kumoai 2.14.0.dev202512191731__cp311-cp311-macosx_11_0_arm64.whl → 2.14.0.dev202601051732__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. kumoai/__init__.py +23 -26
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +6 -0
  4. kumoai/client/jobs.py +24 -0
  5. kumoai/connector/utils.py +21 -7
  6. kumoai/experimental/rfm/__init__.py +24 -22
  7. kumoai/experimental/rfm/backend/local/graph_store.py +12 -21
  8. kumoai/experimental/rfm/backend/local/sampler.py +0 -3
  9. kumoai/experimental/rfm/backend/local/table.py +24 -25
  10. kumoai/experimental/rfm/backend/snow/sampler.py +106 -61
  11. kumoai/experimental/rfm/backend/snow/table.py +137 -64
  12. kumoai/experimental/rfm/backend/sqlite/sampler.py +127 -78
  13. kumoai/experimental/rfm/backend/sqlite/table.py +85 -55
  14. kumoai/experimental/rfm/base/__init__.py +6 -9
  15. kumoai/experimental/rfm/base/column.py +95 -11
  16. kumoai/experimental/rfm/base/expression.py +44 -0
  17. kumoai/experimental/rfm/base/sampler.py +5 -17
  18. kumoai/experimental/rfm/base/source.py +1 -1
  19. kumoai/experimental/rfm/base/sql_sampler.py +69 -9
  20. kumoai/experimental/rfm/base/table.py +258 -97
  21. kumoai/experimental/rfm/graph.py +106 -98
  22. kumoai/experimental/rfm/infer/dtype.py +4 -1
  23. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  24. kumoai/experimental/rfm/relbench.py +76 -0
  25. kumoai/experimental/rfm/rfm.py +394 -241
  26. kumoai/experimental/rfm/task_table.py +290 -0
  27. kumoai/trainer/distilled_trainer.py +175 -0
  28. kumoai/utils/display.py +51 -0
  29. kumoai/utils/progress_logger.py +13 -1
  30. {kumoai-2.14.0.dev202512191731.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/METADATA +1 -1
  31. {kumoai-2.14.0.dev202512191731.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/RECORD +34 -31
  32. kumoai/experimental/rfm/base/column_expression.py +0 -50
  33. kumoai/experimental/rfm/base/sql_table.py +0 -229
  34. {kumoai-2.14.0.dev202512191731.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/WHEEL +0 -0
  35. {kumoai-2.14.0.dev202512191731.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/licenses/LICENSE +0 -0
  36. {kumoai-2.14.0.dev202512191731.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,290 @@
1
+ import copy
2
+ from collections.abc import Sequence
3
+
4
+ import pandas as pd
5
+ from kumoapi.task import TaskType
6
+ from kumoapi.typing import Dtype, Stype
7
+ from typing_extensions import Self
8
+
9
+ from kumoai.experimental.rfm.base import Column
10
+ from kumoai.experimental.rfm.infer import contains_timestamp, infer_dtype
11
+
12
+
13
+ class TaskTable:
14
+ r"""A :class:`TaskTable` fully specifies the task, *i.e.* its context and
15
+ prediction examples with entity IDs, targets and timestamps.
16
+
17
+ Args:
18
+ task_type: The task type.
19
+ context_df: The data frame holding context examples.
20
+ pred_df: The data frame holding prediction examples.
21
+ entity_table_name: The entity table to predict for. For link prediction
22
+ tasks, needs to hold both entity and target table names.
23
+ entity_column: The name of the entity column.
24
+ target_column: The name of the target column.
25
+ time_column: The name of the time column to use as anchor time. If
26
+ ``TaskTable.ENTITY_TIME``, use the timestamp of the entity table
27
+ as anchor time.
28
+ """
29
+ ENTITY_TIME = '__entity_time__'
30
+
31
+ def __init__(
32
+ self,
33
+ task_type: TaskType,
34
+ context_df: pd.DataFrame,
35
+ pred_df: pd.DataFrame,
36
+ entity_table_name: str | Sequence[str],
37
+ entity_column: str,
38
+ target_column: str,
39
+ time_column: str | None = None,
40
+ ) -> None:
41
+
42
+ task_type = TaskType(task_type)
43
+ if task_type not in { # Currently supported task types:
44
+ TaskType.BINARY_CLASSIFICATION,
45
+ TaskType.MULTICLASS_CLASSIFICATION,
46
+ TaskType.REGRESSION,
47
+ TaskType.TEMPORAL_LINK_PREDICTION,
48
+ }:
49
+ raise ValueError # TODO
50
+ self._task_type = task_type
51
+
52
+ # TODO Binary classification and regression checks
53
+
54
+ # TODO Check dfs (unify from local table)
55
+ if context_df.empty:
56
+ raise ValueError("No context examples given")
57
+ self._context_df = context_df.copy(deep=False)
58
+
59
+ if pred_df.empty:
60
+ raise ValueError("Provide at least one entity to predict for")
61
+ self._pred_df = pred_df.copy(deep=False)
62
+
63
+ self._dtype_dict: dict[str, Dtype] = {
64
+ column_name: infer_dtype(context_df[column_name])
65
+ for column_name in context_df.columns
66
+ }
67
+
68
+ self._entity_table_names: tuple[str] | tuple[str, str]
69
+ if isinstance(entity_table_name, str):
70
+ self._entity_table_names = (entity_table_name, )
71
+ elif len(entity_table_name) == 1:
72
+ self._entity_table_names = (entity_table_name[0], )
73
+ elif len(entity_table_name) == 2:
74
+ self._entity_table_names = (
75
+ entity_table_name[0],
76
+ entity_table_name[1],
77
+ )
78
+ else:
79
+ raise ValueError # TODO
80
+
81
+ self._entity_column: str = ''
82
+ self._target_column: str = ''
83
+ self._time_column: str | None = None
84
+
85
+ self.entity_column = entity_column
86
+ self.target_column = target_column
87
+ if time_column is not None:
88
+ self.time_column = time_column
89
+
90
+ @property
91
+ def num_context_examples(self) -> int:
92
+ return len(self._context_df)
93
+
94
+ @property
95
+ def num_prediction_examples(self) -> int:
96
+ return len(self._pred_df)
97
+
98
+ @property
99
+ def task_type(self) -> TaskType:
100
+ r"""The task type."""
101
+ return self._task_type
102
+
103
+ def narrow_context(self, start: int, length: int) -> Self:
104
+ r"""Returns a new :class:`TaskTable` that holds a narrowed version of
105
+ context examples.
106
+
107
+ Args:
108
+ start: Index of the prediction examples to start narrowing.
109
+ length: Length of the prediction examples.
110
+ """
111
+ out = copy.copy(self)
112
+ df = out._context_df.iloc[start:start + length].reset_index(drop=True)
113
+ out._context_df = df
114
+ return out
115
+
116
+ def narrow_prediction(self, start: int, length: int) -> Self:
117
+ r"""Returns a new :class:`TaskTable` that holds a narrowed version of
118
+ prediction examples.
119
+
120
+ Args:
121
+ start: Index of the prediction examples to start narrowing.
122
+ length: Length of the prediction examples.
123
+ """
124
+ out = copy.copy(self)
125
+ df = out._pred_df.iloc[start:start + length].reset_index(drop=True)
126
+ out._pred_df = df
127
+ return out
128
+
129
+ # Entity column ###########################################################
130
+
131
+ @property
132
+ def entity_table_name(self) -> str:
133
+ return self._entity_table_names[0]
134
+
135
+ @property
136
+ def entity_table_names(self) -> tuple[str] | tuple[str, str]:
137
+ return self._entity_table_names
138
+
139
+ @property
140
+ def entity_column(self) -> Column:
141
+ return Column(
142
+ name=self._entity_column,
143
+ expr=None,
144
+ dtype=self._dtype_dict[self._entity_column],
145
+ stype=Stype.ID,
146
+ )
147
+
148
+ @entity_column.setter
149
+ def entity_column(self, name: str) -> None:
150
+ if name not in self._context_df:
151
+ raise ValueError # TODO
152
+ if name not in self._pred_df:
153
+ raise ValueError # TODO
154
+ if not Stype.ID.supports_dtype(self._dtype_dict[name]):
155
+ raise ValueError # TODO
156
+
157
+ self._entity_column = name
158
+
159
+ # Target column ###########################################################
160
+
161
+ @property
162
+ def evaluate(self) -> bool:
163
+ r"""Returns ``True`` if this task can be used for model evaluation."""
164
+ return self._target_column in self._pred_df
165
+
166
+ @property
167
+ def _target_stype(self) -> Stype:
168
+ if self.task_type in {
169
+ TaskType.BINARY_CLASSIFICATION,
170
+ TaskType.MULTICLASS_CLASSIFICATION,
171
+ }:
172
+ return Stype.categorical
173
+ if self.task_type in {TaskType.REGRESSION}:
174
+ return Stype.numerical
175
+ if self.task_type.is_link_pred:
176
+ return Stype.multicategorical
177
+ raise ValueError
178
+
179
+ @property
180
+ def target_column(self) -> Column:
181
+ return Column(
182
+ name=self._target_column,
183
+ expr=None,
184
+ dtype=self._dtype_dict[self._target_column],
185
+ stype=self._target_stype,
186
+ )
187
+
188
+ @target_column.setter
189
+ def target_column(self, name: str) -> None:
190
+ if name not in self._context_df:
191
+ raise ValueError # TODO
192
+ if not self._target_stype.supports_dtype(self._dtype_dict[name]):
193
+ raise ValueError # TODO
194
+
195
+ self._target_column = name
196
+
197
+ # Time column #############################################################
198
+
199
+ def has_time_column(self) -> bool:
200
+ r"""Returns ``True`` if this task has a time column; ``False``
201
+ otherwise.
202
+ """
203
+ return self._time_column not in {None, self.ENTITY_TIME}
204
+
205
+ @property
206
+ def use_entity_time(self) -> bool:
207
+ r"""Whether to use the timestamp of the entity table as anchor time."""
208
+ return self._time_column == self.ENTITY_TIME
209
+
210
+ @property
211
+ def time_column(self) -> Column | None:
212
+ r"""The time column of this task.
213
+
214
+ The getter returns the time column of this task, or ``None`` if no
215
+ such time column is present.
216
+
217
+ The setter sets a column as a time column for this task, and raises a
218
+ :class:`ValueError` if the time column has a non-timestamp compatible
219
+ data type or if the column name does not match a column in the data
220
+ frame.
221
+ """
222
+ if not self.has_time_column():
223
+ return None
224
+ assert self._time_column is not None
225
+ return Column(
226
+ name=self._time_column,
227
+ expr=None,
228
+ dtype=self._dtype_dict[self._time_column],
229
+ stype=Stype.timestamp,
230
+ )
231
+
232
+ @time_column.setter
233
+ def time_column(self, name: str | None) -> None:
234
+ if name is None or name == self.ENTITY_TIME:
235
+ self._time_column = name
236
+ return
237
+
238
+ if name not in self._context_df:
239
+ raise ValueError # TODO
240
+ if name not in self._pred_df:
241
+ raise ValueError # TODO
242
+ if not contains_timestamp(
243
+ ser=self._context_df[name],
244
+ column_name=name,
245
+ dtype=self._dtype_dict[name],
246
+ ):
247
+ raise ValueError # TODO
248
+
249
+ self._time_column = name
250
+
251
+ # Metadata ################################################################
252
+
253
+ @property
254
+ def metadata(self) -> pd.DataFrame:
255
+ raise NotImplementedError
256
+
257
+ def print_metadata(self) -> None:
258
+ raise NotImplementedError
259
+
260
+ # Python builtins #########################################################
261
+
262
+ def __hash__(self) -> int:
263
+ return hash((
264
+ self.task_type,
265
+ self.entity_table_names,
266
+ self._entity_column,
267
+ self._target_column,
268
+ self._time_column,
269
+ ))
270
+
271
+ def __repr__(self) -> str:
272
+ if self.task_type.is_link_pred:
273
+ entity_table_repr = f'entity_table_names={self.entity_table_names}'
274
+ else:
275
+ entity_table_repr = f'entity_table_name={self.entity_table_name}'
276
+
277
+ if self.use_entity_time:
278
+ time_repr = 'use_entity_time=True'
279
+ else:
280
+ time_repr = f'time_column={self._time_column}'
281
+
282
+ return (f'{self.__class__.__name__}(\n'
283
+ f' task_type={self.task_type},\n'
284
+ f' num_context_examples={self.num_context_examples},\n'
285
+ f' num_prediction_examples={self.num_prediction_examples},\n'
286
+ f' {entity_table_repr},\n'
287
+ f' entity_column={self._entity_column},\n'
288
+ f' target_column={self._target_column},\n'
289
+ f' {time_repr},\n'
290
+ f')')
@@ -0,0 +1,175 @@
1
+ import logging
2
+ from typing import Literal, Mapping, Optional, Union, overload
3
+
4
+ from kumoapi.distilled_model_plan import DistilledModelPlan
5
+ from kumoapi.jobs import DistillationJobRequest, DistillationJobResource
6
+
7
+ from kumoai import global_state
8
+ from kumoai.client.jobs import TrainingJobID
9
+ from kumoai.graph import Graph
10
+ from kumoai.pquery.training_table import TrainingTable, TrainingTableJob
11
+ from kumoai.trainer.job import TrainingJob, TrainingJobResult
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ class DistillationTrainer:
17
+ r"""A trainer supports creating a Kumo machine learning model
18
+ for use in an online serving endpoint. The distllation process involes
19
+ training a shallow model on a :class:`~kumoai.pquery.PredictiveQuery` using
20
+ the embeddings generated by a base model :args:`base_training_job_id`.
21
+
22
+ Args:
23
+ model_plan: The distilled model plan to use for the distillation process.
24
+ base_training_job_id: The ID of the base training job to use for the distillation process.
25
+ """ # noqa: E501
26
+
27
+ def __init__(
28
+ self,
29
+ model_plan: DistilledModelPlan,
30
+ base_training_job_id: TrainingJobID,
31
+ ) -> None:
32
+ self.model_plan: DistilledModelPlan = model_plan
33
+ self.base_training_job_id: TrainingJobID = base_training_job_id
34
+
35
+ # Cached from backend:
36
+ self._training_job_id: Optional[TrainingJobID] = None
37
+
38
+ # Metadata ################################################################
39
+
40
+ @property
41
+ def is_trained(self) -> bool:
42
+ r"""Returns ``True`` if this trainer instance has successfully been
43
+ trained (and is therefore ready for prediction); ``False`` otherwise.
44
+ """
45
+ raise NotImplementedError(
46
+ "Checking if a distilled trainer is trained is not "
47
+ "implemented yet.")
48
+
49
+ @overload
50
+ def fit(
51
+ self,
52
+ graph: Graph,
53
+ train_table: Union[TrainingTable, TrainingTableJob],
54
+ ) -> TrainingJobResult:
55
+ pass
56
+
57
+ @overload
58
+ def fit(
59
+ self,
60
+ graph: Graph,
61
+ train_table: Union[TrainingTable, TrainingTableJob],
62
+ *,
63
+ non_blocking: Literal[False],
64
+ ) -> TrainingJobResult:
65
+ pass
66
+
67
+ @overload
68
+ def fit(
69
+ self,
70
+ graph: Graph,
71
+ train_table: Union[TrainingTable, TrainingTableJob],
72
+ *,
73
+ non_blocking: Literal[True],
74
+ ) -> TrainingJob:
75
+ pass
76
+
77
+ @overload
78
+ def fit(
79
+ self,
80
+ graph: Graph,
81
+ train_table: Union[TrainingTable, TrainingTableJob],
82
+ *,
83
+ non_blocking: bool,
84
+ ) -> Union[TrainingJob, TrainingJobResult]:
85
+ pass
86
+
87
+ def fit(
88
+ self,
89
+ graph: Graph,
90
+ train_table: Union[TrainingTable, TrainingTableJob],
91
+ *,
92
+ non_blocking: bool = False,
93
+ custom_tags: Mapping[str, str] = {},
94
+ ) -> Union[TrainingJob, TrainingJobResult]:
95
+ r"""Fits a model to the specified graph and training table, with the
96
+ strategy defined by :class:`DistilledTrainer`'s :obj:`model_plan`.
97
+
98
+ Args:
99
+ graph: The :class:`~kumoai.graph.Graph` object that represents the
100
+ tables and relationships that Kumo will learn from.
101
+ train_table: The :class:`~kumoai.pquery.TrainingTable`, or
102
+ in-progress :class:`~kumoai.pquery.TrainingTableJob`, that
103
+ represents the training data produced by a
104
+ :class:`~kumoai.pquery.PredictiveQuery` on :obj:`graph`.
105
+ non_blocking: Whether this operation should return immediately
106
+ after launching the training job, or await completion of the
107
+ training job.
108
+ custom_tags: Additional, customer defined k-v tags to be associated
109
+ with the job to be launched. Job tags are useful for grouping
110
+ and searching jobs.
111
+
112
+ Returns:
113
+ Union[TrainingJobResult, TrainingJob]:
114
+ If ``non_blocking=False``, returns a training job object. If
115
+ ``non_blocking=True``, returns a training job future object.
116
+ """
117
+ # TODO(manan, siyang): remove soon:
118
+ job_id = train_table.job_id
119
+ assert job_id is not None
120
+
121
+ train_table_job_api = global_state.client.generate_train_table_job_api
122
+ pq_id = train_table_job_api.get(job_id).config.pquery_id
123
+ assert pq_id is not None
124
+
125
+ custom_table = None
126
+ if isinstance(train_table, TrainingTable):
127
+ custom_table = train_table._custom_train_table
128
+
129
+ # NOTE the backend implementation currently handles sequentialization
130
+ # between a training table future and a training job; that is, if the
131
+ # training table future is still executing, the backend will wait on
132
+ # the job ID completion before executing a training job. This preserves
133
+ # semantics for both futures, ensures that Kumo works as expected if
134
+ # used only via REST API, and allows us to avoid chaining calllbacks
135
+ # in an ugly way here:
136
+ api = global_state.client.distillation_job_api
137
+ self._training_job_id = api.create(
138
+ DistillationJobRequest(
139
+ dict(custom_tags),
140
+ pquery_id=pq_id,
141
+ base_training_job_id=self.base_training_job_id,
142
+ distilled_model_plan=self.model_plan,
143
+ graph_snapshot_id=graph.snapshot(non_blocking=non_blocking),
144
+ train_table_job_id=job_id,
145
+ custom_train_table=custom_table,
146
+ ))
147
+
148
+ out = TrainingJob(job_id=self._training_job_id)
149
+ if non_blocking:
150
+ return out
151
+ return out.attach()
152
+
153
+ @classmethod
154
+ def _load_from_job(
155
+ cls,
156
+ job: DistillationJobResource,
157
+ ) -> 'DistillationTrainer':
158
+ trainer = cls(job.config.distilled_model_plan,
159
+ job.config.base_training_job_id)
160
+ trainer._training_job_id = job.job_id
161
+ return trainer
162
+
163
+ @classmethod
164
+ def load(cls, job_id: TrainingJobID) -> 'DistillationTrainer':
165
+ r"""Creates a :class:`~kumoai.trainer.Trainer` instance from a training
166
+ job ID.
167
+ """
168
+ raise NotImplementedError(
169
+ "Loading a distilled trainer from a job ID is not implemented yet."
170
+ )
171
+
172
+ @classmethod
173
+ def load_from_tags(cls, tags: Mapping[str, str]) -> 'DistillationTrainer':
174
+ raise NotImplementedError(
175
+ "Loading a distilled trainer from tags is not implemented yet.")
@@ -0,0 +1,51 @@
1
+ from collections.abc import Sequence
2
+
3
+ import pandas as pd
4
+
5
+ from kumoai import in_notebook, in_snowflake_notebook
6
+
7
+
8
+ def message(msg: str) -> None:
9
+ msg = msg.replace("`", "'") if not in_notebook() else msg
10
+
11
+ if in_snowflake_notebook():
12
+ import streamlit as st
13
+ st.markdown(msg)
14
+ elif in_notebook():
15
+ from IPython.display import Markdown, display
16
+ display(Markdown(msg))
17
+ else:
18
+ print(msg)
19
+
20
+
21
+ def title(msg: str) -> None:
22
+ message(f"### {msg}" if in_notebook() else f"{msg}:")
23
+
24
+
25
+ def italic(msg: str) -> None:
26
+ message(f"*{msg}*" if in_notebook() else msg)
27
+
28
+
29
+ def unordered_list(items: Sequence[str]) -> None:
30
+ if in_notebook():
31
+ msg = '\n'.join([f"- {item}" for item in items])
32
+ else:
33
+ msg = '\n'.join([f"• {item.replace('`', '')}" for item in items])
34
+ message(msg)
35
+
36
+
37
+ def dataframe(df: pd.DataFrame) -> None:
38
+ if in_snowflake_notebook():
39
+ import streamlit as st
40
+ st.dataframe(df, hide_index=True)
41
+ elif in_notebook():
42
+ from IPython.display import display
43
+ try:
44
+ if hasattr(df.style, 'hide'):
45
+ display(df.style.hide(axis='index')) # pandas=2
46
+ else:
47
+ display(df.style.hide_index()) # pandas<1.3
48
+ except ImportError:
49
+ print(df.to_string(index=False)) # missing jinja2
50
+ else:
51
+ print(df.to_string(index=False))
@@ -24,6 +24,7 @@ class ProgressLogger:
24
24
  def __init__(self, msg: str, verbose: bool = True) -> None:
25
25
  self.msg = msg
26
26
  self.verbose = verbose
27
+ self.depth = 0
27
28
 
28
29
  self.logs: list[str] = []
29
30
 
@@ -55,10 +56,12 @@ class ProgressLogger:
55
56
  pass
56
57
 
57
58
  def __enter__(self) -> Self:
59
+ self.depth += 1
58
60
  self.start_time = time.perf_counter()
59
61
  return self
60
62
 
61
63
  def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
64
+ self.depth -= 1
62
65
  self.end_time = time.perf_counter()
63
66
 
64
67
  def __repr__(self) -> str:
@@ -123,6 +126,9 @@ class RichProgressLogger(ProgressLogger):
123
126
 
124
127
  super().__enter__()
125
128
 
129
+ if self.depth > 1:
130
+ return self
131
+
126
132
  if not in_notebook(): # Render progress bar in TUI.
127
133
  sys.stdout.write("\x1b]9;4;3\x07")
128
134
  sys.stdout.flush()
@@ -142,6 +148,9 @@ class RichProgressLogger(ProgressLogger):
142
148
 
143
149
  super().__exit__(exc_type, exc_val, exc_tb)
144
150
 
151
+ if self.depth > 1:
152
+ return
153
+
145
154
  if exc_type is not None:
146
155
  self._exception = True
147
156
 
@@ -213,6 +222,9 @@ class StreamlitProgressLogger(ProgressLogger):
213
222
 
214
223
  import streamlit as st
215
224
 
225
+ if self.depth > 1:
226
+ return self
227
+
216
228
  # Adjust layout for prettier output:
217
229
  st.markdown(STREAMLIT_CSS, unsafe_allow_html=True)
218
230
 
@@ -253,7 +265,7 @@ class StreamlitProgressLogger(ProgressLogger):
253
265
  def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
254
266
  super().__exit__(exc_type, exc_val, exc_tb)
255
267
 
256
- if not self.verbose or self._status is None:
268
+ if not self.verbose or self._status is None or self.depth > 1:
257
269
  return
258
270
 
259
271
  label = f'{self._sanitize_text(self.msg)} ({self.duration:.2f}s)'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kumoai
3
- Version: 2.14.0.dev202512191731
3
+ Version: 2.14.0.dev202601051732
4
4
  Summary: AI on the Modern Data Stack
5
5
  Author-email: "Kumo.AI" <hello@kumo.ai>
6
6
  License-Expression: MIT