_lookup_pair_lens[0]):
|
|
1130
|
+
# set slice
|
|
1131
|
+
pos[self._not_lookup_pair_idx[0]] = slice(i, i+1)
|
|
1132
|
+
for j in range(self._not_lookup_pair_lens[1]):
|
|
1133
|
+
# set slice
|
|
1134
|
+
pos[self._not_lookup_pair_idx[1]] = slice(j, j+1)
|
|
1135
|
+
|
|
1136
|
+
if self.tensor:
|
|
1137
|
+
fp[tuple(pos)] = self._lookup_func['plus'][i, j](*pairs).reshape(sshape)
|
|
1138
|
+
fc[tuple(pos)] = self._lookup_func['cross'][i, j](*pairs).reshape(sshape)
|
|
1139
|
+
|
|
1140
|
+
if self.scalar:
|
|
1141
|
+
fb[tuple(pos)] = self._lookup_func['b'][i, j](*pairs).reshape(sshape)
|
|
1142
|
+
fl[tuple(pos)] = self._lookup_func['l'][i, j](*pairs).reshape(sshape)
|
|
1143
|
+
|
|
1144
|
+
if self.vector:
|
|
1145
|
+
fx[tuple(pos)] = self._lookup_func['x'][i, j](*pairs).reshape(sshape)
|
|
1146
|
+
fy[tuple(pos)] = self._lookup_func['y'][i, j](*pairs).reshape(sshape)
|
|
1147
|
+
|
|
1148
|
+
if unsorted_idxs is not None:
|
|
1149
|
+
if self.tensor:
|
|
1150
|
+
self.plus = fp[:, :, :, unsorted_idxs].squeeze()
|
|
1151
|
+
self.cross = fc[:, :, :, unsorted_idxs].squeeze()
|
|
1152
|
+
|
|
1153
|
+
if self.scalar:
|
|
1154
|
+
self.b = fb[:, :, :, unsorted_idxs].squeeze()
|
|
1155
|
+
self.l = fl[:, :, :, unsorted_idxs].squeeze()
|
|
1156
|
+
|
|
1157
|
+
if self.vector:
|
|
1158
|
+
self.x = fx[:, :, :, unsorted_idxs].squeeze()
|
|
1159
|
+
self.y = fy[:, :, :, unsorted_idxs].squeeze()
|
|
1160
|
+
else:
|
|
1161
|
+
if self.tensor:
|
|
1162
|
+
self.plus = fp.squeeze()
|
|
1163
|
+
self.cross = fc.squeeze()
|
|
1164
|
+
|
|
1165
|
+
if self.scalar:
|
|
1166
|
+
self.b = fb.squeeze()
|
|
1167
|
+
self.l = fl.squeeze()
|
|
1168
|
+
|
|
1169
|
+
if self.vector:
|
|
1170
|
+
self.x = fx.squeeze()
|
|
1171
|
+
self.y = fy.squeeze()
|
|
1172
|
+
|
|
1173
|
+
def __len__(self):
|
|
1174
|
+
return len(self.times)
|
|
1175
|
+
|
|
1176
|
+
def __call__(self, times, ra=None, dec=None, psi=None, detector=None):
|
|
1177
|
+
"""
|
|
1178
|
+
Return the antenna response function as a dictionary.
|
|
1179
|
+
"""
|
|
1180
|
+
|
|
1181
|
+
if detector is not None:
|
|
1182
|
+
self.detector = detector
|
|
1183
|
+
|
|
1184
|
+
if ra is not None:
|
|
1185
|
+
self.ra = ra
|
|
1186
|
+
|
|
1187
|
+
if dec is not None:
|
|
1188
|
+
self.dec = dec
|
|
1189
|
+
|
|
1190
|
+
if psi is not None:
|
|
1191
|
+
self.psi = psi
|
|
1192
|
+
|
|
1193
|
+
self.times = times
|
|
1194
|
+
|
|
1195
|
+
# compute response
|
|
1196
|
+
self.compute_response()
|
|
1197
|
+
|
|
1198
|
+
return self.response
|
|
1199
|
+
|
|
1200
|
+
## @}
|