kumoai 2.13.0.dev202512091732__cp311-cp311-macosx_11_0_arm64.whl → 2.14.0.dev202601051732__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. kumoai/__init__.py +23 -26
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +6 -0
  4. kumoai/client/jobs.py +24 -0
  5. kumoai/client/pquery.py +6 -2
  6. kumoai/connector/utils.py +21 -7
  7. kumoai/experimental/rfm/__init__.py +51 -24
  8. kumoai/experimental/rfm/authenticate.py +3 -4
  9. kumoai/experimental/rfm/backend/local/graph_store.py +52 -104
  10. kumoai/experimental/rfm/backend/local/sampler.py +125 -55
  11. kumoai/experimental/rfm/backend/local/table.py +35 -31
  12. kumoai/experimental/rfm/backend/snow/__init__.py +2 -0
  13. kumoai/experimental/rfm/backend/snow/sampler.py +297 -0
  14. kumoai/experimental/rfm/backend/snow/table.py +174 -49
  15. kumoai/experimental/rfm/backend/sqlite/__init__.py +4 -2
  16. kumoai/experimental/rfm/backend/sqlite/sampler.py +398 -0
  17. kumoai/experimental/rfm/backend/sqlite/table.py +131 -48
  18. kumoai/experimental/rfm/base/__init__.py +21 -5
  19. kumoai/experimental/rfm/base/column.py +96 -10
  20. kumoai/experimental/rfm/base/expression.py +44 -0
  21. kumoai/experimental/rfm/base/sampler.py +422 -35
  22. kumoai/experimental/rfm/base/source.py +2 -1
  23. kumoai/experimental/rfm/base/sql_sampler.py +144 -0
  24. kumoai/experimental/rfm/base/table.py +386 -195
  25. kumoai/experimental/rfm/graph.py +350 -178
  26. kumoai/experimental/rfm/infer/__init__.py +6 -4
  27. kumoai/experimental/rfm/infer/dtype.py +7 -4
  28. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  29. kumoai/experimental/rfm/infer/pkey.py +4 -2
  30. kumoai/experimental/rfm/infer/stype.py +35 -0
  31. kumoai/experimental/rfm/infer/time_col.py +1 -2
  32. kumoai/experimental/rfm/pquery/executor.py +27 -27
  33. kumoai/experimental/rfm/pquery/pandas_executor.py +29 -31
  34. kumoai/experimental/rfm/relbench.py +76 -0
  35. kumoai/experimental/rfm/rfm.py +630 -408
  36. kumoai/experimental/rfm/sagemaker.py +4 -4
  37. kumoai/experimental/rfm/task_table.py +290 -0
  38. kumoai/pquery/predictive_query.py +10 -6
  39. kumoai/testing/snow.py +50 -0
  40. kumoai/trainer/distilled_trainer.py +175 -0
  41. kumoai/utils/__init__.py +3 -2
  42. kumoai/utils/display.py +51 -0
  43. kumoai/utils/progress_logger.py +190 -12
  44. kumoai/utils/sql.py +3 -0
  45. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/METADATA +3 -2
  46. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/RECORD +49 -40
  47. kumoai/experimental/rfm/local_graph_sampler.py +0 -223
  48. kumoai/experimental/rfm/local_pquery_driver.py +0 -689
  49. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/WHEEL +0 -0
  50. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/licenses/LICENSE +0 -0
  51. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202601051732.dist-info}/top_level.txt +0 -0
@@ -1,13 +1,12 @@
1
- import warnings
2
- from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
1
+ from typing import TYPE_CHECKING
3
2
 
4
3
  import numpy as np
5
4
  import pandas as pd
6
5
  from kumoapi.rfm.context import Subgraph
7
- from kumoapi.typing import Stype
8
6
 
9
7
  from kumoai.experimental.rfm.backend.local import LocalTable
10
- from kumoai.utils import InteractiveProgressLogger, ProgressLogger
8
+ from kumoai.experimental.rfm.base import Table
9
+ from kumoai.utils import ProgressLogger
11
10
 
12
11
  try:
13
12
  import torch
@@ -23,37 +22,32 @@ class LocalGraphStore:
23
22
  def __init__(
24
23
  self,
25
24
  graph: 'Graph',
26
- verbose: Union[bool, ProgressLogger] = True,
25
+ verbose: bool | ProgressLogger = True,
27
26
  ) -> None:
28
27
 
29
28
  if not isinstance(verbose, ProgressLogger):
30
- verbose = InteractiveProgressLogger(
31
- "Materializing graph",
29
+ verbose = ProgressLogger.default(
30
+ msg="Materializing graph",
32
31
  verbose=verbose,
33
32
  )
34
33
 
35
34
  with verbose as logger:
36
35
  self.df_dict, self.mask_dict = self.sanitize(graph)
37
- self.stype_dict = self.get_stype_dict(graph)
38
36
  logger.log("Sanitized input data")
39
37
 
40
- self.pkey_name_dict, self.pkey_map_dict = self.get_pkey_data(graph)
38
+ self.pkey_map_dict = self.get_pkey_map_dict(graph)
41
39
  num_pkeys = sum(t.has_primary_key() for t in graph.tables.values())
42
40
  if num_pkeys > 1:
43
41
  logger.log(f"Collected primary keys from {num_pkeys} tables")
44
42
  else:
45
43
  logger.log(f"Collected primary key from {num_pkeys} table")
46
44
 
47
- (
48
- self.time_column_dict,
49
- self.end_time_column_dict,
50
- self.time_dict,
51
- self.min_time,
52
- self.max_time,
53
- ) = self.get_time_data(graph)
54
- if self.max_time != pd.Timestamp.min:
45
+ self.time_dict, self.min_max_time_dict = self.get_time_data(graph)
46
+ if len(self.min_max_time_dict) > 0:
47
+ min_time = min(t for t, _ in self.min_max_time_dict.values())
48
+ max_time = max(t for _, t in self.min_max_time_dict.values())
55
49
  logger.log(f"Identified temporal graph from "
56
- f"{self.min_time.date()} to {self.max_time.date()}")
50
+ f"{min_time.date()} to {max_time.date()}")
57
51
  else:
58
52
  logger.log("Identified static graph without timestamps")
59
53
 
@@ -63,14 +57,6 @@ class LocalGraphStore:
63
57
  logger.log(f"Created graph with {num_nodes:,} nodes and "
64
58
  f"{num_edges:,} edges")
65
59
 
66
- @property
67
- def node_types(self) -> List[str]:
68
- return list(self.df_dict.keys())
69
-
70
- @property
71
- def edge_types(self) -> List[Tuple[str, str, str]]:
72
- return list(self.row_dict.keys())
73
-
74
60
  def get_node_id(self, table_name: str, pkey: pd.Series) -> np.ndarray:
75
61
  r"""Returns the node ID given primary keys.
76
62
 
@@ -107,7 +93,7 @@ class LocalGraphStore:
107
93
  def sanitize(
108
94
  self,
109
95
  graph: 'Graph',
110
- ) -> Tuple[Dict[str, pd.DataFrame], Dict[str, np.ndarray]]:
96
+ ) -> tuple[dict[str, pd.DataFrame], dict[str, np.ndarray]]:
111
97
  r"""Sanitizes raw data according to table schema definition:
112
98
 
113
99
  In particular, it:
@@ -116,30 +102,24 @@ class LocalGraphStore:
116
102
  * drops duplicate primary keys
117
103
  * removes rows with missing primary keys or time values
118
104
  """
119
- df_dict: Dict[str, pd.DataFrame] = {}
105
+ df_dict: dict[str, pd.DataFrame] = {}
120
106
  for table_name, table in graph.tables.items():
121
107
  assert isinstance(table, LocalTable)
122
- df = table._data
123
- df_dict[table_name] = df.copy(deep=False).reset_index(drop=True)
108
+ df_dict[table_name] = Table._sanitize(
109
+ df=table._data.copy(deep=False).reset_index(drop=True),
110
+ dtype_dict={
111
+ column.name: column.dtype
112
+ for column in table.columns
113
+ },
114
+ stype_dict={
115
+ column.name: column.stype
116
+ for column in table.columns
117
+ },
118
+ )
124
119
 
125
- mask_dict: Dict[str, np.ndarray] = {}
120
+ mask_dict: dict[str, np.ndarray] = {}
126
121
  for table in graph.tables.values():
127
- for col in table.columns:
128
- if col.stype == Stype.timestamp:
129
- ser = df_dict[table.name][col.name]
130
- if not pd.api.types.is_datetime64_any_dtype(ser):
131
- with warnings.catch_warnings():
132
- warnings.filterwarnings(
133
- 'ignore',
134
- message='Could not infer format',
135
- )
136
- ser = pd.to_datetime(ser, errors='coerce')
137
- df_dict[table.name][col.name] = ser
138
- if isinstance(ser.dtype, pd.DatetimeTZDtype):
139
- ser = ser.dt.tz_localize(None)
140
- df_dict[table.name][col.name] = ser
141
-
142
- mask: Optional[np.ndarray] = None
122
+ mask: np.ndarray | None = None
143
123
  if table._time_column is not None:
144
124
  ser = df_dict[table.name][table._time_column]
145
125
  mask = ser.notna().to_numpy()
@@ -154,34 +134,16 @@ class LocalGraphStore:
154
134
 
155
135
  return df_dict, mask_dict
156
136
 
157
- def get_stype_dict(self, graph: 'Graph') -> Dict[str, Dict[str, Stype]]:
158
- stype_dict: Dict[str, Dict[str, Stype]] = {}
159
- foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
160
- for table in graph.tables.values():
161
- stype_dict[table.name] = {}
162
- for column in table.columns:
163
- if column == table.primary_key:
164
- continue
165
- if (table.name, column.name) in foreign_keys:
166
- continue
167
- stype_dict[table.name][column.name] = column.stype
168
- return stype_dict
169
-
170
- def get_pkey_data(
137
+ def get_pkey_map_dict(
171
138
  self,
172
139
  graph: 'Graph',
173
- ) -> Tuple[
174
- Dict[str, str],
175
- Dict[str, pd.DataFrame],
176
- ]:
177
- pkey_name_dict: Dict[str, str] = {}
178
- pkey_map_dict: Dict[str, pd.DataFrame] = {}
140
+ ) -> dict[str, pd.DataFrame]:
141
+ pkey_map_dict: dict[str, pd.DataFrame] = {}
179
142
 
180
143
  for table in graph.tables.values():
181
144
  if table._primary_key is None:
182
145
  continue
183
146
 
184
- pkey_name_dict[table.name] = table._primary_key
185
147
  pkey = self.df_dict[table.name][table._primary_key]
186
148
  pkey_map = pd.DataFrame(
187
149
  dict(arange=range(len(pkey))),
@@ -203,62 +165,48 @@ class LocalGraphStore:
203
165
 
204
166
  pkey_map_dict[table.name] = pkey_map
205
167
 
206
- return pkey_name_dict, pkey_map_dict
168
+ return pkey_map_dict
207
169
 
208
170
  def get_time_data(
209
171
  self,
210
172
  graph: 'Graph',
211
- ) -> Tuple[
212
- Dict[str, str],
213
- Dict[str, str],
214
- Dict[str, np.ndarray],
215
- pd.Timestamp,
216
- pd.Timestamp,
173
+ ) -> tuple[
174
+ dict[str, np.ndarray],
175
+ dict[str, tuple[pd.Timestamp, pd.Timestamp]],
217
176
  ]:
218
- time_column_dict: Dict[str, str] = {}
219
- end_time_column_dict: Dict[str, str] = {}
220
- time_dict: Dict[str, np.ndarray] = {}
221
- min_time = pd.Timestamp.max
222
- max_time = pd.Timestamp.min
177
+ time_dict: dict[str, np.ndarray] = {}
178
+ min_max_time_dict: dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
223
179
  for table in graph.tables.values():
224
- if table._end_time_column is not None:
225
- end_time_column_dict[table.name] = table._end_time_column
226
-
227
180
  if table._time_column is None:
228
181
  continue
229
182
 
230
183
  time = self.df_dict[table.name][table._time_column]
231
- if time.dtype != 'datetime64[ns]':
232
- time = time.astype('datetime64[ns]')
233
184
  time_dict[table.name] = time.astype(int).to_numpy() // 1000**3
234
- time_column_dict[table.name] = table._time_column
235
185
 
236
186
  if table.name in self.mask_dict.keys():
237
187
  time = time[self.mask_dict[table.name]]
238
188
  if len(time) > 0:
239
- min_time = min(min_time, time.min())
240
- max_time = max(max_time, time.max())
189
+ min_max_time_dict[table.name] = (time.min(), time.max())
190
+ else:
191
+ min_max_time_dict[table.name] = (
192
+ pd.Timestamp.max,
193
+ pd.Timestamp.min,
194
+ )
241
195
 
242
- return (
243
- time_column_dict,
244
- end_time_column_dict,
245
- time_dict,
246
- min_time,
247
- max_time,
248
- )
196
+ return time_dict, min_max_time_dict
249
197
 
250
198
  def get_csc(
251
199
  self,
252
200
  graph: 'Graph',
253
- ) -> Tuple[
254
- Dict[Tuple[str, str, str], np.ndarray],
255
- Dict[Tuple[str, str, str], np.ndarray],
201
+ ) -> tuple[
202
+ dict[tuple[str, str, str], np.ndarray],
203
+ dict[tuple[str, str, str], np.ndarray],
256
204
  ]:
257
205
  # A mapping from raw primary keys to node indices (0 to N-1):
258
- map_dict: Dict[str, pd.CategoricalDtype] = {}
206
+ map_dict: dict[str, pd.CategoricalDtype] = {}
259
207
  # A dictionary to manage offsets of node indices for invalid rows:
260
- offset_dict: Dict[str, np.ndarray] = {}
261
- for table_name in set(edge.dst_table for edge in graph.edges):
208
+ offset_dict: dict[str, np.ndarray] = {}
209
+ for table_name in {edge.dst_table for edge in graph.edges}:
262
210
  ser = self.df_dict[table_name][graph[table_name]._primary_key]
263
211
  if table_name in self.mask_dict.keys():
264
212
  mask = self.mask_dict[table_name]
@@ -267,8 +215,8 @@ class LocalGraphStore:
267
215
  map_dict[table_name] = pd.CategoricalDtype(ser, ordered=True)
268
216
 
269
217
  # Build CSC graph representation:
270
- row_dict: Dict[Tuple[str, str, str], np.ndarray] = {}
271
- colptr_dict: Dict[Tuple[str, str, str], np.ndarray] = {}
218
+ row_dict: dict[tuple[str, str, str], np.ndarray] = {}
219
+ colptr_dict: dict[tuple[str, str, str], np.ndarray] = {}
272
220
  for src_table, fkey, dst_table in graph.edges:
273
221
  src_df = self.df_dict[src_table]
274
222
  dst_df = self.df_dict[dst_table]
@@ -330,7 +278,7 @@ def _argsort(input: np.ndarray) -> np.ndarray:
330
278
  return torch.from_numpy(input).argsort().numpy()
331
279
 
332
280
 
333
- def _lexsort(inputs: List[np.ndarray]) -> np.ndarray:
281
+ def _lexsort(inputs: list[np.ndarray]) -> np.ndarray:
334
282
  assert len(inputs) >= 1
335
283
 
336
284
  if not WITH_TORCH:
@@ -5,7 +5,7 @@ import pandas as pd
5
5
  from kumoapi.pquery import ValidatedPredictiveQuery
6
6
 
7
7
  from kumoai.experimental.rfm.backend.local import LocalGraphStore
8
- from kumoai.experimental.rfm.base import Sampler, SamplerOutput, TargetOutput
8
+ from kumoai.experimental.rfm.base import Sampler, SamplerOutput
9
9
  from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
10
10
  from kumoai.utils import ProgressLogger
11
11
 
@@ -19,7 +19,7 @@ class LocalSampler(Sampler):
19
19
  graph: 'Graph',
20
20
  verbose: bool | ProgressLogger = True,
21
21
  ) -> None:
22
- super().__init__(graph=graph)
22
+ super().__init__(graph=graph, verbose=verbose)
23
23
 
24
24
  import kumoai.kumolib as kumolib
25
25
 
@@ -38,19 +38,32 @@ class LocalSampler(Sampler):
38
38
  self._graph_store.time_dict,
39
39
  )
40
40
 
41
+ def _get_min_max_time_dict(
42
+ self,
43
+ table_names: list[str],
44
+ ) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
45
+ return {
46
+ key: value
47
+ for key, value in self._graph_store.min_max_time_dict.items()
48
+ if key in table_names
49
+ }
50
+
41
51
  def _sample_subgraph(
42
52
  self,
43
53
  entity_table_name: str,
44
54
  entity_pkey: pd.Series,
45
- anchor_time: pd.Series,
55
+ anchor_time: pd.Series | Literal['entity'],
46
56
  columns_dict: dict[str, set[str]],
47
57
  num_neighbors: list[int],
48
58
  ) -> SamplerOutput:
49
59
 
50
- num_neighbors_dict: dict[str, list[int]] = {
51
- '__'.join(edge_type): num_neighbors
52
- for edge_type in self.edge_types
53
- }
60
+ index = self._graph_store.get_node_id(entity_table_name, entity_pkey)
61
+
62
+ if isinstance(anchor_time, pd.Series):
63
+ time = anchor_time.astype(int).to_numpy() // 1000**3 # to seconds
64
+ else:
65
+ assert anchor_time == 'entity'
66
+ time = self._graph_store.time_dict[entity_table_name][index]
54
67
 
55
68
  (
56
69
  row_dict,
@@ -60,11 +73,14 @@ class LocalSampler(Sampler):
60
73
  num_sampled_nodes_dict,
61
74
  num_sampled_edges_dict,
62
75
  ) = self._graph_sampler.sample(
63
- num_neighbors_dict,
76
+ {
77
+ '__'.join(edge_type): num_neighbors
78
+ for edge_type in self.edge_types
79
+ },
64
80
  {},
65
81
  entity_table_name,
66
- self._graph_store.get_node_id(entity_table_name, entity_pkey),
67
- anchor_time.astype(int).to_numpy() // 1000**3, # to seconds
82
+ index,
83
+ time,
68
84
  )
69
85
 
70
86
  df_dict: dict[str, pd.DataFrame] = {}
@@ -108,6 +124,7 @@ class LocalSampler(Sampler):
108
124
  }
109
125
 
110
126
  return SamplerOutput(
127
+ anchor_time=time * 1000**3, # to nanoseconds
111
128
  df_dict=df_dict,
112
129
  inverse_dict=inverse_dict,
113
130
  batch_dict=batch_dict,
@@ -117,51 +134,80 @@ class LocalSampler(Sampler):
117
134
  num_sampled_edges_dict=num_sampled_edges_dict,
118
135
  )
119
136
 
137
+ def _sample_entity_table(
138
+ self,
139
+ table_name: str,
140
+ columns: set[str],
141
+ num_rows: int,
142
+ random_seed: int | None = None,
143
+ ) -> pd.DataFrame:
144
+ pkey_map = self._graph_store.pkey_map_dict[table_name]
145
+ if len(pkey_map) > num_rows:
146
+ pkey_map = pkey_map.sample(
147
+ n=num_rows,
148
+ random_state=random_seed,
149
+ ignore_index=True,
150
+ )
151
+ df = self._graph_store.df_dict[table_name]
152
+ df = df.iloc[pkey_map['arange']][list(columns)]
153
+ return df
154
+
120
155
  def _sample_target(
121
156
  self,
122
157
  query: ValidatedPredictiveQuery,
123
- num_examples: int,
124
- anchor_time: pd.Timestamp | Literal['entity'],
158
+ entity_df: pd.DataFrame,
159
+ train_index: np.ndarray,
160
+ train_time: pd.Series,
161
+ num_train_examples: int,
162
+ test_index: np.ndarray,
163
+ test_time: pd.Series,
164
+ num_test_examples: int,
125
165
  columns_dict: dict[str, set[str]],
126
166
  time_offset_dict: dict[
127
167
  tuple[str, str, str],
128
168
  tuple[pd.DateOffset | None, pd.DateOffset],
129
169
  ],
130
- random_seed: int | None = None,
131
- ) -> TargetOutput:
132
-
133
- candidate = pd.Series([0, 1]) # TODO
134
- anchor_time = pd.Series(anchor_time).repeat(len(candidate))
135
- anchor_time = anchor_time.reset_index(drop=True)
136
- if anchor_time.dtype != 'datetime64[ns]':
137
- anchor_time = anchor_time.astype('datetime64[ns]')
170
+ ) -> tuple[pd.Series, np.ndarray, pd.Series, np.ndarray]:
138
171
 
139
- y, mask = self._execute_query(
172
+ train_y, train_mask = self._sample_target_set(
140
173
  query=query,
141
- entity_pkey=candidate,
142
- anchor_time=anchor_time,
174
+ pkey=entity_df[self.primary_key_dict[query.entity_table]],
175
+ index=train_index,
176
+ anchor_time=train_time,
177
+ num_examples=num_train_examples,
143
178
  columns_dict=columns_dict,
144
179
  time_offset_dict=time_offset_dict,
145
180
  )
146
181
 
147
- return TargetOutput(
148
- entity_pkey=candidate.iloc[mask],
149
- anchor_time=anchor_time.iloc[mask],
150
- target=y.iloc[mask],
151
- num_trials=len(y),
182
+ test_y, test_mask = self._sample_target_set(
183
+ query=query,
184
+ pkey=entity_df[self.primary_key_dict[query.entity_table]],
185
+ index=test_index,
186
+ anchor_time=test_time,
187
+ num_examples=num_test_examples,
188
+ columns_dict=columns_dict,
189
+ time_offset_dict=time_offset_dict,
152
190
  )
153
191
 
154
- def _execute_query(
192
+ return train_y, train_mask, test_y, test_mask
193
+
194
+ # Helper Methods ##########################################################
195
+
196
+ def _sample_target_set(
155
197
  self,
156
198
  query: ValidatedPredictiveQuery,
157
- entity_pkey: pd.Series,
199
+ pkey: pd.Series,
200
+ index: np.ndarray,
158
201
  anchor_time: pd.Series,
202
+ num_examples: int,
159
203
  columns_dict: dict[str, set[str]],
160
204
  time_offset_dict: dict[
161
205
  tuple[str, str, str],
162
206
  tuple[pd.DateOffset | None, pd.DateOffset],
163
207
  ],
208
+ batch_size: int = 10_000,
164
209
  ) -> tuple[pd.Series, np.ndarray]:
210
+
165
211
  num_hops = 1 if len(time_offset_dict) > 0 else 0
166
212
  num_neighbors_dict: dict[str, list[int]] = {}
167
213
  unix_time_offset_dict: dict[str, list[list[int | None]]] = {}
@@ -173,35 +219,59 @@ class LocalSampler(Sampler):
173
219
  for edge_type in set(self.edge_types) - set(time_offset_dict.keys()):
174
220
  num_neighbors_dict['__'.join(edge_type)] = [0] * num_hops
175
221
 
176
- _, _, node_dict, batch_dict, _, _ = self._graph_sampler.sample(
177
- num_neighbors_dict,
178
- unix_time_offset_dict,
179
- query.entity_table,
180
- self._graph_store.get_node_id(query.entity_table, entity_pkey),
181
- anchor_time.astype(int).to_numpy() // 1000**3,
182
- )
222
+ count = 0
223
+ ys: list[pd.Series] = []
224
+ mask = np.full(len(index), False, dtype=bool)
225
+ for start in range(0, len(index), batch_size):
226
+ subset = pkey.iloc[index[start:start + batch_size]]
227
+ time = anchor_time.iloc[start:start + batch_size]
183
228
 
184
- feat_dict: dict[str, pd.DataFrame] = {}
185
- time_dict: dict[str, pd.Series] = {}
186
- for table_name, columns in columns_dict.items():
187
- df = self._graph_store.df_dict[table_name]
188
- df = df.iloc[node_dict[table_name]].reset_index(drop=True)
189
- df = df[list(columns)]
190
- feat_dict[table_name] = df
191
- if time_column := self.time_column_dict.get(table_name):
192
- time_dict[table_name] = df[time_column]
229
+ _, _, node_dict, batch_dict, _, _ = self._graph_sampler.sample(
230
+ num_neighbors_dict,
231
+ unix_time_offset_dict,
232
+ query.entity_table,
233
+ self._graph_store.get_node_id(query.entity_table, subset),
234
+ time.astype(int).to_numpy() // 1000**3, # to seconds
235
+ )
193
236
 
194
- return PQueryPandasExecutor().execute(
195
- query=query,
196
- feat_dict=feat_dict,
197
- time_dict=time_dict,
198
- batch_dict=batch_dict,
199
- anchor_time=anchor_time,
200
- num_forecasts=query.num_forecasts,
201
- )
237
+ feat_dict: dict[str, pd.DataFrame] = {}
238
+ time_dict: dict[str, pd.Series] = {}
239
+ for table_name, columns in columns_dict.items():
240
+ df = self._graph_store.df_dict[table_name]
241
+ df = df.iloc[node_dict[table_name]].reset_index(drop=True)
242
+ df = df[list(columns)]
243
+ feat_dict[table_name] = df
244
+
245
+ time_column = self.time_column_dict.get(table_name)
246
+ if time_column in columns:
247
+ time_dict[table_name] = df[time_column]
248
+
249
+ y, _mask = PQueryPandasExecutor().execute(
250
+ query=query,
251
+ feat_dict=feat_dict,
252
+ time_dict=time_dict,
253
+ batch_dict=batch_dict,
254
+ anchor_time=time,
255
+ num_forecasts=query.num_forecasts,
256
+ )
257
+ ys.append(y)
258
+ mask[start:start + batch_size] = _mask
259
+
260
+ count += len(y)
261
+ if count >= num_examples:
262
+ break
263
+
264
+ if len(ys) == 0:
265
+ y = pd.Series([], dtype=float)
266
+ elif len(ys) == 1:
267
+ y = ys[0]
268
+ else:
269
+ y = pd.concat(ys, axis=0, ignore_index=True)
270
+
271
+ return y, mask
202
272
 
203
273
 
204
- # Helper Methods ##############################################################
274
+ # Helper Functions ############################################################
205
275
 
206
276
 
207
277
  def date_offset_to_seconds(offset: pd.DateOffset) -> int:
@@ -1,10 +1,15 @@
1
- import warnings
2
- from typing import List, Optional
1
+ from typing import Sequence, cast
3
2
 
4
3
  import pandas as pd
4
+ from kumoapi.model_plan import MissingType
5
5
 
6
- from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
7
- from kumoai.experimental.rfm.infer import infer_dtype
6
+ from kumoai.experimental.rfm.base import (
7
+ ColumnSpec,
8
+ DataBackend,
9
+ SourceColumn,
10
+ SourceForeignKey,
11
+ Table,
12
+ )
8
13
 
9
14
 
10
15
  class LocalTable(Table):
@@ -52,9 +57,9 @@ class LocalTable(Table):
52
57
  self,
53
58
  df: pd.DataFrame,
54
59
  name: str,
55
- primary_key: Optional[str] = None,
56
- time_column: Optional[str] = None,
57
- end_time_column: Optional[str] = None,
60
+ primary_key: MissingType | str | None = MissingType.VALUE,
61
+ time_column: str | None = None,
62
+ end_time_column: str | None = None,
58
63
  ) -> None:
59
64
 
60
65
  if df.empty:
@@ -70,40 +75,39 @@ class LocalTable(Table):
70
75
 
71
76
  super().__init__(
72
77
  name=name,
73
- columns=list(df.columns),
74
78
  primary_key=primary_key,
75
79
  time_column=time_column,
76
80
  end_time_column=end_time_column,
77
81
  )
78
82
 
79
- def _get_source_columns(self) -> List[SourceColumn]:
80
- source_columns: List[SourceColumn] = []
81
- for column in self._data.columns:
82
- ser = self._data[column]
83
- try:
84
- dtype = infer_dtype(ser)
85
- except Exception:
86
- warnings.warn(f"Data type inference for column '{column}' in "
87
- f"table '{self.name}' failed. Consider changing "
88
- f"the data type of the column to use it within "
89
- f"this table.")
90
- continue
91
-
92
- source_column = SourceColumn(
93
- name=column,
94
- dtype=dtype,
83
+ @property
84
+ def backend(self) -> DataBackend:
85
+ return cast(DataBackend, DataBackend.LOCAL)
86
+
87
+ def _get_source_columns(self) -> list[SourceColumn]:
88
+ return [
89
+ SourceColumn(
90
+ name=column_name,
91
+ dtype=None,
95
92
  is_primary_key=False,
96
93
  is_unique_key=False,
97
- )
98
- source_columns.append(source_column)
99
-
100
- return source_columns
94
+ is_nullable=True,
95
+ ) for column_name in self._data.columns
96
+ ]
101
97
 
102
- def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
98
+ def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
103
99
  return []
104
100
 
105
- def _get_sample_df(self) -> pd.DataFrame:
101
+ def _get_source_sample_df(self) -> pd.DataFrame:
106
102
  return self._data
107
103
 
108
- def _get_num_rows(self) -> Optional[int]:
104
+ def _get_expr_sample_df(
105
+ self,
106
+ columns: Sequence[ColumnSpec],
107
+ ) -> pd.DataFrame:
108
+ raise RuntimeError(f"Column expressions are not supported in "
109
+ f"'{self.__class__.__name__}'. Please apply your "
110
+ f"expressions on the `pd.DataFrame` directly.")
111
+
112
+ def _get_num_rows(self) -> int | None:
109
113
  return len(self._data)
@@ -27,9 +27,11 @@ def connect(**kwargs: Any) -> Connection:
27
27
 
28
28
 
29
29
  from .table import SnowTable # noqa: E402
30
+ from .sampler import SnowSampler # noqa: E402
30
31
 
31
32
  __all__ = [
32
33
  'connect',
33
34
  'Connection',
34
35
  'SnowTable',
36
+ 'SnowSampler',
35
37
  ]