lalamo 0.5.9__py3-none-any.whl → 0.5.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
lalamo/__init__.py CHANGED
@@ -15,7 +15,7 @@ from lalamo.speculator import (
15
15
  SpeculatorTrainingEvent,
16
16
  )
17
17
 
18
- __version__ = "0.5.9"
18
+ __version__ = "0.5.11"
19
19
 
20
20
  __all__ = [
21
21
  "AssistantMessage",
@@ -6,6 +6,7 @@ from .huggingface import (
6
6
  HFGemma3Config,
7
7
  HFGemma3TextConfig,
8
8
  HFGPTOssConfig,
9
+ HFLFM2Config,
9
10
  HFLlamaConfig,
10
11
  HFLlambaConfig,
11
12
  HFMistralConfig,
@@ -22,6 +23,7 @@ __all__ = [
22
23
  "HFGemma2Config",
23
24
  "HFGemma3Config",
24
25
  "HFGemma3TextConfig",
26
+ "HFLFM2Config",
25
27
  "HFLlamaConfig",
26
28
  "HFLlambaConfig",
27
29
  "HFMistralConfig",
@@ -2,6 +2,7 @@ from .common import HuggingFaceLMConfig
2
2
  from .gemma2 import HFGemma2Config
3
3
  from .gemma3 import HFGemma3Config, HFGemma3TextConfig
4
4
  from .gpt_oss import HFGPTOssConfig
5
+ from .lfm2 import HFLFM2Config
5
6
  from .llama import HFLlamaConfig
6
7
  from .llamba import HFLlambaConfig
7
8
  from .mistral import HFMistralConfig
@@ -14,6 +15,7 @@ __all__ = [
14
15
  "HFGemma2Config",
15
16
  "HFGemma3Config",
16
17
  "HFGemma3TextConfig",
18
+ "HFLFM2Config",
17
19
  "HFLlamaConfig",
18
20
  "HFLlambaConfig",
19
21
  "HFMistralConfig",
@@ -0,0 +1,225 @@
1
+ from collections.abc import Mapping
2
+ from dataclasses import dataclass
3
+ from typing import Literal
4
+
5
+ from jaxtyping import DTypeLike
6
+
7
+ from lalamo.modules import (
8
+ AttentionConfig,
9
+ DecoderConfig,
10
+ DenseMLPConfig,
11
+ FullPrecisionLinearConfig,
12
+ MLXQuantizedLinearConfig,
13
+ MLXQuantizedTiedEmbeddingConfig,
14
+ NormalizationConfig,
15
+ SeparableCausalConvConfig,
16
+ ShortConvConfig,
17
+ SiLU,
18
+ TiedEmbeddingConfig,
19
+ TransformerConfig,
20
+ TransformerLayerConfig,
21
+ UnscaledRoPEConfig,
22
+ UntiedEmbeddingConfig,
23
+ UpcastMode,
24
+ )
25
+ from lalamo.quantization import QuantizationMode
26
+
27
+ from .common import HuggingFaceLMConfig
28
+
29
+
30
+ @dataclass(frozen=True)
31
+ class QuantizationConfig:
32
+ group_size: int
33
+ bits: int
34
+
35
+
36
+ @dataclass(frozen=True)
37
+ class HFLFM2Config(HuggingFaceLMConfig):
38
+ architectures: list[Literal["Lfm2ForCausalLM"]]
39
+ block_auto_adjust_ff_dim: bool
40
+ block_dim: int
41
+ block_ff_dim: int
42
+ block_ffn_dim_multiplier: float
43
+ block_mlp_init_scale: float
44
+ block_multiple_of: int
45
+ block_norm_eps: float
46
+ block_out_init_scale: float
47
+ block_use_swiglu: bool
48
+ block_use_xavier_init: bool
49
+ bos_token_id: int
50
+ conv_L_cache: int # noqa: N815
51
+ conv_bias: bool
52
+ conv_dim: int
53
+ conv_dim_out: int
54
+ conv_use_xavier_init: bool
55
+ eos_token_id: int
56
+ hidden_size: int
57
+ initializer_range: float
58
+ max_position_embeddings: int
59
+ model_type: Literal["lfm2"]
60
+ norm_eps: float
61
+ num_attention_heads: int
62
+ num_heads: int
63
+ num_hidden_layers: int
64
+ num_key_value_heads: int
65
+ pad_token_id: int
66
+ rope_theta: float
67
+ torch_dtype: Literal["bfloat16"]
68
+ transformers_version: str
69
+ use_cache: bool
70
+ use_pos_enc: bool
71
+ vocab_size: int
72
+
73
+ intermediate_size: int | None = None
74
+ layer_types: list[Literal["conv", "full_attention"]] | None = None
75
+ full_attn_idxs: list[int] | None = None
76
+ tie_embedding: bool = True
77
+ theta: float | None = None
78
+
79
+ quantization: QuantizationConfig | None = None
80
+ quantization_config: QuantizationConfig | None = None
81
+
82
+ def to_decoder_config(
83
+ self,
84
+ context_length: int | None,
85
+ activation_precision: DTypeLike,
86
+ accumulation_precision: DTypeLike,
87
+ metadata_dict: Mapping[str, str], # noqa: ARG002
88
+ ) -> DecoderConfig:
89
+ assert self.num_attention_heads == self.num_heads
90
+
91
+ if self.quantization_config is not None:
92
+ assert self.tie_embedding
93
+
94
+ embedding_config = MLXQuantizedTiedEmbeddingConfig(
95
+ input_scale=None,
96
+ logit_soft_cap=None,
97
+ group_size=self.quantization_config.group_size,
98
+ embedding_quantization_mode=QuantizationMode.from_num_bits(self.quantization_config.bits),
99
+ activation_quantization_mode=None,
100
+ activation_precision=activation_precision,
101
+ )
102
+ elif self.tie_embedding:
103
+ embedding_config = TiedEmbeddingConfig(
104
+ input_scale=None,
105
+ logit_soft_cap=None,
106
+ precision=activation_precision,
107
+ )
108
+ else:
109
+ embedding_config = UntiedEmbeddingConfig(
110
+ input_scale=None,
111
+ logit_soft_cap=None,
112
+ precision=activation_precision,
113
+ )
114
+
115
+ rope_config = UnscaledRoPEConfig(
116
+ precision=activation_precision,
117
+ base=self.rope_theta,
118
+ max_sequence_length=context_length or self.max_position_embeddings,
119
+ )
120
+
121
+ if self.quantization_config is None:
122
+ linear_config = FullPrecisionLinearConfig(activation_precision)
123
+ else:
124
+ linear_config = MLXQuantizedLinearConfig(
125
+ group_size=self.quantization_config.group_size,
126
+ weight_quantization_mode=QuantizationMode.from_num_bits(self.quantization_config.bits),
127
+ activation_quantization_mode=None,
128
+ activation_precision=activation_precision,
129
+ )
130
+
131
+ block_norm_config = NormalizationConfig(
132
+ scale_precision=activation_precision,
133
+ accumulation_precision=accumulation_precision,
134
+ epsilon=self.block_norm_eps,
135
+ scale_offset=None,
136
+ upcast_mode=UpcastMode.ONLY_NORMALIZATION,
137
+ subtract_mean=False,
138
+ )
139
+
140
+ attention_config = AttentionConfig(
141
+ qkv_projection_config=linear_config,
142
+ out_projection_config=linear_config,
143
+ query_norm_config=block_norm_config,
144
+ key_norm_config=block_norm_config,
145
+ num_heads=self.num_attention_heads,
146
+ num_groups=self.num_key_value_heads,
147
+ head_dim=self.hidden_size // self.num_heads,
148
+ is_causal=True,
149
+ scale=None,
150
+ sliding_window_size=None,
151
+ logit_soft_cap=None,
152
+ has_sinks=False,
153
+ has_qkv_biases=False,
154
+ has_out_biases=False,
155
+ )
156
+
157
+ short_conv_config = ShortConvConfig(
158
+ in_projection_config=linear_config,
159
+ conv_config=SeparableCausalConvConfig(activation_precision, has_biases=self.conv_bias),
160
+ out_projection_config=linear_config,
161
+ kernel_size=self.conv_L_cache,
162
+ )
163
+
164
+ mlp_config = DenseMLPConfig(
165
+ linear_config=linear_config,
166
+ activation=SiLU(),
167
+ has_up_biases=False,
168
+ has_down_biases=False,
169
+ up_clipping=None,
170
+ gate_clipping=None,
171
+ )
172
+
173
+ if self.layer_types is not None:
174
+ layer_types = self.layer_types
175
+ elif self.full_attn_idxs is not None:
176
+ layer_types = [
177
+ "full_attention" if i in self.full_attn_idxs else "conv" for i in range(self.num_hidden_layers)
178
+ ]
179
+ else:
180
+ raise RuntimeError("Either layer_types or full_attn_idxs must be present.")
181
+
182
+ layer_configs = [
183
+ TransformerLayerConfig(
184
+ pre_mixer_norm_config=block_norm_config,
185
+ mixer_config={"conv": short_conv_config, "full_attention": attention_config}[layer_type],
186
+ post_mixer_norm_config=None,
187
+ pre_mlp_norm_config=block_norm_config,
188
+ mlp_config=mlp_config,
189
+ post_mlp_norm_config=None,
190
+ )
191
+ for layer_type in layer_types
192
+ ]
193
+
194
+ output_norm_config = NormalizationConfig(
195
+ scale_precision=activation_precision,
196
+ accumulation_precision=accumulation_precision,
197
+ epsilon=self.norm_eps,
198
+ scale_offset=None,
199
+ upcast_mode=UpcastMode.ONLY_NORMALIZATION,
200
+ subtract_mean=False,
201
+ )
202
+
203
+ if self.intermediate_size is not None:
204
+ hidden_dim = self.intermediate_size
205
+ else:
206
+ hidden_dim_adjusted = self.block_ff_dim * self.block_ffn_dim_multiplier * (2 / 3)
207
+ hidden_dim = int(
208
+ (hidden_dim_adjusted + self.block_multiple_of - 1) // self.block_multiple_of * self.block_multiple_of,
209
+ )
210
+
211
+ transformer_config = TransformerConfig(
212
+ global_rope_config=rope_config,
213
+ local_rope_config=None,
214
+ layer_configs=tuple(layer_configs),
215
+ output_norm_config=output_norm_config,
216
+ model_dim=self.hidden_size,
217
+ hidden_dim=hidden_dim,
218
+ context_length=context_length or self.max_position_embeddings,
219
+ )
220
+
221
+ return DecoderConfig(
222
+ embedding_config=embedding_config,
223
+ transformer_config=transformer_config,
224
+ vocab_size=self.vocab_size,
225
+ )
@@ -8,17 +8,22 @@ from jaxtyping import Array, DTypeLike
8
8
  from lalamo.common import ParameterPath
9
9
  from lalamo.modules import (
10
10
  Attention,
11
+ AttentionConfig,
11
12
  Decoder,
12
13
  DenseMLP,
13
14
  FullPrecisionLinear,
14
15
  GroupQuantizedLinear,
15
16
  LinearBase,
16
17
  Mamba2,
18
+ Mamba2Config,
17
19
  MLXQuantizedLinear,
18
20
  MLXQuantizedTiedEmbedding,
21
+ MLXQuantizedTiedEmbeddingConfig,
19
22
  MLXSemiQuantizedUntiedEmbedding,
20
23
  Normalization,
21
24
  SeparableCausalConv,
25
+ ShortConv,
26
+ ShortConvConfig,
22
27
  TiedEmbedding,
23
28
  TransformerLayer,
24
29
  UntiedEmbedding,
@@ -345,21 +350,42 @@ def load_attention(
345
350
  weights_dict: Mapping[str, Array],
346
351
  path: ParameterPath,
347
352
  ) -> Attention:
353
+ if (path / "o_proj.weight") in weights_dict:
354
+ o_proj_name = "o_proj"
355
+ elif (path / "out_proj.weight") in weights_dict:
356
+ o_proj_name = "out_proj"
357
+ else:
358
+ raise NotImplementedError("Can't determine attention output projection name")
359
+
348
360
  qkv_projection = load_linear(
349
361
  module.qkv_projection,
350
362
  weights_dict,
351
363
  path,
352
364
  sublayers_to_fuse=["q_proj", "k_proj", "v_proj"],
353
365
  )
354
- out_projection = load_linear(module.out_projection, weights_dict, path / "o_proj")
366
+ out_projection = load_linear(module.out_projection, weights_dict, path / o_proj_name)
355
367
 
356
368
  if module.query_norm is not None:
357
- query_norm = load_rmsnorm(module.query_norm, weights_dict, path / "q_norm")
369
+ if (path / "q_norm.weight") in weights_dict:
370
+ q_norm_name = "q_norm"
371
+ elif (path / "q_layernorm.weight") in weights_dict:
372
+ q_norm_name = "q_layernorm"
373
+ else:
374
+ raise NotImplementedError("Can't determine attention query projection parameter name")
375
+
376
+ query_norm = load_rmsnorm(module.query_norm, weights_dict, path / q_norm_name)
358
377
  else:
359
378
  query_norm = None
360
379
 
361
380
  if module.key_norm is not None:
362
- key_norm = load_rmsnorm(module.key_norm, weights_dict, path / "k_norm")
381
+ if (path / "k_norm.weight") in weights_dict:
382
+ k_norm_name = "k_norm"
383
+ elif (path / "k_layernorm.weight") in weights_dict:
384
+ k_norm_name = "k_layernorm"
385
+ else:
386
+ raise NotImplementedError("Can't determine attention key projection parameter name")
387
+
388
+ key_norm = load_rmsnorm(module.key_norm, weights_dict, path / k_norm_name)
363
389
  else:
364
390
  key_norm = None
365
391
 
@@ -382,19 +408,24 @@ def load_attention(
382
408
  )
383
409
 
384
410
 
385
- def _load_mamba_conv(
411
+ def _load_conv(
386
412
  conv_module: SeparableCausalConv,
387
413
  weights_dict: Mapping[str, Array],
388
414
  path: ParameterPath,
415
+ permute_conv: bool,
389
416
  ) -> SeparableCausalConv:
390
417
  weight_path = path / "conv1d" / "weight"
391
418
  if weight_path not in weights_dict:
392
419
  weight_path = path / "conv_weight"
420
+ if weight_path not in weights_dict:
421
+ weight_path = path / "conv.weight"
393
422
  if weight_path not in weights_dict:
394
423
  weight_path = None
395
424
 
396
425
  if weight_path is not None:
397
426
  raw = weights_dict[weight_path]
427
+ if permute_conv:
428
+ raw = jnp.matrix_transpose(raw)
398
429
  conv_weight = raw.squeeze(1) if raw.ndim == 3 else raw
399
430
  else:
400
431
  conv_weight = conv_module.weights
@@ -402,6 +433,8 @@ def _load_mamba_conv(
402
433
  bias_path = path / "conv1d" / "bias"
403
434
  if bias_path not in weights_dict:
404
435
  bias_path = path / "conv_bias"
436
+ if bias_path not in weights_dict:
437
+ bias_path = path / "conv.bias"
405
438
  if bias_path not in weights_dict:
406
439
  bias_path = None
407
440
 
@@ -421,10 +454,11 @@ def load_mamba2(
421
454
  module: Mamba2,
422
455
  weights_dict: Mapping[str, Array],
423
456
  path: ParameterPath,
457
+ permute_conv: bool,
424
458
  ) -> Mamba2:
425
459
  in_projection = load_linear(module.in_projection, weights_dict, path / "in_proj")
426
460
  out_projection = load_linear(module.out_projection, weights_dict, path / "out_proj")
427
- conv = _load_mamba_conv(module.conv, weights_dict, path)
461
+ conv = _load_conv(module.conv, weights_dict, path, permute_conv)
428
462
 
429
463
  skip_connection_weight_path = path / "D"
430
464
  if skip_connection_weight_path in weights_dict:
@@ -451,6 +485,23 @@ def load_mamba2(
451
485
  )
452
486
 
453
487
 
488
+ def load_short_conv(
489
+ module: ShortConv,
490
+ weights_dict: Mapping[str, Array],
491
+ path: ParameterPath,
492
+ permute_conv: bool,
493
+ ) -> ShortConv:
494
+ in_projection = load_linear(module.in_projection, weights_dict, path / "in_proj")
495
+ out_projection = load_linear(module.out_projection, weights_dict, path / "out_proj")
496
+ conv = _load_conv(module.conv, weights_dict, path, permute_conv)
497
+
498
+ return load_parameters(
499
+ lambda m: (m.in_projection, m.out_projection, m.conv),
500
+ module,
501
+ (in_projection, out_projection, conv),
502
+ )
503
+
504
+
454
505
  def load_transformer_layer(
455
506
  module: TransformerLayer,
456
507
  weights_dict: Mapping[str, Array],
@@ -463,6 +514,7 @@ def load_transformer_layer(
463
514
  up_proj_key: str,
464
515
  gate_proj_key: str,
465
516
  down_proj_key: str,
517
+ permute_conv: bool,
466
518
  ) -> TransformerLayer:
467
519
  if module.pre_mixer_norm is not None:
468
520
  pre_attention_norm = load_rmsnorm(
@@ -477,7 +529,9 @@ def load_transformer_layer(
477
529
  if isinstance(module.mixer, Attention):
478
530
  mixer = load_attention(module.mixer, weights_dict, mixer_path / mixer_key)
479
531
  elif isinstance(module.mixer, Mamba2):
480
- mixer = load_mamba2(module.mixer, weights_dict, mixer_path / mixer_key)
532
+ mixer = load_mamba2(module.mixer, weights_dict, mixer_path / mixer_key, permute_conv)
533
+ elif isinstance(module.mixer, ShortConv):
534
+ mixer = load_short_conv(module.mixer, weights_dict, mixer_path / mixer_key, permute_conv)
481
535
  else:
482
536
  mixer = module.mixer
483
537
 
@@ -625,11 +679,13 @@ def load_huggingface_decoder(
625
679
 
626
680
  is_llamba_full_precision = any(key.startswith("backbone.") for key in weights_dict)
627
681
  is_llamba_mlx = any(key.startswith("embedding.encoder.") for key in weights_dict)
682
+ is_lfm2 = any(key.startswith("model.layers.0.operator_norm.weight") for key in weights_dict)
628
683
  if is_llamba_full_precision:
629
684
  decoder_path = base_path / "backbone"
630
685
  embedding_path = decoder_path / "embedding"
631
686
  pre_mixer_norm_key = "input_layernorm"
632
- mixer_key = "mixer"
687
+ mixer_key = {Mamba2Config: "mixer"}
688
+ permute_conv = False
633
689
  pre_mlp_norm_key = "post_attention_layernorm"
634
690
  mlp_key = "mlp"
635
691
  up_proj_key = "up_proj"
@@ -642,7 +698,8 @@ def load_huggingface_decoder(
642
698
  decoder_path = base_path / "model"
643
699
  embedding_path = base_path / "embedding.encoder"
644
700
  pre_mixer_norm_key = "norm"
645
- mixer_key = "layer"
701
+ mixer_key = {Mamba2Config: "layer"}
702
+ permute_conv = False
646
703
  pre_mlp_norm_key = "norm"
647
704
  mlp_key = "layer"
648
705
  up_proj_key = "gate_proj"
@@ -651,11 +708,26 @@ def load_huggingface_decoder(
651
708
  alternating_layers = True
652
709
  norm_key = "norm"
653
710
  lm_head_path = base_path / "head.linear"
711
+ elif is_lfm2:
712
+ decoder_path = base_path / "model"
713
+ embedding_path = decoder_path / "embed_tokens"
714
+ pre_mixer_norm_key = "operator_norm"
715
+ mixer_key = {ShortConvConfig: "conv", AttentionConfig: "self_attn"}
716
+ permute_conv = isinstance(module.config.embedding_config, MLXQuantizedTiedEmbeddingConfig)
717
+ pre_mlp_norm_key = "ffn_norm"
718
+ mlp_key = "feed_forward"
719
+ up_proj_key = "w3"
720
+ gate_proj_key = "w1"
721
+ down_proj_key = "w2"
722
+ alternating_layers = False
723
+ norm_key = "embedding_norm"
724
+ lm_head_path = base_path / "lm_head"
654
725
  else:
655
726
  decoder_path = base_path / "model"
656
727
  embedding_path = decoder_path / "embed_tokens"
657
728
  pre_mixer_norm_key = "input_layernorm"
658
- mixer_key = "self_attn"
729
+ mixer_key = {AttentionConfig: "self_attn"}
730
+ permute_conv = False
659
731
  pre_mlp_norm_key = "post_attention_layernorm"
660
732
  mlp_key = "mlp"
661
733
  up_proj_key = "up_proj"
@@ -687,13 +759,14 @@ def load_huggingface_decoder(
687
759
  weights_dict,
688
760
  decoder_path / "layers" / ((i * 2) if alternating_layers else i),
689
761
  decoder_path / "layers" / ((i * 2 + 1) if alternating_layers else i),
690
- mixer_key,
762
+ mixer_key[type(layer.config.mixer_config)], # type: ignore
691
763
  mlp_key,
692
764
  pre_mixer_norm_key,
693
765
  pre_mlp_norm_key,
694
766
  up_proj_key,
695
767
  gate_proj_key,
696
768
  down_proj_key,
769
+ permute_conv,
697
770
  )
698
771
  for i, layer in enumerate(module.transformer.layers)
699
772
  )
@@ -4,6 +4,7 @@ from .essential_ai import RNJ_MODELS
4
4
  from .gemma import GEMMA_MODELS
5
5
  from .gpt_oss import GPT_OSS_MODELS
6
6
  from .huggingface import HUGGINGFACE_MODELS
7
+ from .lfm2 import LFM2_MODELS
7
8
  from .llama import LLAMA_MODELS
8
9
  from .llamba import LLAMBA_MODELS
9
10
  from .mirai import MIRAI_CLASSIFIER_MODELS
@@ -25,6 +26,7 @@ __all__ = [
25
26
 
26
27
 
27
28
  ALL_MODEL_LISTS = [
29
+ LFM2_MODELS,
28
30
  LLAMA_MODELS,
29
31
  LLAMBA_MODELS,
30
32
  DEEPSEEK_MODELS,
@@ -56,6 +56,7 @@ class WeightsType(Enum):
56
56
  yield MapDictValues(lambda v: cast_if_float(v, float_dtype), weights_dict), metadata_dict or {}
57
57
  else:
58
58
  import torch
59
+
59
60
  from lalamo.modules.torch_interop import torch_to_jax
60
61
 
61
62
  torch_weights = torch.load(filename, map_location="cpu", weights_only=True)
@@ -0,0 +1,31 @@
1
+ from lalamo.model_import.decoder_configs import HFLFM2Config
2
+ from lalamo.quantization import QuantizationMode
3
+
4
+ from .common import ConfigMap, FileSpec, ModelSpec
5
+
6
+ __all__ = ["LFM2_MODELS"]
7
+
8
+
9
+ def _lfm2_repo(size: str, quantization: QuantizationMode | None) -> tuple[str, str]:
10
+ organization = "LiquidAI" if quantization is None else "mlx-community"
11
+ name = f"LFM2-{size}{f'-{quantization.bits}bit' if quantization is not None else ''}"
12
+ return (organization, name)
13
+
14
+
15
+ LFM2_MODELS = [
16
+ ModelSpec(
17
+ vendor="LiquidAI",
18
+ family="LFM2",
19
+ name=_lfm2_repo(size, quantization)[1],
20
+ size=size,
21
+ repo="/".join(_lfm2_repo(size, quantization)),
22
+ config_type=HFLFM2Config,
23
+ quantization=quantization,
24
+ configs=ConfigMap(
25
+ chat_template=FileSpec("chat_template.jinja"),
26
+ ),
27
+ use_cases=tuple(),
28
+ )
29
+ for size in ["350M", "700M", "1.2B", "2.6B"]
30
+ for quantization in [None, *([QuantizationMode.UINT4, QuantizationMode.UINT8] if size != "2.6B" else [])]
31
+ ]
@@ -69,6 +69,9 @@ from .token_mixers import (
69
69
  Mamba2Config,
70
70
  SeparableCausalConv,
71
71
  SeparableCausalConvConfig,
72
+ ShortConv,
73
+ ShortConvConfig,
74
+ ShortConvStateLayer,
72
75
  State,
73
76
  StaticKVCacheLayer,
74
77
  )
@@ -136,6 +139,9 @@ __all__ = [
136
139
  "RoutingFunction",
137
140
  "SeparableCausalConv",
138
141
  "SeparableCausalConvConfig",
142
+ "ShortConv",
143
+ "ShortConvConfig",
144
+ "ShortConvStateLayer",
139
145
  "SiLU",
140
146
  "SoftmaxRouting",
141
147
  "State",
@@ -3,9 +3,18 @@ from lalamo.modules.common import register_config_union
3
3
  from .attention import Attention, AttentionConfig, AttentionResult
4
4
  from .common import TokenMixerBase, TokenMixerResult
5
5
  from .mamba import Mamba2, Mamba2Config, Mamba2Result, SeparableCausalConv, SeparableCausalConvConfig
6
- from .state import DynamicKVCacheLayer, KVCacheLayer, Mamba2StateLayer, State, StateLayerBase, StaticKVCacheLayer
6
+ from .short_conv import ShortConv, ShortConvConfig, ShortConvResult
7
+ from .state import (
8
+ DynamicKVCacheLayer,
9
+ KVCacheLayer,
10
+ Mamba2StateLayer,
11
+ ShortConvStateLayer,
12
+ State,
13
+ StateLayerBase,
14
+ StaticKVCacheLayer,
15
+ )
7
16
 
8
- TokenMixerConfig = AttentionConfig | Mamba2Config
17
+ TokenMixerConfig = AttentionConfig | Mamba2Config | ShortConvConfig
9
18
 
10
19
  register_config_union(TokenMixerConfig) # type: ignore (pyright bug)
11
20
 
@@ -21,6 +30,10 @@ __all__ = [
21
30
  "Mamba2StateLayer",
22
31
  "SeparableCausalConv",
23
32
  "SeparableCausalConvConfig",
33
+ "ShortConv",
34
+ "ShortConvConfig",
35
+ "ShortConvResult",
36
+ "ShortConvStateLayer",
24
37
  "State",
25
38
  "StateLayerBase",
26
39
  "StaticKVCacheLayer",
@@ -25,7 +25,7 @@ class TokenMixerResult[StateLayerT](NamedTuple):
25
25
  class TokenMixerConfigBase(ABC):
26
26
  @property
27
27
  @abstractmethod
28
- def rope_dim(self) -> int: ...
28
+ def rope_dim(self) -> int | None: ...
29
29
 
30
30
  @abstractmethod
31
31
  def random_init(
@@ -184,8 +184,8 @@ class Mamba2Config(TokenMixerConfigBase):
184
184
  return self.num_heads * self.head_dim
185
185
 
186
186
  @property
187
- def rope_dim(self) -> int:
188
- return self.head_dim
187
+ def rope_dim(self) -> None:
188
+ return None
189
189
 
190
190
  def random_init(
191
191
  self,
@@ -0,0 +1,168 @@
1
+ from collections.abc import Mapping
2
+ from dataclasses import dataclass, replace
3
+ from typing import Self
4
+
5
+ import equinox as eqx
6
+ from jax import vmap
7
+ from jaxtyping import Array, DTypeLike, Float, Int, PRNGKeyArray
8
+
9
+ from lalamo.common import ParameterTree
10
+ from lalamo.modules.common import PositionalEmbeddingSelector
11
+ from lalamo.modules.linear import LinearBase, LinearConfig
12
+ from lalamo.modules.rope import PositionalEmbeddings
13
+
14
+ from .common import TokenMixerBase, TokenMixerConfigBase, TokenMixerResult
15
+ from .mamba import SeparableCausalConv, SeparableCausalConvConfig
16
+ from .state import ShortConvStateLayer
17
+
18
+ __all__ = [
19
+ "ShortConv",
20
+ "ShortConvConfig",
21
+ "ShortConvResult",
22
+ ]
23
+
24
+
25
+ ShortConvResult = TokenMixerResult[ShortConvStateLayer]
26
+
27
+
28
+ @dataclass(frozen=True)
29
+ class ShortConvConfig(TokenMixerConfigBase):
30
+ in_projection_config: LinearConfig
31
+ conv_config: SeparableCausalConvConfig
32
+ out_projection_config: LinearConfig
33
+
34
+ kernel_size: int
35
+
36
+ @property
37
+ def rope_dim(self) -> None:
38
+ return None
39
+
40
+ def random_init(
41
+ self,
42
+ model_dim: int,
43
+ *,
44
+ key: PRNGKeyArray,
45
+ ) -> "ShortConv":
46
+ in_projection = self.in_projection_config.random_init(
47
+ input_dim=model_dim,
48
+ output_dims=(model_dim,)*3,
49
+ has_biases=False,
50
+ key=key,
51
+ )
52
+
53
+ conv = self.conv_config.random_init(model_dim, self.kernel_size, key=key)
54
+
55
+ out_projection = self.out_projection_config.random_init(
56
+ input_dim=model_dim,
57
+ output_dims=(model_dim,),
58
+ has_biases=False,
59
+ key=key,
60
+ )
61
+
62
+ return ShortConv(
63
+ self,
64
+ in_projection=in_projection,
65
+ conv=conv,
66
+ out_projection=out_projection,
67
+ )
68
+
69
+ def empty(
70
+ self,
71
+ model_dim: int,
72
+ ) -> "ShortConv":
73
+ in_projection = self.in_projection_config.empty(
74
+ input_dim=model_dim,
75
+ output_dims=(model_dim,)*3,
76
+ has_biases=False,
77
+ )
78
+
79
+ conv = self.conv_config.empty(model_dim, self.kernel_size)
80
+
81
+ out_projection = self.out_projection_config.empty(
82
+ input_dim=model_dim,
83
+ output_dims=(model_dim,),
84
+ has_biases=False,
85
+ )
86
+
87
+ return ShortConv(
88
+ self,
89
+ in_projection=in_projection,
90
+ conv=conv,
91
+ out_projection=out_projection,
92
+ )
93
+
94
+
95
+ class ShortConv(TokenMixerBase[ShortConvConfig, ShortConvStateLayer]):
96
+ in_projection: LinearBase
97
+ conv: SeparableCausalConv
98
+ out_projection: LinearBase
99
+
100
+ @property
101
+ def activation_precision(self) -> DTypeLike:
102
+ return self.in_projection.activation_precision
103
+
104
+ @property
105
+ def model_dim(self) -> int:
106
+ return self.in_projection.input_dim
107
+
108
+ @property
109
+ def positional_embedding_selector(self) -> PositionalEmbeddingSelector:
110
+ return PositionalEmbeddingSelector.NONE
111
+
112
+ @eqx.filter_jit
113
+ def __call__(
114
+ self,
115
+ inputs: Float[Array, "suffix_tokens channels"],
116
+ positional_embeddings: PositionalEmbeddings | None,
117
+ state: ShortConvStateLayer | None = None,
118
+ return_updated_state: bool = False,
119
+ length_without_padding: Int[Array, ""] | int | None = None, # noqa: ARG002
120
+ ) -> TokenMixerResult[ShortConvStateLayer]:
121
+ if positional_embeddings is not None:
122
+ raise ValueError("Positional embeddings are not supported for ShortConv.")
123
+
124
+ pre_conv_gate, post_conv_gate, x = vmap(self.in_projection)(inputs)
125
+
126
+ prev_conv_state = state.conv_state if state is not None else None
127
+ conv_output = self.conv(x * pre_conv_gate, prev_conv_state, return_updated_state)
128
+
129
+ (outputs,) = vmap(self.out_projection)(conv_output.outputs * post_conv_gate)
130
+ updated_conv_state = conv_output.state
131
+
132
+ if return_updated_state:
133
+ assert updated_conv_state is not None
134
+ updated_state = ShortConvStateLayer(updated_conv_state)
135
+ else:
136
+ updated_state = None
137
+
138
+ return TokenMixerResult(outputs, updated_state)
139
+
140
+ def init_static_state(self, capacity: int) -> ShortConvStateLayer: # noqa: ARG002
141
+ return ShortConvStateLayer.init(
142
+ self.config.kernel_size,
143
+ self.in_projection.input_dim,
144
+ self.activation_precision,
145
+ )
146
+
147
+ def export_weights(self) -> ParameterTree:
148
+ return {
149
+ "in_projection": self.in_projection.export_weights(),
150
+ "conv": self.conv.export_weights(),
151
+ "out_projection": self.out_projection.export_weights(),
152
+ }
153
+
154
+ def import_weights(
155
+ self,
156
+ weights: ParameterTree[Array],
157
+ ) -> Self:
158
+ assert isinstance(weights, Mapping)
159
+ assert isinstance(weights["in_projection"], Mapping)
160
+ assert isinstance(weights["conv"], Mapping)
161
+ assert isinstance(weights["out_projection"], Mapping)
162
+
163
+ return replace(
164
+ self,
165
+ in_projection=self.in_projection.import_weights(weights["in_projection"]),
166
+ conv=self.conv.import_weights(weights["conv"]),
167
+ out_projection=self.out_projection.import_weights(weights["out_projection"]),
168
+ )
@@ -1,11 +1,13 @@
1
1
  from .common import State, StateLayerBase
2
2
  from .kv_cache import DynamicKVCacheLayer, KVCacheLayer, StaticKVCacheLayer
3
3
  from .mamba_state import Mamba2StateLayer
4
+ from .short_conv_state import ShortConvStateLayer
4
5
 
5
6
  __all__ = [
6
7
  "DynamicKVCacheLayer",
7
8
  "KVCacheLayer",
8
9
  "Mamba2StateLayer",
10
+ "ShortConvStateLayer",
9
11
  "State",
10
12
  "StateLayerBase",
11
13
  "StaticKVCacheLayer",
@@ -0,0 +1,33 @@
1
+ from typing import Self
2
+
3
+ import jax.numpy as jnp
4
+ from jaxtyping import Array, DTypeLike, Float
5
+
6
+ from lalamo.common import ParameterTree
7
+
8
+ from .common import StateLayerBase
9
+
10
+ __all__ = ["ShortConvStateLayer"]
11
+
12
+
13
+ class ShortConvStateLayer(StateLayerBase):
14
+ conv_state: Float[Array, "*batch tokens conv_channels"]
15
+
16
+ def __post_init__(self) -> None:
17
+ if self.conv_state.ndim not in (2, 3):
18
+ raise ValueError(
19
+ f"Conv state must have 2 or 3 dimensions: [batch], tokens, conv_channels,"
20
+ f" got shape {self.conv_state.shape}",
21
+ )
22
+
23
+ @classmethod
24
+ def init(
25
+ cls,
26
+ kernel_size: int,
27
+ model_dim: int,
28
+ dtype: DTypeLike,
29
+ ) -> Self:
30
+ return cls(conv_state=jnp.zeros((kernel_size - 1, model_dim), dtype=dtype))
31
+
32
+ def export(self) -> ParameterTree:
33
+ return dict(conv_state=self.conv_state)
@@ -65,17 +65,23 @@ class TransformerConfig:
65
65
  context_length: int
66
66
 
67
67
  def random_init(self, *, key: PRNGKeyArray) -> "Transformer":
68
- first_layer_config, *_ = self.layer_configs
68
+ rope_dims = (layer.rope_dim for layer in self.layer_configs if layer.rope_dim is not None)
69
+ rope_dim = next(rope_dims, None)
70
+ assert all(d == rope_dim for d in rope_dims)
69
71
 
70
72
  if self.global_rope_config:
73
+ assert rope_dim is not None
74
+
71
75
  global_rope = self.global_rope_config.init(
72
- head_dim=first_layer_config.rope_dim,
76
+ head_dim=rope_dim,
73
77
  num_timesteps=self.context_length,
74
78
  )
75
79
  else:
76
80
  global_rope = None
77
81
 
78
82
  if self.local_rope_config:
83
+ assert rope_dim is not None
84
+
79
85
  max_sliding_window_size = max(
80
86
  layer_config.mixer_config.sliding_window_size or 0
81
87
  for layer_config in self.layer_configs
@@ -83,7 +89,7 @@ class TransformerConfig:
83
89
  )
84
90
 
85
91
  local_rope = self.local_rope_config.init(
86
- head_dim=first_layer_config.rope_dim,
92
+ head_dim=rope_dim,
87
93
  num_timesteps=max(max_sliding_window_size, self.context_length),
88
94
  )
89
95
  else:
@@ -109,19 +115,25 @@ class TransformerConfig:
109
115
  )
110
116
 
111
117
  def empty(self) -> "Transformer":
112
- first_layer_config, *_ = self.layer_configs
118
+ rope_dims = (layer.rope_dim for layer in self.layer_configs if layer.rope_dim is not None)
119
+ rope_dim = next(rope_dims, None)
120
+ assert all(d == rope_dim for d in rope_dims)
113
121
 
114
122
  if self.global_rope_config:
123
+ assert rope_dim is not None
124
+
115
125
  global_rope = self.global_rope_config.init(
116
- head_dim=first_layer_config.rope_dim,
126
+ head_dim=rope_dim,
117
127
  num_timesteps=self.context_length,
118
128
  )
119
129
  else:
120
130
  global_rope = None
121
131
 
122
132
  if self.local_rope_config:
133
+ assert rope_dim is not None
134
+
123
135
  local_rope = self.local_rope_config.init(
124
- head_dim=first_layer_config.rope_dim,
136
+ head_dim=rope_dim,
125
137
  num_timesteps=self.context_length,
126
138
  )
127
139
  else:
@@ -89,7 +89,7 @@ class TransformerLayerConfig:
89
89
  post_mlp_norm_config: NormalizationConfig | None
90
90
 
91
91
  @property
92
- def rope_dim(self) -> int:
92
+ def rope_dim(self) -> int | None:
93
93
  return self.mixer_config.rope_dim
94
94
 
95
95
  def random_init(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lalamo
3
- Version: 0.5.9
3
+ Version: 0.5.11
4
4
  Summary: JAX library for optimization and export of models for use with the UZU inference engine.
5
5
  Requires-Python: <4,>=3.12
6
6
  Description-Content-Type: text/markdown
@@ -1,4 +1,4 @@
1
- lalamo/__init__.py,sha256=ANgYnkcN0qtWyEPNfJb_rcAmghdwvBrHUKE2WNN0zn4,814
1
+ lalamo/__init__.py,sha256=YYirmrwul4QLFCnBJpYyq8Os5sFQNn-9OxTjd0CbSd8,815
2
2
  lalamo/common.py,sha256=5NUFD26yQgOnEEk3LaQnce8n-VwJxILkEpFesHZhtQU,3820
3
3
  lalamo/main.py,sha256=GgUT7lT48-XQuAEH7qzsDKG8Lx9iBf-sYBIRhZL9q7E,23978
4
4
  lalamo/message_processor.py,sha256=bSUAQg7CemLTnBV4LtPxJBicAalruDCA-JXjkTYPZ8U,5797
@@ -14,14 +14,15 @@ lalamo/model_import/__init__.py,sha256=Z8pS9rbKKx1QgUy7KZtHxiNWlZhII3mdovT9d37vA
14
14
  lalamo/model_import/common.py,sha256=wvyGD-iLut_Pm3HjDMI05upqdtCW3HWeoeB0YmiFeqk,12419
15
15
  lalamo/model_import/huggingface_generation_config.py,sha256=mot6VQ6ezCtEhN6VjhnvaU-nR5P5T2BuBUgpFNnWJxU,1495
16
16
  lalamo/model_import/huggingface_tokenizer_config.py,sha256=xvwdmio7b9nhn2H3uMBVligiYj58JaCFCvHY3-8dBvM,2502
17
- lalamo/model_import/decoder_configs/__init__.py,sha256=1ZqMcEHvCJjMIZ9iNyY31XMXOaFxB-NbqIU01BtmcEk,641
17
+ lalamo/model_import/decoder_configs/__init__.py,sha256=YvlSsJqNEQPCNKcUzCw0MLjt8H3vcfjc4sz1OK7qdIQ,679
18
18
  lalamo/model_import/decoder_configs/common.py,sha256=L8PCgF5fIt3RqPlmLiJpBzDguKk9iTjk4XSItxwVG4c,3260
19
19
  lalamo/model_import/decoder_configs/executorch.py,sha256=fTEG_j-7d8riR3Fu_H5tHDjOTrWevfyw7QbWF1mUdOQ,5924
20
- lalamo/model_import/decoder_configs/huggingface/__init__.py,sha256=3H7GPTFNNahEvI8D1SGg2mGBgPhsIdZ213MglwbGDlE,645
20
+ lalamo/model_import/decoder_configs/huggingface/__init__.py,sha256=AboZJgZxOuIigPShskj-FqBkBqwlJZoKHP0RDqx-MyY,696
21
21
  lalamo/model_import/decoder_configs/huggingface/common.py,sha256=YYIDEQy8x7lqL2qtxUHrNqfjZEiizBZ_26sTqOzjRtQ,3792
22
22
  lalamo/model_import/decoder_configs/huggingface/gemma2.py,sha256=g8LH_GlSNyL04WWi596zI0rWsD3ahnfNjDk-9zZNcDE,4759
23
23
  lalamo/model_import/decoder_configs/huggingface/gemma3.py,sha256=aSZ0TtpgDYA10rHi8eD0C_Jsn48siM_HXqfZ4O7nh94,8372
24
24
  lalamo/model_import/decoder_configs/huggingface/gpt_oss.py,sha256=MBCoPbuWyzbJiBRtHOtpaPHJjQ1UVCAYcVrfIejTnlQ,7446
25
+ lalamo/model_import/decoder_configs/huggingface/lfm2.py,sha256=vrBMxtiKEg0eHNDL_bWM9odlrsab7jlMXEY8vjEB7-c,7595
25
26
  lalamo/model_import/decoder_configs/huggingface/llama.py,sha256=UPeQiz2Dix8YaZYRxn9z44OZJ6c4xBQmcUZcM0Ymvh4,6934
26
27
  lalamo/model_import/decoder_configs/huggingface/llamba.py,sha256=ANB-vQK8U-zVFubZSTDXXt2S70T5SVOGzf7eOVvPzIQ,5773
27
28
  lalamo/model_import/decoder_configs/huggingface/mistral.py,sha256=MDGC0ivzJuUpOC11n8vFdcVzqccUyaRw_hkL74mVlAg,4599
@@ -31,15 +32,16 @@ lalamo/model_import/decoder_configs/huggingface/qwen3.py,sha256=lySVO-TvusAYUjDn
31
32
  lalamo/model_import/loaders/__init__.py,sha256=3THc1wQ4EPBzQkL_4EaKCa7Ev5Z7oczcvc4AHy9v5EI,228
32
33
  lalamo/model_import/loaders/common.py,sha256=kkugV-bMQlN1zvGHoj3uc7z0FbXKoMtXEBTvyu4KxK4,1844
33
34
  lalamo/model_import/loaders/executorch.py,sha256=t2Ey_mBMNC8bTSTdYWjuGXdPTRoohFlYrqtWyNkBU_8,9219
34
- lalamo/model_import/loaders/huggingface.py,sha256=QURyxD3C4Nzwa8k9iHVx32hQHV-aMWjb29W5_U99-WA,29834
35
+ lalamo/model_import/loaders/huggingface.py,sha256=_vFAgz6ZR8386VIuhWAY88nJ8qoTDawCREBsRHQQmGo,32753
35
36
  lalamo/model_import/loaders/utils.py,sha256=eiX3WKFRrAfBY-dugodscNInl5o5w3KmVcgma4atpGY,2456
36
- lalamo/model_import/model_specs/__init__.py,sha256=8RxLEZUxpsBtTwrTUqGIwhQ-8QzOxUdx-EL__cbcTjg,1228
37
- lalamo/model_import/model_specs/common.py,sha256=RVPlNWHG_5OvU1W3YcOpqYz59Dh8plDmd7z1xNrqmaY,6585
37
+ lalamo/model_import/model_specs/__init__.py,sha256=JISqwJkloQkGD2jvi1MakNEWapIwlNXXVi5giZyXB74,1275
38
+ lalamo/model_import/model_specs/common.py,sha256=RLySCIkmGiA1IVZgLeemssMBMo4hMYMpmBjV0cRwBb4,6586
38
39
  lalamo/model_import/model_specs/deepseek.py,sha256=Umef93_ZBuq93yYsejIRNwj3udoln1gHfrv3SK5jyMo,417
39
40
  lalamo/model_import/model_specs/essential_ai.py,sha256=xbHcwRpAWhR9gOgypVzcgunFspoUEk3iNsw-46CVR4o,390
40
41
  lalamo/model_import/model_specs/gemma.py,sha256=irWgylL-pc7y3Gn5DK3fjKoCT9kJWH3B7mTa-1Gmxqc,1306
41
42
  lalamo/model_import/model_specs/gpt_oss.py,sha256=PLo0QGrXKdX61ReTRdyOaP_EH3Dmj5lp3fpJjZRwRVA,542
42
43
  lalamo/model_import/model_specs/huggingface.py,sha256=TEkU8y95_hmUWyF-Q5hn0dE2SvXbApghAsQwhWRu4D0,431
44
+ lalamo/model_import/model_specs/lfm2.py,sha256=uzuFbcj4Wj2OqL7XJE8Q431VYZelS_HkfPFpl7rJuJY,1038
43
45
  lalamo/model_import/model_specs/llama.py,sha256=Ml-xvRGlXBT9NJhmEpwgNo6C84oBSMYgA1_PrCYGcAw,990
44
46
  lalamo/model_import/model_specs/llamba.py,sha256=Ic3sWTv34FLJ4fG6OR_Mc5goGJQR6fa5b2WbVXbn9FA,1471
45
47
  lalamo/model_import/model_specs/mirai.py,sha256=eifYVV5-fABiLH6rr82_DiVFtDyqpW0vbvXCYsQQzto,617
@@ -52,7 +54,7 @@ lalamo/models/__init__.py,sha256=Vn5PcvSqKppIchkSZwQVTn_GpRvOOzZVxo5PUeDl6N8,283
52
54
  lalamo/models/classifier.py,sha256=LvL54crCVi4HVSIXuoaSLB_5jtcx74GL7kgdy2Y16Zc,2094
53
55
  lalamo/models/common.py,sha256=PDteofGxjSBWYw_mPxbN1DTUba70aOURrAIjl13SSHc,2954
54
56
  lalamo/models/language_model.py,sha256=QPeVEyhutSze7fSNhvOvwSoYt24QMk-dtTJkos38amY,13465
55
- lalamo/modules/__init__.py,sha256=xWJ4OPAF4gKd0evYwXIK5kTnbH6nI55oLAePcoDDHQ0,3730
57
+ lalamo/modules/__init__.py,sha256=dFCicpcx-XV9sVTMR7x4TVF2tAGpzFi_sCTPAyawoJo,3858
56
58
  lalamo/modules/activations.py,sha256=U3qTQtZawPAUcoqbkIJnmTYcaNiQuSPMLcBeJ398GhI,1022
57
59
  lalamo/modules/classifier.py,sha256=_jtJ3INEq1dJP5HpUmcDk9YYzpRYlQ04zvFGaWBV6Lg,12101
58
60
  lalamo/modules/common.py,sha256=dqDEOi-C3H4U9iWUisU32RA-wRDCGuaUNGbObRBhyQM,3315
@@ -64,26 +66,28 @@ lalamo/modules/mlx_interop.py,sha256=FdfU_1iES-HQ9r4K0SkYwJTyvE0f-_T5ursNCjPLZKY
64
66
  lalamo/modules/normalization.py,sha256=cBdOq6OmJssunVeEwFRJD0BDhgFAN7J8gOKwzIUAY8I,3005
65
67
  lalamo/modules/rope.py,sha256=rCik7vBNqRXYg3LGbmc1mezPRNbIYMg5cydTFpQy-eU,10157
66
68
  lalamo/modules/torch_interop.py,sha256=-mujd1zI4ec2w92Hd50RtDa0K3jl6ZSnPxc5r3Fp9nU,916
67
- lalamo/modules/transformer.py,sha256=67-WZX2eE314abiQOhRNSooTHeJh4q9mlZQIxQ-oASU,10162
68
- lalamo/modules/transformer_layer.py,sha256=CfkYIn8a3pR4PPsI9hmAXpyiTbjXo-Gzl2OU9lAQlkI,12724
69
+ lalamo/modules/transformer.py,sha256=4olEO8Eh7U6RwSnaECn39ooPuTKUZp_6QmvO6vdirrQ,10532
70
+ lalamo/modules/transformer_layer.py,sha256=ZYmGR2Ej328l7K-YpV4eEiBk8SzLsw1RiuSiUP94UpY,12731
69
71
  lalamo/modules/utils.py,sha256=t_TayWT6g5LtYKhJaod-u_COWaI_VbNd3eYek9Nj0lc,441
70
- lalamo/modules/token_mixers/__init__.py,sha256=_t4T25C4WBVJQ1SqkQPGrrAc7bPKhDO3K2btgefVh5s,909
72
+ lalamo/modules/token_mixers/__init__.py,sha256=z6x8cNjis6xIi_2llIoByKqMF2W4xJ05rDnxitHQ3jU,1139
71
73
  lalamo/modules/token_mixers/attention.py,sha256=gkGMFah2OHB_tyJpkshM1KhMnzG6U7Xt273MkBvDk58,16584
72
- lalamo/modules/token_mixers/common.py,sha256=-ej1pIrrp845ztavJ3oh82U3HEsV_rEHxMZOEDp7iK8,1979
73
- lalamo/modules/token_mixers/mamba.py,sha256=MIIMZAlVVE4YwyT0PsxA0OWXa13ondoJchRxQbhq678,18797
74
- lalamo/modules/token_mixers/state/__init__.py,sha256=iQaX7njz3XtwGugI5_PUOIp1wdCzd5h08UkgF6yW3zo,307
74
+ lalamo/modules/token_mixers/common.py,sha256=CcrbXXvGU27uxGLh5L-G8VDtcOiW5Wpm13uBEOd6lVg,1986
75
+ lalamo/modules/token_mixers/mamba.py,sha256=fo8xvvmIQss2lKLhav19Jzk1-hTykNp2sjcN6ntcWj4,18789
76
+ lalamo/modules/token_mixers/short_conv.py,sha256=93SmoVsuAtdX4ckAkvhHXHiO67pU6soYFpBZxdPFEwc,5219
77
+ lalamo/modules/token_mixers/state/__init__.py,sha256=OKWPmiwszMWgwamewoVHd28owanHAO2j2e30Iivtv-4,384
75
78
  lalamo/modules/token_mixers/state/common.py,sha256=dcwBevAdeJpBjf7_YRk7TKrJHsCnpljhfzZy-3h9898,661
76
79
  lalamo/modules/token_mixers/state/kv_cache.py,sha256=QfnS3XgSmyDI9MBUbeLI4ABHLxiMcXDbZsqe0fd3KQo,8788
77
80
  lalamo/modules/token_mixers/state/mamba_state.py,sha256=LHzJvNE6MkB7nrsZSNto6pxbnMJCl--JOoe9Fkcc9Mg,1642
81
+ lalamo/modules/token_mixers/state/short_conv_state.py,sha256=osjcDHoeFWQaUoOROzeJe8F1qC8rvqunimGD4CuIDHo,895
78
82
  lalamo/speculator/__init__.py,sha256=9-tmZcbCom_lIGpJYn6xLlnEahFLFidpqmgkafmu--k,456
79
83
  lalamo/speculator/common.py,sha256=PudF_gkpe5_nQ-57sAC-foE1xCy_H2Axh5KwRoA86lo,587
80
84
  lalamo/speculator/estimator.py,sha256=4D8dPZCWsrpORb7y8pQ6VsiIg1Cblvvxe6gXCoYtcD4,2530
81
85
  lalamo/speculator/inference.py,sha256=5GntUgj0HQLeLn3HIHnVX8EEO0EBzmKeP5-_U7kdFAM,3670
82
86
  lalamo/speculator/ngram.py,sha256=95mdfAWhx4d5XOnOwhyhElnvcy6nlUjYhcbJzqDs414,5875
83
87
  lalamo/speculator/utils.py,sha256=0wZoMMIzzk0Q-3zq5H5f-JBplePNHxywndkrNtOJOyo,1697
84
- lalamo-0.5.9.dist-info/licenses/LICENSE,sha256=diHRfjSEJHD1nnEeMIfMRCjR3UERf8bT3eseD6b1ayA,1072
85
- lalamo-0.5.9.dist-info/METADATA,sha256=573oeEuYV14_hFpPmW2CNVZWciVS4_V85597oKOvjpo,3146
86
- lalamo-0.5.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
87
- lalamo-0.5.9.dist-info/entry_points.txt,sha256=qli7qTfnBk5WP10rOGXXEckHMtt-atJMDWd8jN89Uks,43
88
- lalamo-0.5.9.dist-info/top_level.txt,sha256=VHvWL5JN5XRG36NsN_MieJ7EwRihEOrEjyDaTdFJ-aI,7
89
- lalamo-0.5.9.dist-info/RECORD,,
88
+ lalamo-0.5.11.dist-info/licenses/LICENSE,sha256=diHRfjSEJHD1nnEeMIfMRCjR3UERf8bT3eseD6b1ayA,1072
89
+ lalamo-0.5.11.dist-info/METADATA,sha256=0uICfw4NXxiDgA8JIPaYiUnOlFcGxYe7NKbNP2ZejHE,3147
90
+ lalamo-0.5.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
91
+ lalamo-0.5.11.dist-info/entry_points.txt,sha256=qli7qTfnBk5WP10rOGXXEckHMtt-atJMDWd8jN89Uks,43
92
+ lalamo-0.5.11.dist-info/top_level.txt,sha256=VHvWL5JN5XRG36NsN_MieJ7EwRihEOrEjyDaTdFJ-aI,7
93
+ lalamo-0.5.11.dist-info/RECORD,,