kumoai 2.9.0.dev202509081831__cp312-cp312-win_amd64.whl → 2.13.0.dev202511201731__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +10 -11
- kumoai/_version.py +1 -1
- kumoai/client/client.py +17 -16
- kumoai/client/endpoints.py +1 -0
- kumoai/client/rfm.py +37 -8
- kumoai/connector/file_upload_connector.py +71 -102
- kumoai/connector/utils.py +1367 -236
- kumoai/experimental/rfm/__init__.py +153 -10
- kumoai/experimental/rfm/authenticate.py +8 -5
- kumoai/experimental/rfm/infer/timestamp.py +7 -4
- kumoai/experimental/rfm/local_graph.py +90 -80
- kumoai/experimental/rfm/local_graph_sampler.py +16 -10
- kumoai/experimental/rfm/local_graph_store.py +22 -6
- kumoai/experimental/rfm/local_pquery_driver.py +336 -42
- kumoai/experimental/rfm/local_table.py +100 -22
- kumoai/experimental/rfm/pquery/__init__.py +4 -4
- kumoai/experimental/rfm/pquery/{backend.py → executor.py} +24 -58
- kumoai/experimental/rfm/pquery/{pandas_backend.py → pandas_executor.py} +278 -222
- kumoai/experimental/rfm/rfm.py +523 -124
- kumoai/experimental/rfm/sagemaker.py +130 -0
- kumoai/jobs.py +1 -0
- kumoai/kumolib.cp312-win_amd64.pyd +0 -0
- kumoai/spcs.py +1 -3
- kumoai/trainer/trainer.py +19 -10
- kumoai/utils/progress_logger.py +68 -0
- {kumoai-2.9.0.dev202509081831.dist-info → kumoai-2.13.0.dev202511201731.dist-info}/METADATA +13 -5
- {kumoai-2.9.0.dev202509081831.dist-info → kumoai-2.13.0.dev202511201731.dist-info}/RECORD +30 -29
- {kumoai-2.9.0.dev202509081831.dist-info → kumoai-2.13.0.dev202511201731.dist-info}/WHEEL +0 -0
- {kumoai-2.9.0.dev202509081831.dist-info → kumoai-2.13.0.dev202511201731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.9.0.dev202509081831.dist-info → kumoai-2.13.0.dev202511201731.dist-info}/top_level.txt +0 -0
kumoai/connector/utils.py
CHANGED
|
@@ -1,13 +1,30 @@
|
|
|
1
1
|
import asyncio
|
|
2
|
+
import csv
|
|
3
|
+
import gc
|
|
2
4
|
import io
|
|
3
5
|
import math
|
|
4
6
|
import os
|
|
5
7
|
import re
|
|
6
8
|
import tempfile
|
|
9
|
+
import threading
|
|
7
10
|
import time
|
|
8
|
-
import
|
|
11
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
12
|
+
from dataclasses import dataclass
|
|
9
13
|
from logging import getLogger
|
|
10
|
-
from typing import
|
|
14
|
+
from typing import (
|
|
15
|
+
Any,
|
|
16
|
+
AsyncIterator,
|
|
17
|
+
Callable,
|
|
18
|
+
Deque,
|
|
19
|
+
Dict,
|
|
20
|
+
Generator,
|
|
21
|
+
Iterator,
|
|
22
|
+
List,
|
|
23
|
+
Optional,
|
|
24
|
+
Tuple,
|
|
25
|
+
Union,
|
|
26
|
+
)
|
|
27
|
+
from urllib.parse import urlparse
|
|
11
28
|
|
|
12
29
|
import aiohttp
|
|
13
30
|
import pandas as pd
|
|
@@ -21,177 +38,322 @@ from kumoapi.data_source import (
|
|
|
21
38
|
StartFileUploadResponse,
|
|
22
39
|
)
|
|
23
40
|
from tqdm import tqdm
|
|
24
|
-
from tqdm.asyncio import tqdm_asyncio
|
|
25
41
|
|
|
26
42
|
from kumoai import global_state
|
|
43
|
+
# still used for server-side completion retries
|
|
27
44
|
from kumoai.exceptions import HTTPException
|
|
28
45
|
from kumoai.futures import _KUMO_EVENT_LOOP
|
|
29
46
|
|
|
30
|
-
|
|
47
|
+
# -------------------
|
|
48
|
+
# Constants & Globals
|
|
49
|
+
# -------------------
|
|
50
|
+
logger = getLogger(__name__)
|
|
51
|
+
|
|
52
|
+
CHUNK_SIZE = 100 * 10**6 # 100 MB (legacy local single-file chunk)
|
|
53
|
+
READ_CHUNK_BYTES = 8 * 1024**2 # 8 MiB remote read buffer
|
|
54
|
+
UPLOAD_CHUNK_BYTES = 8 * 1024**2 # 8 MiB streamed PUT sub-chunks
|
|
31
55
|
MAX_PARTITION_SIZE = 1000 * 1024**2 # 1GB
|
|
32
56
|
MIN_PARTITION_SIZE = 100 * 1024**2 # 100MB
|
|
33
57
|
|
|
34
|
-
logger = getLogger(__name__)
|
|
35
|
-
|
|
36
58
|
CONNECTOR_ID_MAP = {
|
|
37
59
|
"csv": "csv_upload_connector",
|
|
38
60
|
"parquet": "parquet_upload_connector",
|
|
39
61
|
}
|
|
40
62
|
|
|
63
|
+
_TQDM_LOCK = threading.Lock()
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
# ---------------
|
|
67
|
+
# Small utilities
|
|
68
|
+
# ---------------
|
|
69
|
+
def _fmt_bytes(n: int) -> str:
|
|
70
|
+
value = float(n)
|
|
71
|
+
units = ["B", "KiB", "MiB", "GiB", "TiB", "PiB"]
|
|
72
|
+
for unit in units:
|
|
73
|
+
if value < 1024:
|
|
74
|
+
return f"{value:.1f} {unit}"
|
|
75
|
+
value /= 1024
|
|
76
|
+
return f"{value:.1f} EiB"
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def _fmt_secs(s: float) -> str:
|
|
80
|
+
if s < 1:
|
|
81
|
+
return f"{s*1000:.0f} ms"
|
|
82
|
+
return f"{s:.2f} s"
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def _fmt_rate(nbytes: int, secs: float) -> str:
|
|
86
|
+
if secs <= 0:
|
|
87
|
+
return "-"
|
|
88
|
+
return f"{(nbytes / secs) / 1024**2:.1f} MB/s"
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
def _short_path(p: str, maxlen: int = 60) -> str:
|
|
92
|
+
if len(p) <= maxlen:
|
|
93
|
+
return p
|
|
94
|
+
try:
|
|
95
|
+
parsed = urlparse(p)
|
|
96
|
+
head = f"{parsed.scheme}://"
|
|
97
|
+
tail = p[-40:]
|
|
98
|
+
return f"{head}…{tail}"
|
|
99
|
+
except Exception:
|
|
100
|
+
return f"…{p[-maxlen:]}"
|
|
101
|
+
|
|
41
102
|
|
|
42
|
-
|
|
103
|
+
def _safe_bar_update(bar: tqdm, inc: int) -> None:
|
|
104
|
+
with _TQDM_LOCK:
|
|
105
|
+
try:
|
|
106
|
+
bar.update(inc)
|
|
107
|
+
except Exception:
|
|
108
|
+
pass
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def _log_file_timing(label: str, path: str, size: int, tread: float,
|
|
112
|
+
tval: float, tupl: float) -> None:
|
|
113
|
+
logger.debug("[%s] %s (%s) | read=%s @ %s | validate=%s | upload=%s @ %s",
|
|
114
|
+
label, path, _fmt_bytes(size), _fmt_secs(tread),
|
|
115
|
+
_fmt_rate(size, max(tread, 1e-6)), _fmt_secs(tval),
|
|
116
|
+
_fmt_secs(tupl), _fmt_rate(size, max(tupl, 1e-6)))
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
# -----------------------
|
|
120
|
+
# Async upload primitives
|
|
121
|
+
# -----------------------
|
|
122
|
+
def _iter_memview_stream(
|
|
123
|
+
mv: memoryview,
|
|
124
|
+
subchunk_bytes: int,
|
|
125
|
+
progress_cb: Optional[Callable[[int], None]] = None,
|
|
126
|
+
) -> Iterator[memoryview]:
|
|
127
|
+
"""Yield memoryview slices (zero-copy) for streaming PUT."""
|
|
128
|
+
pos = 0
|
|
129
|
+
n = mv.nbytes
|
|
130
|
+
while pos < n:
|
|
131
|
+
nxt = min(n, pos + subchunk_bytes)
|
|
132
|
+
chunk = mv[pos:nxt] # zero-copy slice
|
|
133
|
+
pos = nxt
|
|
134
|
+
if progress_cb:
|
|
135
|
+
try:
|
|
136
|
+
progress_cb(len(chunk))
|
|
137
|
+
except Exception:
|
|
138
|
+
pass
|
|
139
|
+
yield chunk
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
async def _put_with_retry_streamed(
|
|
43
143
|
session: aiohttp.ClientSession,
|
|
44
144
|
url: str,
|
|
45
|
-
|
|
145
|
+
mv: memoryview,
|
|
46
146
|
part_no: int,
|
|
147
|
+
subchunk_bytes: int = UPLOAD_CHUNK_BYTES,
|
|
148
|
+
progress_cb: Optional[Callable[[int], None]] = None,
|
|
149
|
+
retries: int = 3,
|
|
47
150
|
) -> Tuple[int, str]:
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
Args:
|
|
53
|
-
session: the ``aiohttp`` client session to use for the request
|
|
54
|
-
url: the S3 presigned URL to PUT ``data`` to
|
|
55
|
-
data: the data (``bytes``) that should be PUT to ``url``
|
|
56
|
-
part_no: the part number of the data to be PUT
|
|
151
|
+
"""Stream a memoryview to a presigned URL using an *async* generator so
|
|
152
|
+
aiohttp does not try to wrap it as multipart/form-data. We also set
|
|
153
|
+
Content-Length explicitly so S3/GCS expects a fixed-size payload (avoids
|
|
154
|
+
chunked TE).
|
|
57
155
|
"""
|
|
58
|
-
|
|
59
|
-
async
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
156
|
+
|
|
157
|
+
# Build a fresh async generator per attempt (can't reuse after failure).
|
|
158
|
+
def _make_async_gen() -> Callable[[], Any]:
|
|
159
|
+
async def _agen() -> AsyncIterator[memoryview]:
|
|
160
|
+
# Yield zero-copy memoryview slices; aiohttp can send memoryview
|
|
161
|
+
# directly.
|
|
162
|
+
for chunk in _iter_memview_stream(mv, subchunk_bytes, progress_cb):
|
|
163
|
+
yield chunk
|
|
164
|
+
# cooperative yield; keeps event loop snappy without extra
|
|
165
|
+
# copies
|
|
166
|
+
await asyncio.sleep(0)
|
|
167
|
+
|
|
168
|
+
return _agen
|
|
169
|
+
|
|
170
|
+
headers = {
|
|
171
|
+
"Content-Type": "application/octet-stream",
|
|
172
|
+
"Content-Length": str(mv.nbytes),
|
|
173
|
+
}
|
|
174
|
+
|
|
175
|
+
attempt = 0
|
|
176
|
+
while True:
|
|
177
|
+
try:
|
|
178
|
+
async with session.put(url, data=_make_async_gen()(),
|
|
179
|
+
headers=headers) as res:
|
|
180
|
+
# Read/consume response to free the connection
|
|
181
|
+
_ = await res.read()
|
|
182
|
+
if res.status != 200:
|
|
183
|
+
raise RuntimeError(
|
|
184
|
+
f"PUT failed {res.status}: {res.reason}")
|
|
185
|
+
etag = res.headers.get("ETag") or res.headers.get("Etag") or ""
|
|
186
|
+
return (part_no + 1, etag)
|
|
187
|
+
except Exception:
|
|
188
|
+
attempt += 1
|
|
189
|
+
if attempt > retries:
|
|
190
|
+
raise
|
|
191
|
+
# backoff before retrying; generator will be recreated next loop
|
|
192
|
+
await asyncio.sleep(0.5 * attempt)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
async def multi_put_bounded(
|
|
72
196
|
urls: List[str],
|
|
73
|
-
|
|
74
|
-
tqdm_bar_position: int = 0,
|
|
197
|
+
data_iter: Generator[Union[bytes, memoryview], None, None],
|
|
198
|
+
tqdm_bar_position: int = 0, # kept for compatibility (unused)
|
|
199
|
+
concurrency: int = 4,
|
|
200
|
+
upload_progress_cb: Optional[Callable[[int], None]] = None,
|
|
201
|
+
upload_subchunk_bytes: int = UPLOAD_CHUNK_BYTES,
|
|
75
202
|
) -> List[PartUploadMetadata]:
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
the data generator is not exhausted by the URLs, uploaded data may
|
|
80
|
-
be corrupted!
|
|
203
|
+
"""Multipart uploader with bounded concurrency and byte-accurate progress.
|
|
204
|
+
No extra progress bar here; caller drives a single byte counter via
|
|
205
|
+
upload_progress_cb.
|
|
81
206
|
"""
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
207
|
+
sem = asyncio.Semaphore(concurrency)
|
|
208
|
+
results: List[Union[Tuple[int, str], None]] = [None] * len(urls)
|
|
209
|
+
|
|
210
|
+
async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(
|
|
211
|
+
ssl=False)) as session:
|
|
212
|
+
|
|
213
|
+
async def worker(idx: int, url: str, chunk: Union[bytes,
|
|
214
|
+
memoryview]) -> None:
|
|
215
|
+
async with sem:
|
|
216
|
+
mv = chunk if isinstance(chunk,
|
|
217
|
+
memoryview) else memoryview(chunk)
|
|
218
|
+
res = await _put_with_retry_streamed(
|
|
219
|
+
session=session,
|
|
220
|
+
url=url,
|
|
221
|
+
mv=mv,
|
|
222
|
+
part_no=idx,
|
|
223
|
+
subchunk_bytes=upload_subchunk_bytes,
|
|
224
|
+
progress_cb=upload_progress_cb,
|
|
225
|
+
)
|
|
226
|
+
results[idx] = res
|
|
227
|
+
|
|
228
|
+
tasks: List[asyncio.Task] = []
|
|
229
|
+
for idx, url in enumerate(urls):
|
|
230
|
+
try:
|
|
231
|
+
chunk = next(data_iter)
|
|
232
|
+
except StopIteration:
|
|
233
|
+
break
|
|
234
|
+
tasks.append(asyncio.create_task(worker(idx, url, chunk)))
|
|
235
|
+
|
|
236
|
+
try:
|
|
237
|
+
await asyncio.gather(*tasks)
|
|
238
|
+
except Exception:
|
|
239
|
+
for t in tasks:
|
|
240
|
+
if not t.done():
|
|
241
|
+
t.cancel()
|
|
242
|
+
await asyncio.gather(*tasks, return_exceptions=True)
|
|
243
|
+
raise
|
|
244
|
+
|
|
245
|
+
out: List[PartUploadMetadata] = []
|
|
246
|
+
for r in results:
|
|
247
|
+
if r is None:
|
|
248
|
+
continue
|
|
249
|
+
out.append(PartUploadMetadata(r[0], r[1]))
|
|
250
|
+
return out
|
|
99
251
|
|
|
100
252
|
|
|
101
253
|
def stream_read(
|
|
102
254
|
f: io.BufferedReader,
|
|
103
255
|
chunk_size: int,
|
|
104
256
|
) -> Generator[bytes, None, None]:
|
|
105
|
-
r"""Streams ``chunk_size`` contiguous bytes from buffered reader
|
|
106
|
-
|
|
257
|
+
r"""Streams ``chunk_size`` contiguous bytes from buffered reader ``f`` each
|
|
258
|
+
time the generator is yielded from.
|
|
107
259
|
"""
|
|
108
260
|
while True:
|
|
109
261
|
byte_buf = f.read(chunk_size)
|
|
110
262
|
if len(byte_buf) == 0:
|
|
111
|
-
# StopIteration:
|
|
112
263
|
break
|
|
113
264
|
yield byte_buf
|
|
114
265
|
|
|
115
266
|
|
|
267
|
+
def _validate_url_ext(url: str, file_type: Union[str, None]) -> str:
|
|
268
|
+
"""Validate that `url` ends with .csv or .parquet. If `file_type` is
|
|
269
|
+
given ("csv" or "parquet"), ensure it matches. Returns the detected type
|
|
270
|
+
("csv" or "parquet"), else raises ValueError.
|
|
271
|
+
"""
|
|
272
|
+
u = url.lower()
|
|
273
|
+
detected = "csv" if u.endswith(".csv") else "parquet" if u.endswith(
|
|
274
|
+
".parquet") else None
|
|
275
|
+
if detected is None:
|
|
276
|
+
raise ValueError(f"File path '{url}' must end with .csv or .parquet")
|
|
277
|
+
|
|
278
|
+
if file_type is None:
|
|
279
|
+
return detected
|
|
280
|
+
|
|
281
|
+
ft = file_type.lower()
|
|
282
|
+
if ft not in ("csv", "parquet"):
|
|
283
|
+
raise ValueError("file_type must be 'csv', 'parquet', or None")
|
|
284
|
+
|
|
285
|
+
if ft != detected:
|
|
286
|
+
raise ValueError(f"File path '{url}' must end with .{ft}")
|
|
287
|
+
return detected
|
|
288
|
+
|
|
289
|
+
|
|
116
290
|
def upload_table(
|
|
117
291
|
name: str,
|
|
118
292
|
path: str,
|
|
119
293
|
auto_partition: bool = True,
|
|
120
294
|
partition_size_mb: int = 250,
|
|
295
|
+
parallelism: Optional[int] = None,
|
|
296
|
+
file_type: Optional[str] = None,
|
|
121
297
|
) -> None:
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
:class:`~kumoai.connector.FileUploadConnector`.
|
|
125
|
-
|
|
126
|
-
For files larger than 1GB, the table will be automatically partitioned
|
|
127
|
-
into smaller chunks and uploaded with common prefix that allows
|
|
128
|
-
FileUploadConnector to union them when reading.
|
|
129
|
-
|
|
130
|
-
.. warning::
|
|
131
|
-
Uploaded tables must be single files, either in parquet or CSV
|
|
132
|
-
format. Partitioned tables are not currently supported.
|
|
133
|
-
|
|
134
|
-
.. code-block:: python
|
|
298
|
+
"""Upload a CSV/Parquet table to Kumo from a local file or a remote path
|
|
299
|
+
(s3://, gs://, abfs://, abfss://, az://).
|
|
135
300
|
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
# Upload a large parquet table (will be automatically partitioned)
|
|
143
|
-
upload_table(name="transactions",
|
|
144
|
-
path="/data/large_transactions.parquet")
|
|
145
|
-
|
|
146
|
-
# Upload a large CSV table (will be automatically partitioned)
|
|
147
|
-
upload_table(name="sales", path="/data/large_sales.csv")
|
|
148
|
-
|
|
149
|
-
# Disable auto-partitioning (will raise error for large files)
|
|
150
|
-
upload_table(name="users", path="/data/users.parquet",
|
|
151
|
-
auto_partition=False)
|
|
301
|
+
- Local file: uploaded as-is. If >1 GiB and `auto_partition=True`, splits
|
|
302
|
+
into ~`partition_size_mb` MiB parts.
|
|
303
|
+
- Remote file: uploaded via multipart. Files >1 GiB are rejected
|
|
304
|
+
(re-shard to ~200 MiB and upload as a directory).
|
|
305
|
+
- Remote directory: auto-detects format (or use `file_type`), validates
|
|
306
|
+
each shard, and uploads in parallel with a memory-safe budget.
|
|
152
307
|
|
|
153
308
|
Args:
|
|
154
|
-
name:
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
If False and file is >1GB, raises ValueError. Supports both
|
|
161
|
-
Parquet and CSV files.
|
|
162
|
-
partition_size_mb: The size of each partition in MB. Only used if
|
|
163
|
-
auto_partition is True.
|
|
164
|
-
"""
|
|
165
|
-
warnings.warn(
|
|
166
|
-
"upload_table is deprecated; use "
|
|
167
|
-
"FileUploadConnector.upload instead.", DeprecationWarning,
|
|
168
|
-
stacklevel=2)
|
|
169
|
-
|
|
170
|
-
# Validate file type
|
|
171
|
-
if not (path.endswith(".parquet") or path.endswith(".csv")):
|
|
172
|
-
raise ValueError(f"Path {path} must be either a CSV or Parquet "
|
|
173
|
-
f"file. Partitioned data is not currently "
|
|
174
|
-
f"supported.")
|
|
309
|
+
name: Destination table name in Kumo.
|
|
310
|
+
path: Local path or remote URL to a .csv/.parquet file or directory.
|
|
311
|
+
auto_partition: Local-only; partition files >1 GiB.
|
|
312
|
+
partition_size_mb: Local partition target size (100–1000 MiB).
|
|
313
|
+
parallelism: Directory uploads concurrency override.
|
|
314
|
+
file_type: Force "csv" or "parquet" for directories; None = auto-detect
|
|
175
315
|
|
|
316
|
+
Raises:
|
|
317
|
+
ValueError: Bad/mixed types, zero rows, >1 GiB remote file,
|
|
318
|
+
schema/header mismatch, or invalid column names.
|
|
319
|
+
ImportError: Missing filesystem dependency (s3fs/gcsfs/adlfs).
|
|
320
|
+
RuntimeError: Remote stat/list/read or multipart completion failures.
|
|
321
|
+
|
|
322
|
+
Notes:
|
|
323
|
+
CSV headers are sanitized (chars → underscore, de-duped). Parquet
|
|
324
|
+
columns must already be valid.
|
|
325
|
+
"""
|
|
326
|
+
# Decide local vs remote by scheme
|
|
327
|
+
scheme = urlparse(path).scheme
|
|
328
|
+
if scheme in ("s3", "gs", "abfs", "abfss", "az"):
|
|
329
|
+
return _upload_table_remote(
|
|
330
|
+
name=name,
|
|
331
|
+
path=path,
|
|
332
|
+
auto_partition=auto_partition,
|
|
333
|
+
partition_size_mb=partition_size_mb,
|
|
334
|
+
parallelism=parallelism,
|
|
335
|
+
file_type=file_type,
|
|
336
|
+
)
|
|
337
|
+
# Local path
|
|
338
|
+
_validate_url_ext(path, file_type)
|
|
176
339
|
file_size = os.path.getsize(path)
|
|
177
340
|
|
|
178
|
-
# Route based on file size
|
|
179
341
|
if file_size < MAX_PARTITION_SIZE:
|
|
180
342
|
return _upload_single_file(name, path)
|
|
181
343
|
|
|
182
344
|
if not auto_partition:
|
|
183
|
-
raise ValueError(
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
345
|
+
raise ValueError(
|
|
346
|
+
f"File {path} is {file_size / (1024**3):.2f}GB, which exceeds "
|
|
347
|
+
f"the 1GB limit. Enable auto_partition=True to automatically "
|
|
348
|
+
f"partition large files.")
|
|
187
349
|
|
|
188
|
-
# Partition and upload large files
|
|
189
350
|
partition_size = partition_size_mb * 1024**2
|
|
190
351
|
if (partition_size > MAX_PARTITION_SIZE
|
|
191
352
|
or partition_size < MIN_PARTITION_SIZE):
|
|
192
|
-
raise ValueError(
|
|
193
|
-
|
|
194
|
-
|
|
353
|
+
raise ValueError(
|
|
354
|
+
f"Partition size {partition_size_mb}MB must be between "
|
|
355
|
+
f"{MIN_PARTITION_SIZE / 1024**2}MB and "
|
|
356
|
+
f"{MAX_PARTITION_SIZE / 1024**2}MB.")
|
|
195
357
|
|
|
196
358
|
logger.info("File %s is large with size %s, partitioning for upload...",
|
|
197
359
|
path, file_size)
|
|
@@ -202,25 +364,18 @@ def upload_table(
|
|
|
202
364
|
|
|
203
365
|
|
|
204
366
|
def _handle_duplicate_names(names: List[str]) -> List[str]:
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
unique_names_with_counts = {}
|
|
208
|
-
|
|
367
|
+
unique_names: List[str] = []
|
|
368
|
+
unique_counts: dict[str, int] = {}
|
|
209
369
|
for name in names:
|
|
210
370
|
if name not in unique_names:
|
|
211
|
-
|
|
212
|
-
# without change.
|
|
213
|
-
unique_names_with_counts[name] = 0
|
|
371
|
+
unique_counts[name] = 0
|
|
214
372
|
unique_names.append(name)
|
|
215
373
|
else:
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
unique_names_with_counts[name] += 1
|
|
219
|
-
new_name = f"{name}_{unique_names_with_counts[name]}"
|
|
374
|
+
unique_counts[name] += 1
|
|
375
|
+
new_name = f"{name}_{unique_counts[name]}"
|
|
220
376
|
while new_name in names or new_name in unique_names:
|
|
221
|
-
|
|
222
|
-
new_name = f"{name}_{
|
|
223
|
-
|
|
377
|
+
unique_counts[name] += 1
|
|
378
|
+
new_name = f"{name}_{unique_counts[name]}"
|
|
224
379
|
unique_names.append(new_name)
|
|
225
380
|
return unique_names
|
|
226
381
|
|
|
@@ -233,20 +388,17 @@ def _sanitize_columns(names: List[str]) -> Tuple[List[str], bool]:
|
|
|
233
388
|
|
|
234
389
|
|
|
235
390
|
def sanitize_file(src_path: str) -> Tuple[str, bool]:
|
|
236
|
-
"""
|
|
237
|
-
characters with underscores.
|
|
238
|
-
Returns a tuple of the new path and a boolean indicating if the file was
|
|
239
|
-
changed. If the file was not changed, the original path is returned.
|
|
240
|
-
If the file was changed, a temporary file is created and returned.
|
|
241
|
-
The temporary file should be deleted by the caller.
|
|
391
|
+
"""Normalize column names in a CSV or Parquet file.
|
|
242
392
|
|
|
243
|
-
|
|
244
|
-
|
|
393
|
+
Rules:
|
|
394
|
+
- Replace any non-alphanumeric character with "_"
|
|
395
|
+
- Strip leading/trailing underscores
|
|
396
|
+
- Ensure uniqueness by appending suffixes: _1, _2, ...
|
|
245
397
|
|
|
246
|
-
Returns:
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
398
|
+
Returns (path, changed):
|
|
399
|
+
- (src_path, False) if no changes were needed
|
|
400
|
+
- (temp_path, True) if a sanitized temp file was written (caller must
|
|
401
|
+
delete)
|
|
250
402
|
"""
|
|
251
403
|
if src_path.endswith('.parquet'):
|
|
252
404
|
pf = pq.ParquetFile(src_path)
|
|
@@ -255,7 +407,6 @@ def sanitize_file(src_path: str) -> Tuple[str, bool]:
|
|
|
255
407
|
return src_path, False
|
|
256
408
|
temp_file = tempfile.NamedTemporaryFile(suffix='.parquet',
|
|
257
409
|
delete=False)
|
|
258
|
-
# Create schema with sanitized column names
|
|
259
410
|
original_schema = pf.schema.to_arrow_schema()
|
|
260
411
|
fields = [
|
|
261
412
|
field.with_name(new_name)
|
|
@@ -273,18 +424,15 @@ def sanitize_file(src_path: str) -> Tuple[str, bool]:
|
|
|
273
424
|
new_cols, changed = _sanitize_columns(cols)
|
|
274
425
|
if not changed:
|
|
275
426
|
return src_path, False
|
|
276
|
-
|
|
277
427
|
tmp = tempfile.NamedTemporaryFile(suffix='.csv', delete=False)
|
|
278
428
|
tmp_path = tmp.name
|
|
279
429
|
tmp.close()
|
|
280
|
-
|
|
281
430
|
reader = pd.read_csv(src_path, chunksize=1_000_000)
|
|
282
431
|
with open(tmp_path, 'w', encoding='utf-8', newline='') as out:
|
|
283
|
-
out.write(','.join(new_cols) + '\n')
|
|
432
|
+
out.write(','.join(new_cols) + '\n')
|
|
284
433
|
for chunk in reader:
|
|
285
434
|
chunk.columns = new_cols
|
|
286
435
|
chunk.to_csv(out, header=False, index=False)
|
|
287
|
-
|
|
288
436
|
return tmp_path, True
|
|
289
437
|
else:
|
|
290
438
|
raise ValueError(
|
|
@@ -296,14 +444,10 @@ def _upload_single_file(
|
|
|
296
444
|
path: str,
|
|
297
445
|
tqdm_bar_position: int = 0,
|
|
298
446
|
) -> None:
|
|
299
|
-
r"""Upload a single file (original upload_table logic)."""
|
|
300
|
-
# Validate:
|
|
301
447
|
if not (path.endswith(".parquet") or path.endswith(".csv")):
|
|
302
|
-
raise ValueError(f"Path {path} must be either a CSV or Parquet "
|
|
303
|
-
|
|
304
|
-
f"supported.")
|
|
448
|
+
raise ValueError(f"Path {path} must be either a CSV or Parquet file. "
|
|
449
|
+
"Partitioned data is not currently supported.")
|
|
305
450
|
|
|
306
|
-
# Prepare upload (number of parts based on total size):
|
|
307
451
|
file_type = 'parquet' if path.endswith('parquet') else 'csv'
|
|
308
452
|
path, temp_file_created = sanitize_file(path)
|
|
309
453
|
sz = os.path.getsize(path)
|
|
@@ -311,23 +455,24 @@ def _upload_single_file(
|
|
|
311
455
|
logger.info("Uploading table %s (path: %s), size=%s bytes", name, path,
|
|
312
456
|
sz)
|
|
313
457
|
|
|
314
|
-
upload_res = _start_table_upload(
|
|
315
|
-
|
|
316
|
-
file_type=file_type,
|
|
317
|
-
file_size_bytes=sz,
|
|
318
|
-
)
|
|
458
|
+
upload_res = _start_table_upload(table_name=name, file_type=file_type,
|
|
459
|
+
file_size_bytes=sz)
|
|
319
460
|
|
|
320
|
-
# Chunk and upload:
|
|
321
461
|
urls = list(upload_res.presigned_part_urls.values())
|
|
322
462
|
loop = _KUMO_EVENT_LOOP
|
|
323
463
|
part_metadata_list_fut = asyncio.run_coroutine_threadsafe(
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
CHUNK_SIZE,
|
|
327
|
-
|
|
464
|
+
multi_put_bounded(
|
|
465
|
+
urls=urls,
|
|
466
|
+
data_iter=stream_read(open(path, 'rb'), CHUNK_SIZE),
|
|
467
|
+
tqdm_bar_position=tqdm_bar_position,
|
|
468
|
+
concurrency=min(4, len(urls)),
|
|
469
|
+
upload_progress_cb=None,
|
|
470
|
+
upload_subchunk_bytes=UPLOAD_CHUNK_BYTES,
|
|
471
|
+
),
|
|
472
|
+
loop,
|
|
473
|
+
)
|
|
328
474
|
part_metadata_list = part_metadata_list_fut.result()
|
|
329
475
|
|
|
330
|
-
# Complete:
|
|
331
476
|
if tqdm_bar_position == 0:
|
|
332
477
|
logger.info("Upload complete. Validating table %s.", name)
|
|
333
478
|
for i in range(5):
|
|
@@ -340,10 +485,10 @@ def _upload_single_file(
|
|
|
340
485
|
parts_metadata=part_metadata_list,
|
|
341
486
|
)
|
|
342
487
|
except HTTPException as e:
|
|
488
|
+
# TODO(manan): this can happen when DELETE above has
|
|
489
|
+
# not propagated. So we retry with delay here. We
|
|
490
|
+
# assume DELETE is processed reasonably quickly:
|
|
343
491
|
if e.status_code == 500 and i < 4:
|
|
344
|
-
# TODO(manan): this can happen when DELETE above has
|
|
345
|
-
# not propagated. So we retry with delay here. We
|
|
346
|
-
# assume DELETE is processed reasonably quickly:
|
|
347
492
|
time.sleep(2**(i - 1))
|
|
348
493
|
continue
|
|
349
494
|
else:
|
|
@@ -357,46 +502,37 @@ def _upload_single_file(
|
|
|
357
502
|
os.unlink(path)
|
|
358
503
|
|
|
359
504
|
|
|
360
|
-
def _upload_partitioned_parquet(
|
|
361
|
-
|
|
362
|
-
path: str,
|
|
363
|
-
partition_size: int,
|
|
364
|
-
) -> None:
|
|
505
|
+
def _upload_partitioned_parquet(name: str, path: str,
|
|
506
|
+
partition_size: int) -> None:
|
|
365
507
|
r"""Upload a large parquet file by partitioning it into smaller chunks."""
|
|
366
508
|
logger.info("File %s is large, partitioning for upload...", path)
|
|
367
|
-
|
|
368
509
|
pf = pq.ParquetFile(path)
|
|
369
510
|
new_columns, _ = _sanitize_columns(pf.schema.names)
|
|
370
|
-
|
|
371
|
-
partitions = []
|
|
511
|
+
|
|
512
|
+
partitions: List[Tuple[int, List[int]]] = []
|
|
372
513
|
part_idx = 0
|
|
373
514
|
current_size = 0
|
|
374
515
|
current_row_groups: list[int] = []
|
|
375
516
|
|
|
376
517
|
for rg_idx in range(pf.num_row_groups):
|
|
377
518
|
rg_size = pf.metadata.row_group(rg_idx).total_byte_size
|
|
378
|
-
|
|
379
519
|
if rg_size > MAX_PARTITION_SIZE:
|
|
380
|
-
raise ValueError(
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
520
|
+
raise ValueError(
|
|
521
|
+
f"Row group {rg_idx} is larger than the maximum partition size"
|
|
522
|
+
f"{MAX_PARTITION_SIZE} bytes")
|
|
384
523
|
if current_size + rg_size > partition_size and current_row_groups:
|
|
385
524
|
partitions.append((part_idx, current_row_groups.copy()))
|
|
386
525
|
part_idx += 1
|
|
387
526
|
current_row_groups = []
|
|
388
527
|
current_size = 0
|
|
389
|
-
|
|
390
528
|
current_row_groups.append(rg_idx)
|
|
391
529
|
current_size += rg_size
|
|
392
|
-
|
|
393
530
|
if current_row_groups:
|
|
394
531
|
partitions.append((part_idx, current_row_groups))
|
|
395
532
|
|
|
396
533
|
logger.info("Splitting %s into %d partitions", path, len(partitions))
|
|
397
534
|
|
|
398
535
|
def writer(path: str, row_groups: List[int]) -> None:
|
|
399
|
-
# Create schema with sanitized column names
|
|
400
536
|
original_schema = pf.schema.to_arrow_schema()
|
|
401
537
|
fields = [
|
|
402
538
|
field.with_name(new_name)
|
|
@@ -410,45 +546,32 @@ def _upload_partitioned_parquet(
|
|
|
410
546
|
pq_writer.close()
|
|
411
547
|
|
|
412
548
|
_upload_all_partitions(partitions, name, ".parquet", writer)
|
|
413
|
-
# validation done by _upload_single_file on each partition
|
|
414
549
|
logger.info("Upload complete. Validated table %s.", name)
|
|
415
550
|
|
|
416
551
|
|
|
417
|
-
def _upload_partitioned_csv(
|
|
418
|
-
name: str,
|
|
419
|
-
path: str,
|
|
420
|
-
partition_size: int,
|
|
421
|
-
) -> None:
|
|
552
|
+
def _upload_partitioned_csv(name: str, path: str, partition_size: int) -> None:
|
|
422
553
|
r"""Upload a large CSV file by partitioning it into smaller chunks."""
|
|
423
|
-
|
|
424
|
-
partitions = []
|
|
554
|
+
partitions: List[Tuple[int, List[str]]] = []
|
|
425
555
|
part_idx = 0
|
|
426
556
|
columns = pd.read_csv(path, nrows=0).columns.tolist()
|
|
427
557
|
new_columns, _ = _sanitize_columns(columns)
|
|
428
558
|
with open(path, 'r', encoding='utf-8') as f:
|
|
429
|
-
|
|
430
|
-
_ = f.readline() # skip header
|
|
559
|
+
_ = f.readline()
|
|
431
560
|
header = ','.join(new_columns) + '\n'
|
|
432
561
|
header_size = len(header.encode('utf-8'))
|
|
433
|
-
|
|
434
562
|
current_lines = [header]
|
|
435
|
-
|
|
436
563
|
current_size = header_size
|
|
437
|
-
|
|
438
564
|
for line in f:
|
|
439
565
|
line_size = len(line.encode('utf-8'))
|
|
440
|
-
|
|
441
566
|
if (current_size + line_size > partition_size
|
|
442
567
|
and len(current_lines) > 1):
|
|
443
568
|
partitions.append((part_idx, current_lines.copy()))
|
|
444
569
|
part_idx += 1
|
|
445
|
-
current_lines = [header]
|
|
570
|
+
current_lines = [header]
|
|
446
571
|
current_size = header_size
|
|
447
|
-
|
|
448
572
|
current_lines.append(line)
|
|
449
573
|
current_size += line_size
|
|
450
|
-
|
|
451
|
-
if len(current_lines) > 1: # More than just header
|
|
574
|
+
if len(current_lines) > 1:
|
|
452
575
|
partitions.append((part_idx, current_lines))
|
|
453
576
|
|
|
454
577
|
logger.info("Splitting %s into %d partitions", path, len(partitions))
|
|
@@ -458,7 +581,6 @@ def _upload_partitioned_csv(
|
|
|
458
581
|
f.writelines(lines)
|
|
459
582
|
|
|
460
583
|
_upload_all_partitions(partitions, name, ".csv", writer)
|
|
461
|
-
# validation done by _upload_single_file on each partition
|
|
462
584
|
logger.info("Upload complete. Validated table %s.", name)
|
|
463
585
|
|
|
464
586
|
|
|
@@ -472,7 +594,6 @@ def _upload_all_partitions(
|
|
|
472
594
|
for part_idx, partition_data in pbar:
|
|
473
595
|
partition_desc = f"Part {part_idx+1}/{len(partitions)}"
|
|
474
596
|
pbar.set_postfix_str(partition_desc)
|
|
475
|
-
|
|
476
597
|
_create_and_upload_partition(
|
|
477
598
|
name=name,
|
|
478
599
|
part_idx=part_idx,
|
|
@@ -496,33 +617,23 @@ def _create_and_upload_partition(
|
|
|
496
617
|
"""
|
|
497
618
|
partition_name = (f"{name}{file_suffix}/"
|
|
498
619
|
f"part_{part_idx+1:04d}{file_suffix}")
|
|
499
|
-
|
|
500
620
|
with tempfile.NamedTemporaryFile(suffix=file_suffix,
|
|
501
621
|
delete=False) as temp_file:
|
|
502
622
|
partition_path = temp_file.name
|
|
503
623
|
|
|
504
624
|
try:
|
|
505
625
|
partition_writer(partition_path, partition_data)
|
|
506
|
-
|
|
507
|
-
# Upload partition immediately with a nested progress bar
|
|
508
626
|
_upload_single_file(partition_name, partition_path,
|
|
509
627
|
tqdm_bar_position=tqdm_bar_position)
|
|
510
|
-
|
|
511
628
|
finally:
|
|
512
|
-
# clean up the temporary file, even if the upload fails
|
|
513
629
|
try:
|
|
514
630
|
os.unlink(partition_path)
|
|
515
631
|
except OSError:
|
|
516
|
-
pass
|
|
632
|
+
pass
|
|
517
633
|
|
|
518
634
|
|
|
519
|
-
def delete_uploaded_table(
|
|
520
|
-
|
|
521
|
-
file_type: str,
|
|
522
|
-
) -> None:
|
|
523
|
-
r"""Now deprecated in favor of
|
|
524
|
-
:func:`kumoai.connector.file_upload_connector.FileUploadConnector.delete`.
|
|
525
|
-
Synchronously deletes a previously uploaded table from the Kumo data
|
|
635
|
+
def delete_uploaded_table(name: str, file_type: str) -> None:
|
|
636
|
+
r"""Synchronously deletes a previously uploaded table from the Kumo data
|
|
526
637
|
plane.
|
|
527
638
|
|
|
528
639
|
.. code-block:: python
|
|
@@ -545,10 +656,6 @@ def delete_uploaded_table(
|
|
|
545
656
|
file_type: The file type of the table to be deleted; this can either
|
|
546
657
|
be :obj:`"parquet"` or :obj:`"csv"`
|
|
547
658
|
"""
|
|
548
|
-
warnings.warn(
|
|
549
|
-
"delete_uploaded_table is deprecated; use "
|
|
550
|
-
"FileUploadConnector.delete instead.", DeprecationWarning,
|
|
551
|
-
stacklevel=2)
|
|
552
659
|
assert file_type in {'parquet', 'csv'}
|
|
553
660
|
req = DeleteUploadedFileRequest(
|
|
554
661
|
source_table_name=name,
|
|
@@ -558,11 +665,7 @@ def delete_uploaded_table(
|
|
|
558
665
|
logger.info("Successfully deleted table %s from Kumo.", name)
|
|
559
666
|
|
|
560
667
|
|
|
561
|
-
def replace_table(
|
|
562
|
-
name: str,
|
|
563
|
-
path: str,
|
|
564
|
-
file_type: str,
|
|
565
|
-
) -> None:
|
|
668
|
+
def replace_table(name: str, path: str, file_type: str) -> None:
|
|
566
669
|
r"""Replaces an existing uploaded table on the Kumo data plane with a new
|
|
567
670
|
table.
|
|
568
671
|
|
|
@@ -592,20 +695,15 @@ def replace_table(
|
|
|
592
695
|
ValueError: If the specified path does not point to a valid
|
|
593
696
|
`.csv` or `.parquet` file.
|
|
594
697
|
"""
|
|
595
|
-
# Validate:
|
|
596
698
|
if not (path.endswith(".parquet") or path.endswith(".csv")):
|
|
597
|
-
raise ValueError(f"Path {path} must be either a CSV or Parquet "
|
|
598
|
-
|
|
599
|
-
f"supported.")
|
|
600
|
-
|
|
699
|
+
raise ValueError(f"Path {path} must be either a CSV or Parquet file. "
|
|
700
|
+
"Partitioned data is not currently supported.")
|
|
601
701
|
try:
|
|
602
702
|
logger.info("Deleting previously uploaded table %s of type %s.", name,
|
|
603
703
|
file_type)
|
|
604
704
|
delete_uploaded_table(name=name, file_type=file_type)
|
|
605
705
|
except Exception:
|
|
606
|
-
# TODO(manan): fix this...
|
|
607
706
|
pass
|
|
608
|
-
|
|
609
707
|
logger.info("Uploading table %s.", name)
|
|
610
708
|
upload_table(name=name, path=path)
|
|
611
709
|
logger.info("Successfully replaced table %s with the new table.", name)
|
|
@@ -625,6 +723,21 @@ def _start_table_upload(
|
|
|
625
723
|
return global_state.client.connector_api.start_file_upload(req)
|
|
626
724
|
|
|
627
725
|
|
|
726
|
+
def _start_table_upload_with_parts(
|
|
727
|
+
table_name: str,
|
|
728
|
+
file_type: str,
|
|
729
|
+
file_size_bytes: int,
|
|
730
|
+
num_parts: int,
|
|
731
|
+
) -> StartFileUploadResponse:
|
|
732
|
+
assert file_type in CONNECTOR_ID_MAP.keys()
|
|
733
|
+
req = StartFileUploadRequest(
|
|
734
|
+
source_table_name=table_name,
|
|
735
|
+
connector_id=CONNECTOR_ID_MAP[file_type],
|
|
736
|
+
num_parts=max(1, int(num_parts)),
|
|
737
|
+
)
|
|
738
|
+
return global_state.client.connector_api.start_file_upload(req)
|
|
739
|
+
|
|
740
|
+
|
|
628
741
|
def _complete_table_upload(
|
|
629
742
|
table_name: str,
|
|
630
743
|
file_type: str,
|
|
@@ -633,12 +746,1030 @@ def _complete_table_upload(
|
|
|
633
746
|
parts_metadata: List[PartUploadMetadata],
|
|
634
747
|
) -> None:
|
|
635
748
|
assert file_type in CONNECTOR_ID_MAP.keys()
|
|
636
|
-
|
|
637
749
|
req = CompleteFileUploadRequest(
|
|
638
750
|
source_table_name=table_name,
|
|
639
751
|
connector_id=CONNECTOR_ID_MAP[file_type],
|
|
640
|
-
temp_upload_path=upload_path,
|
|
641
|
-
upload_id=upload_id,
|
|
752
|
+
temp_upload_path=str(upload_path),
|
|
753
|
+
upload_id=str(upload_id),
|
|
642
754
|
parts_metadata=parts_metadata,
|
|
755
|
+
# Server-side validation is disabled because client-side (SDK)
|
|
756
|
+
# validation is now comprehensive and eliminates the need for
|
|
757
|
+
# additional server-side validation.
|
|
758
|
+
validate_data=False,
|
|
643
759
|
)
|
|
644
760
|
return global_state.client.connector_api.complete_file_upload(req)
|
|
761
|
+
|
|
762
|
+
|
|
763
|
+
# -----------------------
|
|
764
|
+
# Remote I/O (fsspec)
|
|
765
|
+
# -----------------------
|
|
766
|
+
|
|
767
|
+
# Define data type for filesystem that does not depend on fsspec
|
|
768
|
+
Filesystem = Any
|
|
769
|
+
|
|
770
|
+
|
|
771
|
+
def _make_filesystem(scheme: str) -> Filesystem:
|
|
772
|
+
if scheme == "s3":
|
|
773
|
+
try:
|
|
774
|
+
import fsspec # noqa: F401
|
|
775
|
+
import s3fs # noqa: F401
|
|
776
|
+
except Exception:
|
|
777
|
+
raise ImportError(
|
|
778
|
+
"S3 paths require 's3fs'. Install: pip install s3fs")
|
|
779
|
+
fs = fsspec.filesystem("s3")
|
|
780
|
+
elif scheme == "gs":
|
|
781
|
+
try:
|
|
782
|
+
import fsspec # noqa: F401
|
|
783
|
+
import gcsfs # noqa: F401
|
|
784
|
+
except Exception:
|
|
785
|
+
raise ImportError(
|
|
786
|
+
"GCS paths require 'gcsfs'. Install: pip install gcsfs")
|
|
787
|
+
fs = fsspec.filesystem("gcs")
|
|
788
|
+
elif scheme in ("abfs", "abfss", "az"):
|
|
789
|
+
try:
|
|
790
|
+
import adlfs # noqa: F401
|
|
791
|
+
import fsspec # noqa: F401
|
|
792
|
+
except Exception:
|
|
793
|
+
raise ImportError(
|
|
794
|
+
"Azure paths require 'adlfs'. Install: pip install adlfs")
|
|
795
|
+
fs = fsspec.filesystem(scheme)
|
|
796
|
+
else:
|
|
797
|
+
raise ValueError(f"Unsupported remote scheme: {scheme}")
|
|
798
|
+
return fs
|
|
799
|
+
|
|
800
|
+
|
|
801
|
+
def _get_fs_and_path(url: str) -> Tuple[Filesystem, str]:
|
|
802
|
+
parsed = urlparse(url)
|
|
803
|
+
scheme = parsed.scheme
|
|
804
|
+
fs = _make_filesystem(scheme)
|
|
805
|
+
return fs, url
|
|
806
|
+
|
|
807
|
+
|
|
808
|
+
def _remote_info(fs: Filesystem, path: str) -> dict:
|
|
809
|
+
try:
|
|
810
|
+
info = fs.info(path)
|
|
811
|
+
if info.get("type") in ("file", "directory"):
|
|
812
|
+
return info
|
|
813
|
+
# s3fs for directories can return {'Key':..., 'Size':...}; normalize
|
|
814
|
+
if info.get("Size") is not None and info.get("Key"):
|
|
815
|
+
return {
|
|
816
|
+
"type": "file",
|
|
817
|
+
"size": info.get("Size"),
|
|
818
|
+
"name": info.get("Key")
|
|
819
|
+
}
|
|
820
|
+
return info
|
|
821
|
+
except Exception as e:
|
|
822
|
+
raise RuntimeError(f"Failed to stat remote path {path}: {e}")
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
def _remote_dir_manifest(fs: Filesystem, path: str) -> dict:
|
|
826
|
+
# Return lists of parquet and csv entries with size
|
|
827
|
+
try:
|
|
828
|
+
listing = fs.ls(path, detail=True)
|
|
829
|
+
except Exception as e:
|
|
830
|
+
raise RuntimeError(f"Failed to list remote directory {path}: {e}")
|
|
831
|
+
|
|
832
|
+
parquet_files: List[dict] = []
|
|
833
|
+
csv_files: List[dict] = []
|
|
834
|
+
for ent in listing:
|
|
835
|
+
if isinstance(ent, dict):
|
|
836
|
+
p = ent.get("name") or ent.get("Key") or ent.get("path")
|
|
837
|
+
s = ent.get("size") or ent.get("Size") or 0
|
|
838
|
+
t = ent.get("type") or ent.get("StorageClass") or ""
|
|
839
|
+
if t == "directory":
|
|
840
|
+
continue
|
|
841
|
+
else:
|
|
842
|
+
p = ent
|
|
843
|
+
try:
|
|
844
|
+
s = fs.info(p).get("size", 0)
|
|
845
|
+
except Exception:
|
|
846
|
+
s = 0
|
|
847
|
+
if not isinstance(p, str):
|
|
848
|
+
continue
|
|
849
|
+
ext = os.path.splitext(p.lower())[1]
|
|
850
|
+
if ext == ".parquet":
|
|
851
|
+
parquet_files.append({"path": p, "size": int(s or 0)})
|
|
852
|
+
elif ext == ".csv":
|
|
853
|
+
csv_files.append({"path": p, "size": int(s or 0)})
|
|
854
|
+
|
|
855
|
+
return {"parquet": parquet_files, "csv": csv_files}
|
|
856
|
+
|
|
857
|
+
|
|
858
|
+
def _read_remote_file_with_progress(
|
|
859
|
+
fs: Filesystem,
|
|
860
|
+
path: str,
|
|
861
|
+
expected_size: Optional[int],
|
|
862
|
+
update_bytes: Optional[Callable[[int], Optional[bool]]] = None,
|
|
863
|
+
capture_first_line: bool = False,
|
|
864
|
+
) -> Tuple[io.BytesIO, memoryview, Optional[bytes]]:
|
|
865
|
+
"""Stream into a single BytesIO (one allocation) and return a zero-copy
|
|
866
|
+
memoryview.
|
|
867
|
+
"""
|
|
868
|
+
buf = io.BytesIO()
|
|
869
|
+
|
|
870
|
+
header_line: Optional[bytes] = None
|
|
871
|
+
if capture_first_line:
|
|
872
|
+
header_acc = bytearray()
|
|
873
|
+
seen_nl = False
|
|
874
|
+
else:
|
|
875
|
+
header_acc = bytearray()
|
|
876
|
+
seen_nl = True
|
|
877
|
+
|
|
878
|
+
with fs.open(path, "rb") as fobj:
|
|
879
|
+
while True:
|
|
880
|
+
chunk = fobj.read(READ_CHUNK_BYTES)
|
|
881
|
+
if not chunk:
|
|
882
|
+
break
|
|
883
|
+
if capture_first_line and not seen_nl:
|
|
884
|
+
nl_idx = chunk.find(b"\n")
|
|
885
|
+
if nl_idx != -1:
|
|
886
|
+
header_acc += chunk[:nl_idx]
|
|
887
|
+
# small copy only for header
|
|
888
|
+
header_line = bytes(header_acc)
|
|
889
|
+
seen_nl = True
|
|
890
|
+
else:
|
|
891
|
+
header_acc += chunk
|
|
892
|
+
buf.write(chunk)
|
|
893
|
+
if update_bytes:
|
|
894
|
+
try:
|
|
895
|
+
update_bytes(len(chunk))
|
|
896
|
+
except Exception:
|
|
897
|
+
pass
|
|
898
|
+
|
|
899
|
+
if capture_first_line and not seen_nl:
|
|
900
|
+
header_line = bytes(header_acc)
|
|
901
|
+
|
|
902
|
+
mv = buf.getbuffer() # zero-copy view of BytesIO internal buffer
|
|
903
|
+
return buf, mv, header_line
|
|
904
|
+
|
|
905
|
+
|
|
906
|
+
# -----------------------
|
|
907
|
+
# Memory budget & helpers
|
|
908
|
+
# -----------------------
|
|
909
|
+
def _compute_mem_budget_bytes(files: List[dict]) -> int:
|
|
910
|
+
# 50% of system RAM
|
|
911
|
+
try:
|
|
912
|
+
import psutil
|
|
913
|
+
total = psutil.virtual_memory().total
|
|
914
|
+
except Exception:
|
|
915
|
+
total = 8 * 1024**3 # assume 8 GiB
|
|
916
|
+
budget = int(total * 0.50)
|
|
917
|
+
return max(budget, 512 * 1024**2) # at least 512 MiB
|
|
918
|
+
|
|
919
|
+
|
|
920
|
+
class MemoryBudget:
|
|
921
|
+
"""A byte-level semaphore to prevent OOM when reading many shards."""
|
|
922
|
+
def __init__(self, budget_bytes: int) -> None:
|
|
923
|
+
self.budget = budget_bytes
|
|
924
|
+
self.avail = budget_bytes
|
|
925
|
+
self.cv = threading.Condition()
|
|
926
|
+
|
|
927
|
+
def acquire(self, need: int) -> None:
|
|
928
|
+
with self.cv:
|
|
929
|
+
while self.avail < need:
|
|
930
|
+
self.cv.wait(timeout=0.25)
|
|
931
|
+
self.avail -= need
|
|
932
|
+
|
|
933
|
+
def release(self, freed: int) -> None:
|
|
934
|
+
with self.cv:
|
|
935
|
+
self.avail += freed
|
|
936
|
+
if self.avail > self.budget:
|
|
937
|
+
self.avail = self.budget
|
|
938
|
+
self.cv.notify_all()
|
|
939
|
+
|
|
940
|
+
|
|
941
|
+
def _determine_parallelism(files: List[dict], requested: Optional[int]) -> int:
|
|
942
|
+
if requested is not None and requested > 0:
|
|
943
|
+
return min(requested, len(files))
|
|
944
|
+
env_par = os.getenv("KUMO_UPLOAD_PARALLELISM")
|
|
945
|
+
if env_par:
|
|
946
|
+
try:
|
|
947
|
+
val = int(env_par)
|
|
948
|
+
if val > 0:
|
|
949
|
+
return min(val, len(files))
|
|
950
|
+
except Exception:
|
|
951
|
+
pass
|
|
952
|
+
|
|
953
|
+
budget_bytes = _compute_mem_budget_bytes(files)
|
|
954
|
+
# 128 MiB overhead by default
|
|
955
|
+
try:
|
|
956
|
+
overhead_bytes = max(0, int(os.getenv("KUMO_UPLOAD_OVERHEAD_MB",
|
|
957
|
+
"128"))) * 1024**2
|
|
958
|
+
except Exception:
|
|
959
|
+
overhead_bytes = 128 * 1024**2
|
|
960
|
+
|
|
961
|
+
needs = []
|
|
962
|
+
for f in files:
|
|
963
|
+
size = int(f.get("size") or 0)
|
|
964
|
+
if size <= 0:
|
|
965
|
+
continue
|
|
966
|
+
needs.append(size + overhead_bytes)
|
|
967
|
+
if not needs:
|
|
968
|
+
return 1
|
|
969
|
+
needs.sort()
|
|
970
|
+
median_need = needs[len(needs) // 2]
|
|
971
|
+
par = max(1, budget_bytes // max(1, median_need))
|
|
972
|
+
return min(int(par), len(files))
|
|
973
|
+
|
|
974
|
+
|
|
975
|
+
def _iter_mv_chunks(mv: memoryview,
|
|
976
|
+
part_size: int) -> Generator[memoryview, None, None]:
|
|
977
|
+
pos = 0
|
|
978
|
+
n = mv.nbytes
|
|
979
|
+
while pos < n:
|
|
980
|
+
nxt = min(n, pos + part_size)
|
|
981
|
+
yield mv[pos:nxt] # zero-copy slice
|
|
982
|
+
pos = nxt
|
|
983
|
+
|
|
984
|
+
|
|
985
|
+
# -----------------------
|
|
986
|
+
# Parquet helpers
|
|
987
|
+
# -----------------------
|
|
988
|
+
def _parquet_schema_from_bytes(data_mv: memoryview) -> pa.Schema:
|
|
989
|
+
reader = pa.BufferReader(pa.py_buffer(data_mv))
|
|
990
|
+
pf = pq.ParquetFile(reader)
|
|
991
|
+
|
|
992
|
+
# zero-row guard via metadata (no data scan)
|
|
993
|
+
if getattr(pf.metadata, "num_rows", None) == 0:
|
|
994
|
+
raise ValueError("Parquet file contains zero rows.")
|
|
995
|
+
|
|
996
|
+
return pf.schema_arrow
|
|
997
|
+
|
|
998
|
+
|
|
999
|
+
def _parquet_num_rows_from_bytes(data_mv: memoryview) -> int:
|
|
1000
|
+
buf = pa.py_buffer(data_mv)
|
|
1001
|
+
reader = pa.BufferReader(buf)
|
|
1002
|
+
pf = pq.ParquetFile(reader)
|
|
1003
|
+
md = pf.metadata
|
|
1004
|
+
if md is None:
|
|
1005
|
+
total = 0
|
|
1006
|
+
for rg in range(pf.num_row_groups):
|
|
1007
|
+
total += pf.metadata.row_group(rg).num_rows
|
|
1008
|
+
return total
|
|
1009
|
+
return md.num_rows
|
|
1010
|
+
|
|
1011
|
+
|
|
1012
|
+
def validate_parquet_schema(schema: pa.Schema, source_name: str) -> None:
|
|
1013
|
+
"""Validate a PyArrow schema for Kumo compatibility (source_name
|
|
1014
|
+
required).
|
|
1015
|
+
|
|
1016
|
+
Disallowed:
|
|
1017
|
+
- All large_* types: large_string, large_binary, large_list<*>
|
|
1018
|
+
- Any time-of-day types (time32/64<*>); ONLY epoch-based timestamps are
|
|
1019
|
+
allowed
|
|
1020
|
+
- Any duration types (e.g., pa.duration('ns'))
|
|
1021
|
+
- list<string> and list<bool>
|
|
1022
|
+
- Unsigned integers (uint8/16/32/64)
|
|
1023
|
+
- Null-typed columns
|
|
1024
|
+
|
|
1025
|
+
Allowed:
|
|
1026
|
+
- boolean, signed integer, floating, (regular) string, date, timestamp
|
|
1027
|
+
(epoch-based), (regular) binary
|
|
1028
|
+
- decimal up to configured precision (env KUMO_DECIMAL_MAX_PRECISION,
|
|
1029
|
+
default 18)
|
|
1030
|
+
- list of {signed integer, float}
|
|
1031
|
+
- dictionary<int, string>
|
|
1032
|
+
|
|
1033
|
+
Raises:
|
|
1034
|
+
ValueError listing offending columns (including source_name).
|
|
1035
|
+
"""
|
|
1036
|
+
try:
|
|
1037
|
+
max_dec_prec = int(os.getenv("KUMO_DECIMAL_MAX_PRECISION", "18"))
|
|
1038
|
+
except Exception:
|
|
1039
|
+
max_dec_prec = 18
|
|
1040
|
+
|
|
1041
|
+
where = f" in {source_name}"
|
|
1042
|
+
errors: list[str] = []
|
|
1043
|
+
|
|
1044
|
+
for col, dt in zip(schema.names, schema.types):
|
|
1045
|
+
# 1) Hard-disallow all large_* types
|
|
1046
|
+
if pa.types.is_large_string(dt):
|
|
1047
|
+
errors.append(
|
|
1048
|
+
f" - column '{col}'{where} has unsupported type large_string")
|
|
1049
|
+
continue
|
|
1050
|
+
if pa.types.is_large_binary(dt):
|
|
1051
|
+
errors.append(
|
|
1052
|
+
f" - column '{col}'{where} has unsupported type large_binary")
|
|
1053
|
+
continue
|
|
1054
|
+
if pa.types.is_large_list(dt):
|
|
1055
|
+
errors.append(
|
|
1056
|
+
f" - column '{col}'{where} has unsupported type {dt} "
|
|
1057
|
+
f"(large_list not supported)")
|
|
1058
|
+
continue
|
|
1059
|
+
|
|
1060
|
+
# 2) Disallow time-of-day and duration
|
|
1061
|
+
if pa.types.is_time(dt):
|
|
1062
|
+
errors.append(
|
|
1063
|
+
f" - column '{col}'{where} has unsupported time-of-day type "
|
|
1064
|
+
f"'{dt}' (only epoch-based timestamps are supported)")
|
|
1065
|
+
continue
|
|
1066
|
+
if pa.types.is_duration(dt):
|
|
1067
|
+
errors.append(
|
|
1068
|
+
f" - column '{col}'{where} has unsupported duration "
|
|
1069
|
+
f"type '{dt}'")
|
|
1070
|
+
continue
|
|
1071
|
+
|
|
1072
|
+
# 3) Disallow unsigned integers and null columns
|
|
1073
|
+
if pa.types.is_unsigned_integer(dt):
|
|
1074
|
+
errors.append(
|
|
1075
|
+
f" - column '{col}'{where} has unsupported unsigned integer "
|
|
1076
|
+
"type '{dt}'")
|
|
1077
|
+
continue
|
|
1078
|
+
if pa.types.is_null(dt):
|
|
1079
|
+
errors.append(
|
|
1080
|
+
f" - column '{col}'{where} has unsupported null type '{dt}'")
|
|
1081
|
+
continue
|
|
1082
|
+
|
|
1083
|
+
supported = (
|
|
1084
|
+
pa.types.is_boolean(dt)
|
|
1085
|
+
# signed ints only
|
|
1086
|
+
or (pa.types.is_integer(dt)
|
|
1087
|
+
and not pa.types.is_unsigned_integer(dt)) or
|
|
1088
|
+
pa.types.is_floating(dt) or
|
|
1089
|
+
pa.types.is_string(dt) # regular string only
|
|
1090
|
+
or pa.types.is_date(dt) or
|
|
1091
|
+
pa.types.is_timestamp(dt) # epoch-based timestamps
|
|
1092
|
+
or pa.types.is_binary(dt) # regular binary only
|
|
1093
|
+
)
|
|
1094
|
+
|
|
1095
|
+
# 4) Decimals with precision limit
|
|
1096
|
+
if not supported and pa.types.is_decimal(dt):
|
|
1097
|
+
try:
|
|
1098
|
+
prec = int(getattr(dt, "precision", 0) or 0)
|
|
1099
|
+
except Exception:
|
|
1100
|
+
prec = 0
|
|
1101
|
+
if 0 < prec <= max_dec_prec:
|
|
1102
|
+
supported = True
|
|
1103
|
+
else:
|
|
1104
|
+
errors.append(
|
|
1105
|
+
f" - column '{col}'{where} has unsupported decimal "
|
|
1106
|
+
f"precision {prec} (max {max_dec_prec}): type '{dt}'")
|
|
1107
|
+
continue
|
|
1108
|
+
|
|
1109
|
+
# 5) Lists: only list of {signed int, float}; explicitly deny
|
|
1110
|
+
# list<string> and list<bool>
|
|
1111
|
+
if not supported and pa.types.is_list(dt):
|
|
1112
|
+
elem = dt.value_type
|
|
1113
|
+
if pa.types.is_string(elem):
|
|
1114
|
+
errors.append(
|
|
1115
|
+
f" - column '{col}'{where} is {dt} (list<string> not "
|
|
1116
|
+
f"supported)")
|
|
1117
|
+
continue
|
|
1118
|
+
if pa.types.is_boolean(elem):
|
|
1119
|
+
errors.append(f" - column '{col}'{where} is {dt} (list<bool> "
|
|
1120
|
+
f"not supported)")
|
|
1121
|
+
continue
|
|
1122
|
+
if pa.types.is_integer(
|
|
1123
|
+
elem) and not pa.types.is_unsigned_integer(elem):
|
|
1124
|
+
supported = True
|
|
1125
|
+
elif pa.types.is_floating(elem):
|
|
1126
|
+
supported = True
|
|
1127
|
+
else:
|
|
1128
|
+
errors.append(
|
|
1129
|
+
f" - column '{col}'{where} is {dt} (only list of signed "
|
|
1130
|
+
f"int/float supported)")
|
|
1131
|
+
continue
|
|
1132
|
+
|
|
1133
|
+
# 6) Dictionary<int, string> only
|
|
1134
|
+
if not supported and pa.types.is_dictionary(dt):
|
|
1135
|
+
if (pa.types.is_integer(dt.index_type)
|
|
1136
|
+
and not pa.types.is_unsigned_integer(dt.index_type)
|
|
1137
|
+
and pa.types.is_string(dt.value_type)):
|
|
1138
|
+
supported = True
|
|
1139
|
+
|
|
1140
|
+
if not supported:
|
|
1141
|
+
errors.append(
|
|
1142
|
+
f" - column '{col}'{where} has unsupported type '{dt}'")
|
|
1143
|
+
|
|
1144
|
+
if errors:
|
|
1145
|
+
raise ValueError(
|
|
1146
|
+
"Unsupported Parquet Data Types detected:\n\n" +
|
|
1147
|
+
"\n".join(errors) + "\n\nAllowed types: boolean, signed integer, "
|
|
1148
|
+
"float, (regular) string, date, "
|
|
1149
|
+
"timestamp (epoch-based), (regular) binary, "
|
|
1150
|
+
"decimal (<= configured precision), "
|
|
1151
|
+
"list of {signed int, float}, dictionary<int,string>.\n"
|
|
1152
|
+
"Disallowed examples: large_string, large_binary, "
|
|
1153
|
+
"large_list<*>, time32/64<*>, "
|
|
1154
|
+
"duration('unit'), list<string>, list<bool>, "
|
|
1155
|
+
"unsigned integers, null columns, "
|
|
1156
|
+
"structs, maps, and other nested types.")
|
|
1157
|
+
|
|
1158
|
+
|
|
1159
|
+
# -----------------------
|
|
1160
|
+
# CSV helpers
|
|
1161
|
+
# -----------------------
|
|
1162
|
+
def _detect_and_validate_csv(head_bytes: bytes) -> str:
|
|
1163
|
+
r"""Detect a CSV delimiter from a small head sample and verify it.
|
|
1164
|
+
|
|
1165
|
+
- Uses csv.Sniffer (preferred delimiters: | , ; \t) with fallback to ','.
|
|
1166
|
+
- Reads a handful of complete, quote-aware records (handles newlines inside
|
|
1167
|
+
quotes).
|
|
1168
|
+
- Re-serializes those rows and validates with pandas (small nrows) to catch
|
|
1169
|
+
malformed inputs.
|
|
1170
|
+
- Raises ValueError on empty input or if parsing fails with the chosen
|
|
1171
|
+
delimiter.
|
|
1172
|
+
"""
|
|
1173
|
+
if not head_bytes:
|
|
1174
|
+
raise ValueError("Could not auto-detect a delimiter: file is empty.")
|
|
1175
|
+
|
|
1176
|
+
text = head_bytes.decode("utf-8", errors="ignore").replace("\r\n",
|
|
1177
|
+
"\n").replace(
|
|
1178
|
+
"\r", "\n")
|
|
1179
|
+
|
|
1180
|
+
# 1) Detect delimiter (simple preference list; no denylist)
|
|
1181
|
+
try:
|
|
1182
|
+
delimiter = csv.Sniffer().sniff(text, delimiters="|,;\t").delimiter
|
|
1183
|
+
except Exception:
|
|
1184
|
+
logger.warning("No separator found in sample; defaulting to ','.")
|
|
1185
|
+
delimiter = ','
|
|
1186
|
+
|
|
1187
|
+
# 2) Pull a few complete records with csv.reader (quote-aware,
|
|
1188
|
+
# handles embedded newlines)
|
|
1189
|
+
rows = []
|
|
1190
|
+
try:
|
|
1191
|
+
rdr = csv.reader(io.StringIO(text), delimiter=delimiter, quotechar='"',
|
|
1192
|
+
doublequote=True)
|
|
1193
|
+
for _ in range(50): # small, bounded sample
|
|
1194
|
+
try:
|
|
1195
|
+
rows.append(next(rdr))
|
|
1196
|
+
except StopIteration:
|
|
1197
|
+
break
|
|
1198
|
+
except Exception as e:
|
|
1199
|
+
raise ValueError(
|
|
1200
|
+
f"Could not auto-detect a valid delimiter. Tried '{delimiter}', "
|
|
1201
|
+
f"csv parse failed: {repr(e)}")
|
|
1202
|
+
|
|
1203
|
+
if not rows:
|
|
1204
|
+
raise ValueError(
|
|
1205
|
+
"Could not auto-detect a valid delimiter: no complete records "
|
|
1206
|
+
"found.")
|
|
1207
|
+
|
|
1208
|
+
# 3) Re-serialize snippet and validate minimally with pandas
|
|
1209
|
+
out = io.StringIO()
|
|
1210
|
+
w = csv.writer(out, delimiter=delimiter, lineterminator="\n",
|
|
1211
|
+
quotechar='"', doublequote=True)
|
|
1212
|
+
for r in rows:
|
|
1213
|
+
w.writerow(r)
|
|
1214
|
+
|
|
1215
|
+
try:
|
|
1216
|
+
pd.read_csv(
|
|
1217
|
+
io.StringIO(out.getvalue()),
|
|
1218
|
+
sep=delimiter,
|
|
1219
|
+
index_col=False,
|
|
1220
|
+
on_bad_lines='error',
|
|
1221
|
+
nrows=50,
|
|
1222
|
+
engine="python", # more tolerant for quoted/newline combos
|
|
1223
|
+
skip_blank_lines=False,
|
|
1224
|
+
)
|
|
1225
|
+
except Exception as e:
|
|
1226
|
+
raise ValueError(
|
|
1227
|
+
f"Could not auto-detect a valid delimiter. Tried '{delimiter}', "
|
|
1228
|
+
f"pandas parse failed: {repr(e)}")
|
|
1229
|
+
|
|
1230
|
+
return delimiter
|
|
1231
|
+
|
|
1232
|
+
|
|
1233
|
+
def _csv_has_data_rows(data_mv: memoryview) -> bool:
|
|
1234
|
+
"""Return True if any non-newline, non-carriage-return byte exists after
|
|
1235
|
+
the first newline. Uses zero-copy iteration over the memoryview to avoid
|
|
1236
|
+
duplicating buffers.
|
|
1237
|
+
"""
|
|
1238
|
+
mv = data_mv
|
|
1239
|
+
if mv.format != 'B':
|
|
1240
|
+
try:
|
|
1241
|
+
mv = mv.cast('B') # zero-copy view of bytes
|
|
1242
|
+
except TypeError:
|
|
1243
|
+
# fallback: create a contiguous view via slicing (still zero-copy)
|
|
1244
|
+
mv = mv[:]
|
|
1245
|
+
|
|
1246
|
+
saw_newline = False
|
|
1247
|
+
# Iterate in a single pass; break as soon as we see a data-ish byte
|
|
1248
|
+
for b in mv:
|
|
1249
|
+
if not saw_newline:
|
|
1250
|
+
if b == 10: # '\n'
|
|
1251
|
+
saw_newline = True
|
|
1252
|
+
continue
|
|
1253
|
+
# after header newline: any byte that isn't CR or LF counts as data
|
|
1254
|
+
if b not in (10, 13):
|
|
1255
|
+
return True
|
|
1256
|
+
return False
|
|
1257
|
+
|
|
1258
|
+
|
|
1259
|
+
def _maybe_rewrite_csv_header_buffer(
|
|
1260
|
+
data_mv: memoryview,
|
|
1261
|
+
header_line: bytes,
|
|
1262
|
+
delimiter: str,
|
|
1263
|
+
) -> tuple[Optional[io.BytesIO], memoryview, bytes, list[str], dict[str, str],
|
|
1264
|
+
bool]:
|
|
1265
|
+
"""Rewrite ONLY the header if needed. Uses a new BytesIO but frees the old
|
|
1266
|
+
buffer immediately after swap.
|
|
1267
|
+
"""
|
|
1268
|
+
try:
|
|
1269
|
+
header_str = header_line.decode("utf-8").rstrip("\r\n")
|
|
1270
|
+
except UnicodeDecodeError:
|
|
1271
|
+
raise ValueError("CSV header is not valid UTF-8.")
|
|
1272
|
+
|
|
1273
|
+
orig_cols = [c.strip() for c in header_str.split(delimiter)]
|
|
1274
|
+
new_cols, changed = _sanitize_columns(orig_cols)
|
|
1275
|
+
if not changed:
|
|
1276
|
+
return None, data_mv, header_line, orig_cols, {}, False
|
|
1277
|
+
|
|
1278
|
+
rename_map = {o: n for o, n in zip(orig_cols, new_cols) if o != n}
|
|
1279
|
+
|
|
1280
|
+
nl_idx = len(header_line)
|
|
1281
|
+
if nl_idx >= data_mv.nbytes:
|
|
1282
|
+
raise ValueError("Malformed CSV: newline not found in header.")
|
|
1283
|
+
|
|
1284
|
+
new_header_bytes = delimiter.join(new_cols).encode("utf-8")
|
|
1285
|
+
new_buf = io.BytesIO()
|
|
1286
|
+
new_buf.write(new_header_bytes)
|
|
1287
|
+
new_buf.write(b"\n")
|
|
1288
|
+
# Write the remainder via a zero-copy memoryview slice; BytesIO will copy
|
|
1289
|
+
# into its own buffer, but we free the original immediately after returning
|
|
1290
|
+
# to avoid double residency.
|
|
1291
|
+
new_buf.write(data_mv[nl_idx + 1:])
|
|
1292
|
+
new_mv = new_buf.getbuffer()
|
|
1293
|
+
return new_buf, new_mv, new_header_bytes, new_cols, rename_map, True
|
|
1294
|
+
|
|
1295
|
+
|
|
1296
|
+
# -----------------------
|
|
1297
|
+
# Remote upload (refactor)
|
|
1298
|
+
# -----------------------
|
|
1299
|
+
@dataclass
|
|
1300
|
+
class _RemoteSettings:
|
|
1301
|
+
part_size: int
|
|
1302
|
+
part_conc: int
|
|
1303
|
+
overhead_bytes: int
|
|
1304
|
+
parallelism_override: Optional[int]
|
|
1305
|
+
|
|
1306
|
+
|
|
1307
|
+
def _make_remote_settings(parallelism: Optional[int]) -> _RemoteSettings:
|
|
1308
|
+
part_mb = int(os.getenv("KUMO_REMOTE_PART_MB", "64"))
|
|
1309
|
+
part_size = max(8, part_mb) * 1024**2
|
|
1310
|
+
part_conc = int(os.getenv("KUMO_REMOTE_PART_CONCURRENCY", "4"))
|
|
1311
|
+
try:
|
|
1312
|
+
overhead_bytes = max(0, int(os.getenv("KUMO_UPLOAD_OVERHEAD_MB",
|
|
1313
|
+
"128"))) * 1024**2
|
|
1314
|
+
except Exception:
|
|
1315
|
+
overhead_bytes = 128 * 1024**2
|
|
1316
|
+
return _RemoteSettings(
|
|
1317
|
+
part_size=part_size,
|
|
1318
|
+
part_conc=part_conc,
|
|
1319
|
+
overhead_bytes=overhead_bytes,
|
|
1320
|
+
parallelism_override=parallelism,
|
|
1321
|
+
)
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
def _remote_upload_file(name: str, fs: Filesystem, url: str, info: dict,
|
|
1325
|
+
st: _RemoteSettings, file_type: Optional[str]) -> None:
|
|
1326
|
+
detected_ftype = _validate_url_ext(url, file_type)
|
|
1327
|
+
|
|
1328
|
+
size = int(info.get("size") or 0)
|
|
1329
|
+
if size == 0:
|
|
1330
|
+
raise ValueError(f"Remote file {url} is empty (0 bytes).")
|
|
1331
|
+
if size > MAX_PARTITION_SIZE:
|
|
1332
|
+
raise ValueError(
|
|
1333
|
+
"Remote single-file uploads larger than 1GB are not supported. "
|
|
1334
|
+
"Please re-partition the source into ~200MB chunks and upload the "
|
|
1335
|
+
"whole directory instead.")
|
|
1336
|
+
|
|
1337
|
+
# Read with progress
|
|
1338
|
+
with tqdm(total=size, desc=f"Reading {_short_path(url)}", unit="B",
|
|
1339
|
+
unit_scale=True, unit_divisor=1024, position=0, leave=False,
|
|
1340
|
+
smoothing=0.1) as read_bar:
|
|
1341
|
+
tr0 = time.perf_counter()
|
|
1342
|
+
buf, data_mv, header_line = _read_remote_file_with_progress(
|
|
1343
|
+
fs, url, expected_size=size, update_bytes=read_bar.update,
|
|
1344
|
+
capture_first_line=(detected_ftype == "csv"))
|
|
1345
|
+
tread = time.perf_counter() - tr0
|
|
1346
|
+
|
|
1347
|
+
# Validate/sanitize
|
|
1348
|
+
tv0 = time.perf_counter()
|
|
1349
|
+
renamed_cols_msg = None
|
|
1350
|
+
if detected_ftype == "parquet":
|
|
1351
|
+
schema = _parquet_schema_from_bytes(data_mv)
|
|
1352
|
+
_validate_columns_or_raise(list(schema.names))
|
|
1353
|
+
validate_parquet_schema(schema, url)
|
|
1354
|
+
nrows = _parquet_num_rows_from_bytes(data_mv)
|
|
1355
|
+
if nrows <= 0:
|
|
1356
|
+
raise ValueError("Parquet file has zero rows.")
|
|
1357
|
+
file_type = "parquet"
|
|
1358
|
+
else:
|
|
1359
|
+
head_len = min(50000, data_mv.nbytes)
|
|
1360
|
+
# small bounded copy only for sniffing
|
|
1361
|
+
head = bytes(data_mv[:head_len])
|
|
1362
|
+
delimiter = _detect_and_validate_csv(head)
|
|
1363
|
+
if header_line is None:
|
|
1364
|
+
# Shouldn't happen (we captured it during read), but keep a bounded
|
|
1365
|
+
# fallback (64 KiB)
|
|
1366
|
+
prefix_len = min(64 * 1024, data_mv.nbytes)
|
|
1367
|
+
prefix = data_mv[:prefix_len]
|
|
1368
|
+
# build header_line from prefix without large copies
|
|
1369
|
+
acc = bytearray()
|
|
1370
|
+
for b in (prefix.cast('B') if prefix.format != 'B' else prefix):
|
|
1371
|
+
if b == 10: # '\n'
|
|
1372
|
+
break
|
|
1373
|
+
acc.append(b)
|
|
1374
|
+
header_line = bytes(acc)
|
|
1375
|
+
new_buf, new_mv, new_header, cols, rename_map, changed = (
|
|
1376
|
+
_maybe_rewrite_csv_header_buffer(data_mv, header_line, delimiter))
|
|
1377
|
+
if changed:
|
|
1378
|
+
try:
|
|
1379
|
+
buf.close()
|
|
1380
|
+
except Exception:
|
|
1381
|
+
pass
|
|
1382
|
+
if changed:
|
|
1383
|
+
buf = new_buf # type: ignore[assignment]
|
|
1384
|
+
data_mv = new_mv
|
|
1385
|
+
header_line = new_header
|
|
1386
|
+
if rename_map:
|
|
1387
|
+
pairs = ", ".join(f"{k}->{v}" for k, v in rename_map.items())
|
|
1388
|
+
renamed_cols_msg = f"CSV header sanitized (renamed): {pairs}"
|
|
1389
|
+
if not _csv_has_data_rows(data_mv):
|
|
1390
|
+
raise ValueError(
|
|
1391
|
+
"CSV file has zero data rows (only header present).")
|
|
1392
|
+
file_type = "csv"
|
|
1393
|
+
tval = time.perf_counter() - tv0
|
|
1394
|
+
|
|
1395
|
+
# Multipart upload
|
|
1396
|
+
size_bytes = data_mv.nbytes
|
|
1397
|
+
num_parts = max(1, math.ceil(size_bytes / st.part_size))
|
|
1398
|
+
upload_res = _start_table_upload_with_parts(table_name=name,
|
|
1399
|
+
file_type=file_type,
|
|
1400
|
+
file_size_bytes=size_bytes,
|
|
1401
|
+
num_parts=num_parts)
|
|
1402
|
+
try:
|
|
1403
|
+
urls = [
|
|
1404
|
+
u for k, u in sorted(upload_res.presigned_part_urls.items(),
|
|
1405
|
+
key=lambda kv: int(kv[0]))
|
|
1406
|
+
]
|
|
1407
|
+
except Exception:
|
|
1408
|
+
urls = list(upload_res.presigned_part_urls.values())
|
|
1409
|
+
|
|
1410
|
+
loop = _KUMO_EVENT_LOOP
|
|
1411
|
+
with tqdm(total=size_bytes, desc="Uploading", unit="B", unit_scale=True,
|
|
1412
|
+
unit_divisor=1024, position=2, leave=False,
|
|
1413
|
+
smoothing=0.1) as upload_bar:
|
|
1414
|
+
part_metadata_list_fut = asyncio.run_coroutine_threadsafe(
|
|
1415
|
+
multi_put_bounded(
|
|
1416
|
+
urls=urls,
|
|
1417
|
+
data_iter=_iter_mv_chunks(data_mv, st.part_size),
|
|
1418
|
+
tqdm_bar_position=3,
|
|
1419
|
+
concurrency=max(1, min(st.part_conc, len(urls))),
|
|
1420
|
+
upload_progress_cb=lambda n: _safe_bar_update(upload_bar, n),
|
|
1421
|
+
upload_subchunk_bytes=UPLOAD_CHUNK_BYTES,
|
|
1422
|
+
),
|
|
1423
|
+
loop,
|
|
1424
|
+
)
|
|
1425
|
+
part_metadata_list = part_metadata_list_fut.result()
|
|
1426
|
+
upload_bar.set_postfix_str(f"Done — {_short_path(url)}")
|
|
1427
|
+
upload_bar.refresh()
|
|
1428
|
+
|
|
1429
|
+
# Complete
|
|
1430
|
+
tu0 = time.perf_counter()
|
|
1431
|
+
for i in range(5):
|
|
1432
|
+
try:
|
|
1433
|
+
_complete_table_upload(
|
|
1434
|
+
table_name=name,
|
|
1435
|
+
file_type=file_type,
|
|
1436
|
+
upload_path=upload_res.temp_upload_path,
|
|
1437
|
+
upload_id=upload_res.upload_id,
|
|
1438
|
+
parts_metadata=part_metadata_list,
|
|
1439
|
+
)
|
|
1440
|
+
except HTTPException as e:
|
|
1441
|
+
if e.status_code == 500 and i < 4:
|
|
1442
|
+
time.sleep(2**(i - 1))
|
|
1443
|
+
continue
|
|
1444
|
+
else:
|
|
1445
|
+
raise
|
|
1446
|
+
else:
|
|
1447
|
+
break
|
|
1448
|
+
tupl = time.perf_counter() - tu0
|
|
1449
|
+
|
|
1450
|
+
_log_file_timing("single-file(multipart)", url, size_bytes, tread, tval,
|
|
1451
|
+
tupl)
|
|
1452
|
+
if renamed_cols_msg:
|
|
1453
|
+
logger.info(renamed_cols_msg)
|
|
1454
|
+
|
|
1455
|
+
try:
|
|
1456
|
+
if buf:
|
|
1457
|
+
buf.close()
|
|
1458
|
+
except Exception:
|
|
1459
|
+
pass
|
|
1460
|
+
del buf, data_mv, header_line
|
|
1461
|
+
gc.collect()
|
|
1462
|
+
|
|
1463
|
+
logger.info("Upload complete. Validated table %s.", name)
|
|
1464
|
+
|
|
1465
|
+
|
|
1466
|
+
def _remote_upload_directory(
|
|
1467
|
+
name: str,
|
|
1468
|
+
fs: Filesystem,
|
|
1469
|
+
url: str,
|
|
1470
|
+
info: dict,
|
|
1471
|
+
st: _RemoteSettings,
|
|
1472
|
+
file_type: Optional[str] = None, # "csv", "parquet", or None
|
|
1473
|
+
) -> None:
|
|
1474
|
+
manifest = _remote_dir_manifest(fs, url)
|
|
1475
|
+
parquet_files = sorted(manifest["parquet"], key=lambda x: x["path"])
|
|
1476
|
+
csv_files = sorted(manifest["csv"], key=lambda x: x["path"])
|
|
1477
|
+
|
|
1478
|
+
# Normalize expected type
|
|
1479
|
+
if file_type not in (None, "csv", "parquet"):
|
|
1480
|
+
raise ValueError("file_type must be 'csv', 'parquet', or None.")
|
|
1481
|
+
|
|
1482
|
+
# Resolve files + detected type
|
|
1483
|
+
if file_type is None:
|
|
1484
|
+
if not parquet_files and not csv_files:
|
|
1485
|
+
raise ValueError("Directory contains no .parquet or .csv files.")
|
|
1486
|
+
if parquet_files and csv_files:
|
|
1487
|
+
raise ValueError(
|
|
1488
|
+
"Mixed CSV and Parquet files detected; keep only one format.")
|
|
1489
|
+
files = parquet_files if parquet_files else csv_files
|
|
1490
|
+
detected_type = "parquet" if parquet_files else "csv"
|
|
1491
|
+
elif file_type == "parquet":
|
|
1492
|
+
if not parquet_files:
|
|
1493
|
+
raise ValueError(
|
|
1494
|
+
"Directory contains no .parquet files (file_type='parquet').")
|
|
1495
|
+
if csv_files:
|
|
1496
|
+
raise ValueError(
|
|
1497
|
+
"Directory also contains CSV files; remove them or set"
|
|
1498
|
+
"file_type=None.")
|
|
1499
|
+
files, detected_type = parquet_files, "parquet"
|
|
1500
|
+
else: # file_type == "csv"
|
|
1501
|
+
if not csv_files:
|
|
1502
|
+
raise ValueError(
|
|
1503
|
+
"Directory contains no .csv files (file_type='csv').")
|
|
1504
|
+
if parquet_files:
|
|
1505
|
+
raise ValueError(
|
|
1506
|
+
"Directory also contains Parquet files; remove them or "
|
|
1507
|
+
"set file_type=None.")
|
|
1508
|
+
files, detected_type = csv_files, "csv"
|
|
1509
|
+
|
|
1510
|
+
total_bytes = sum(int(f.get("size") or 0) for f in files)
|
|
1511
|
+
|
|
1512
|
+
too_large = [
|
|
1513
|
+
f["path"] for f in files if (f.get("size") or 0) > MAX_PARTITION_SIZE
|
|
1514
|
+
]
|
|
1515
|
+
zero_bytes = [f["path"] for f in files if (f.get("size") or 0) == 0]
|
|
1516
|
+
if zero_bytes:
|
|
1517
|
+
raise ValueError(
|
|
1518
|
+
f"Found zero-byte {detected_type.upper()} files: {zero_bytes[:3]}"
|
|
1519
|
+
f"{'...' if len(zero_bytes)>3 else ''}")
|
|
1520
|
+
if too_large:
|
|
1521
|
+
raise ValueError(
|
|
1522
|
+
f"The following files exceed 1GB and must be re-partitioned "
|
|
1523
|
+
f"(~200MB each): "
|
|
1524
|
+
f"{too_large[:3]}{'...' if len(too_large)>3 else ''}")
|
|
1525
|
+
|
|
1526
|
+
par = _determine_parallelism(files, requested=st.parallelism_override)
|
|
1527
|
+
par = max(1, min(par, len(files)))
|
|
1528
|
+
budget_bytes = _compute_mem_budget_bytes(files)
|
|
1529
|
+
mem_budget = MemoryBudget(budget_bytes)
|
|
1530
|
+
|
|
1531
|
+
from collections import deque
|
|
1532
|
+
with (tqdm(total=len(files),
|
|
1533
|
+
desc=f"Files ({len(files)}) [{detected_type}] | par={par}",
|
|
1534
|
+
position=0) as file_bar,
|
|
1535
|
+
tqdm(total=total_bytes, desc="Total bytes (read)", unit="B",
|
|
1536
|
+
unit_scale=True, unit_divisor=1024, position=1, smoothing=0.1)
|
|
1537
|
+
as bytes_bar,
|
|
1538
|
+
tqdm(total=total_bytes, desc="Total bytes (uploaded)", unit="B",
|
|
1539
|
+
unit_scale=True, unit_divisor=1024, position=2, smoothing=0.1)
|
|
1540
|
+
as uploaded_bar):
|
|
1541
|
+
|
|
1542
|
+
status_lock = threading.Lock()
|
|
1543
|
+
recent_paths: Deque[str] = deque(maxlen=5)
|
|
1544
|
+
completed_files = {"n": 0}
|
|
1545
|
+
file_bar.set_postfix_str(f"Uploaded 0/{len(files)}")
|
|
1546
|
+
file_bar.refresh()
|
|
1547
|
+
|
|
1548
|
+
rename_aggregate_lock = threading.Lock()
|
|
1549
|
+
rename_aggregate: dict[str, str] = {}
|
|
1550
|
+
|
|
1551
|
+
def _merge_status_update(path: str) -> None:
|
|
1552
|
+
with status_lock:
|
|
1553
|
+
completed_files["n"] += 1
|
|
1554
|
+
recent_paths.append(path)
|
|
1555
|
+
tail = ' | '.join(_short_path(p) for p in list(recent_paths))
|
|
1556
|
+
msg = f"Uploaded {completed_files['n']}/{len(files)}"
|
|
1557
|
+
if tail:
|
|
1558
|
+
msg += f" — {tail}"
|
|
1559
|
+
with _TQDM_LOCK:
|
|
1560
|
+
file_bar.set_postfix_str(msg)
|
|
1561
|
+
file_bar.refresh()
|
|
1562
|
+
|
|
1563
|
+
ref_schema_fields: Dict[str, Any] = {"value": None}
|
|
1564
|
+
ref_cols: Dict[str, Any] = {"value": None}
|
|
1565
|
+
|
|
1566
|
+
def _worker(idx: int, fmeta: dict) -> None:
|
|
1567
|
+
fpath = fmeta["path"]
|
|
1568
|
+
fsize = int(fmeta.get("size") or 0)
|
|
1569
|
+
need_bytes = (2 * fsize +
|
|
1570
|
+
st.overhead_bytes) if detected_type == "csv" else (
|
|
1571
|
+
fsize + st.overhead_bytes)
|
|
1572
|
+
mem_budget.acquire(need_bytes)
|
|
1573
|
+
try:
|
|
1574
|
+
tr0 = time.perf_counter()
|
|
1575
|
+
buf, data_mv, header_line = _read_remote_file_with_progress(
|
|
1576
|
+
fs,
|
|
1577
|
+
fpath,
|
|
1578
|
+
expected_size=fsize if fsize > 0 else None,
|
|
1579
|
+
update_bytes=lambda n: _safe_bar_update(bytes_bar, n),
|
|
1580
|
+
capture_first_line=(detected_type == "csv"),
|
|
1581
|
+
)
|
|
1582
|
+
tread = time.perf_counter() - tr0
|
|
1583
|
+
|
|
1584
|
+
tv0 = time.perf_counter()
|
|
1585
|
+
if detected_type == "parquet":
|
|
1586
|
+
schema = _parquet_schema_from_bytes(data_mv)
|
|
1587
|
+
names = list(schema.names)
|
|
1588
|
+
_validate_columns_or_raise(names)
|
|
1589
|
+
validate_parquet_schema(schema, fpath)
|
|
1590
|
+
nrows = _parquet_num_rows_from_bytes(data_mv)
|
|
1591
|
+
if nrows <= 0:
|
|
1592
|
+
raise ValueError(
|
|
1593
|
+
f"Parquet file has zero rows: {fpath}")
|
|
1594
|
+
fields = [(fld.name, fld.type) for fld in schema]
|
|
1595
|
+
if ref_schema_fields["value"] is None:
|
|
1596
|
+
ref_schema_fields["value"] = fields
|
|
1597
|
+
elif fields != ref_schema_fields["value"]:
|
|
1598
|
+
ref_names = [n for n, _ in ref_schema_fields["value"]]
|
|
1599
|
+
raise ValueError(
|
|
1600
|
+
"Parquet schema mismatch across files. "
|
|
1601
|
+
f"First file columns: {ref_names}; mismatched "
|
|
1602
|
+
f"file: {fpath}")
|
|
1603
|
+
part_name = f"{name}.parquet/part_{idx:04d}.parquet"
|
|
1604
|
+
|
|
1605
|
+
else:
|
|
1606
|
+
head_len = min(50000, data_mv.nbytes)
|
|
1607
|
+
# bounded small copy for sniffing
|
|
1608
|
+
head = bytes(data_mv[:head_len])
|
|
1609
|
+
delimiter = _detect_and_validate_csv(head)
|
|
1610
|
+
if header_line is None:
|
|
1611
|
+
# Bounded fallback (64 KiB) to extract header without
|
|
1612
|
+
# copying whole file
|
|
1613
|
+
prefix_len = min(64 * 1024, data_mv.nbytes)
|
|
1614
|
+
prefix = data_mv[:prefix_len]
|
|
1615
|
+
acc = bytearray()
|
|
1616
|
+
for b in (prefix.cast('B')
|
|
1617
|
+
if prefix.format != 'B' else prefix):
|
|
1618
|
+
if b == 10: # '\n'
|
|
1619
|
+
break
|
|
1620
|
+
acc.append(b)
|
|
1621
|
+
header_line = bytes(acc)
|
|
1622
|
+
|
|
1623
|
+
new_buf, new_mv, new_header, cols, rename_map, changed = (
|
|
1624
|
+
_maybe_rewrite_csv_header_buffer(
|
|
1625
|
+
data_mv, header_line, delimiter))
|
|
1626
|
+
if changed:
|
|
1627
|
+
try:
|
|
1628
|
+
buf.close()
|
|
1629
|
+
except Exception:
|
|
1630
|
+
pass
|
|
1631
|
+
buf = new_buf # type: ignore[assignment]
|
|
1632
|
+
data_mv = new_mv
|
|
1633
|
+
header_line = new_header
|
|
1634
|
+
if rename_map:
|
|
1635
|
+
with rename_aggregate_lock:
|
|
1636
|
+
rename_aggregate.update(rename_map)
|
|
1637
|
+
|
|
1638
|
+
if ref_cols["value"] is None:
|
|
1639
|
+
ref_cols["value"] = cols
|
|
1640
|
+
elif cols != ref_cols["value"]:
|
|
1641
|
+
raise ValueError(
|
|
1642
|
+
"CSV header mismatch across files. "
|
|
1643
|
+
f"Expected: {ref_cols['value']}; mismatched file: "
|
|
1644
|
+
f"{fpath} has: {cols}")
|
|
1645
|
+
if not _csv_has_data_rows(data_mv):
|
|
1646
|
+
raise ValueError(
|
|
1647
|
+
f"CSV file has zero data rows: {fpath}")
|
|
1648
|
+
part_name = f"{name}.csv/part_{idx:04d}.csv"
|
|
1649
|
+
tval = time.perf_counter() - tv0
|
|
1650
|
+
|
|
1651
|
+
size_bytes = data_mv.nbytes
|
|
1652
|
+
num_parts = max(1, math.ceil(size_bytes / st.part_size))
|
|
1653
|
+
upload_res = _start_table_upload_with_parts(
|
|
1654
|
+
table_name=part_name,
|
|
1655
|
+
file_type=detected_type,
|
|
1656
|
+
file_size_bytes=size_bytes,
|
|
1657
|
+
num_parts=num_parts,
|
|
1658
|
+
)
|
|
1659
|
+
try:
|
|
1660
|
+
urls = [
|
|
1661
|
+
u for k, u in sorted(
|
|
1662
|
+
upload_res.presigned_part_urls.items(),
|
|
1663
|
+
key=lambda kv: int(kv[0]))
|
|
1664
|
+
]
|
|
1665
|
+
except Exception:
|
|
1666
|
+
urls = list(upload_res.presigned_part_urls.values())
|
|
1667
|
+
|
|
1668
|
+
loop_inner = _KUMO_EVENT_LOOP
|
|
1669
|
+
part_metadata_list_fut = asyncio.run_coroutine_threadsafe(
|
|
1670
|
+
multi_put_bounded(
|
|
1671
|
+
urls=urls,
|
|
1672
|
+
data_iter=_iter_mv_chunks(data_mv, st.part_size),
|
|
1673
|
+
tqdm_bar_position=3,
|
|
1674
|
+
concurrency=max(1, min(st.part_conc, len(urls))),
|
|
1675
|
+
upload_progress_cb=lambda n: _safe_bar_update(
|
|
1676
|
+
uploaded_bar, n),
|
|
1677
|
+
upload_subchunk_bytes=UPLOAD_CHUNK_BYTES,
|
|
1678
|
+
),
|
|
1679
|
+
loop_inner,
|
|
1680
|
+
)
|
|
1681
|
+
part_metadata_list = part_metadata_list_fut.result()
|
|
1682
|
+
|
|
1683
|
+
for i in range(5):
|
|
1684
|
+
try:
|
|
1685
|
+
_complete_table_upload(
|
|
1686
|
+
table_name=part_name,
|
|
1687
|
+
file_type=detected_type,
|
|
1688
|
+
upload_path=upload_res.temp_upload_path,
|
|
1689
|
+
upload_id=upload_res.upload_id,
|
|
1690
|
+
parts_metadata=part_metadata_list,
|
|
1691
|
+
)
|
|
1692
|
+
except HTTPException as e:
|
|
1693
|
+
if e.status_code == 500 and i < 4:
|
|
1694
|
+
time.sleep(2**(i - 1))
|
|
1695
|
+
continue
|
|
1696
|
+
else:
|
|
1697
|
+
raise
|
|
1698
|
+
else:
|
|
1699
|
+
break
|
|
1700
|
+
|
|
1701
|
+
try:
|
|
1702
|
+
if buf:
|
|
1703
|
+
buf.close()
|
|
1704
|
+
except Exception:
|
|
1705
|
+
pass
|
|
1706
|
+
del buf, data_mv, header_line
|
|
1707
|
+
gc.collect()
|
|
1708
|
+
|
|
1709
|
+
_safe_bar_update(file_bar, 1)
|
|
1710
|
+
_merge_status_update(fpath)
|
|
1711
|
+
_log_file_timing("dir-file(multipart)", fpath, fsize, tread,
|
|
1712
|
+
tval, 0.0)
|
|
1713
|
+
|
|
1714
|
+
finally:
|
|
1715
|
+
mem_budget.release(need_bytes)
|
|
1716
|
+
|
|
1717
|
+
indexed = list(enumerate(files, start=1))
|
|
1718
|
+
first_ex = None
|
|
1719
|
+
with ThreadPoolExecutor(max_workers=par) as ex:
|
|
1720
|
+
futures = {
|
|
1721
|
+
ex.submit(_worker, idx, fmeta): (idx, fmeta["path"])
|
|
1722
|
+
for idx, fmeta in indexed
|
|
1723
|
+
}
|
|
1724
|
+
for fut in as_completed(futures):
|
|
1725
|
+
try:
|
|
1726
|
+
fut.result()
|
|
1727
|
+
except Exception as e:
|
|
1728
|
+
first_ex = e
|
|
1729
|
+
for f2 in futures:
|
|
1730
|
+
f2.cancel()
|
|
1731
|
+
break
|
|
1732
|
+
if first_ex:
|
|
1733
|
+
raise first_ex
|
|
1734
|
+
|
|
1735
|
+
# after bars close, log any header renames once
|
|
1736
|
+
if detected_type == "csv" and rename_aggregate:
|
|
1737
|
+
pairs = ", ".join(f"{k}->{v}" for k, v in rename_aggregate.items())
|
|
1738
|
+
logger.info("CSV header sanitized (renamed): %s", pairs)
|
|
1739
|
+
|
|
1740
|
+
logger.info("Upload complete. Validated table %s.", name)
|
|
1741
|
+
|
|
1742
|
+
|
|
1743
|
+
def _upload_table_remote(
|
|
1744
|
+
name: str,
|
|
1745
|
+
path: str,
|
|
1746
|
+
auto_partition: bool = True,
|
|
1747
|
+
partition_size_mb: int = 250,
|
|
1748
|
+
parallelism: Optional[int] = None,
|
|
1749
|
+
file_type: Optional[str] = None,
|
|
1750
|
+
) -> None:
|
|
1751
|
+
"""Dispatch remote upload to file or directory paths."""
|
|
1752
|
+
fs, url = _get_fs_and_path(path)
|
|
1753
|
+
info = _remote_info(fs, url)
|
|
1754
|
+
st = _make_remote_settings(parallelism)
|
|
1755
|
+
|
|
1756
|
+
if info.get("type") == "file":
|
|
1757
|
+
return _remote_upload_file(name, fs, url, info, st, file_type)
|
|
1758
|
+
if info.get("type") == "directory":
|
|
1759
|
+
return _remote_upload_directory(name, fs, url, info, st, file_type)
|
|
1760
|
+
raise ValueError(f"Unsupported remote object type for {path}: {info}")
|
|
1761
|
+
|
|
1762
|
+
|
|
1763
|
+
# -----------------------
|
|
1764
|
+
# Column name validator
|
|
1765
|
+
# -----------------------
|
|
1766
|
+
def _validate_columns_or_raise(names: List[str]) -> None:
|
|
1767
|
+
# Ensure sanitized form equals original to enforce our header rules (for
|
|
1768
|
+
# parquet), but don't modify parquet; for CSV we already sanitize header
|
|
1769
|
+
# proactively.
|
|
1770
|
+
new, changed = _sanitize_columns(names)
|
|
1771
|
+
if changed:
|
|
1772
|
+
diffs = [f"{o}->{n}" for o, n in zip(names, new) if o != n]
|
|
1773
|
+
raise ValueError(
|
|
1774
|
+
"Column names contain invalid characters or duplicates. "
|
|
1775
|
+
"Please rename the following columns:\n " + ", ".join(diffs))
|