kumoai 2.13.0.dev202512091732__cp311-cp311-macosx_11_0_arm64.whl → 2.14.0.dev202512191731__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. kumoai/_version.py +1 -1
  2. kumoai/client/pquery.py +6 -2
  3. kumoai/experimental/rfm/__init__.py +33 -8
  4. kumoai/experimental/rfm/authenticate.py +3 -4
  5. kumoai/experimental/rfm/backend/local/graph_store.py +40 -83
  6. kumoai/experimental/rfm/backend/local/sampler.py +128 -55
  7. kumoai/experimental/rfm/backend/local/table.py +21 -16
  8. kumoai/experimental/rfm/backend/snow/__init__.py +2 -0
  9. kumoai/experimental/rfm/backend/snow/sampler.py +252 -0
  10. kumoai/experimental/rfm/backend/snow/table.py +101 -49
  11. kumoai/experimental/rfm/backend/sqlite/__init__.py +4 -2
  12. kumoai/experimental/rfm/backend/sqlite/sampler.py +349 -0
  13. kumoai/experimental/rfm/backend/sqlite/table.py +84 -31
  14. kumoai/experimental/rfm/base/__init__.py +24 -5
  15. kumoai/experimental/rfm/base/column.py +14 -12
  16. kumoai/experimental/rfm/base/column_expression.py +50 -0
  17. kumoai/experimental/rfm/base/sampler.py +429 -30
  18. kumoai/experimental/rfm/base/source.py +1 -0
  19. kumoai/experimental/rfm/base/sql_sampler.py +84 -0
  20. kumoai/experimental/rfm/base/sql_table.py +229 -0
  21. kumoai/experimental/rfm/base/table.py +165 -135
  22. kumoai/experimental/rfm/graph.py +266 -102
  23. kumoai/experimental/rfm/infer/__init__.py +6 -4
  24. kumoai/experimental/rfm/infer/dtype.py +3 -3
  25. kumoai/experimental/rfm/infer/pkey.py +4 -2
  26. kumoai/experimental/rfm/infer/stype.py +35 -0
  27. kumoai/experimental/rfm/infer/time_col.py +1 -2
  28. kumoai/experimental/rfm/pquery/executor.py +27 -27
  29. kumoai/experimental/rfm/pquery/pandas_executor.py +29 -31
  30. kumoai/experimental/rfm/rfm.py +299 -230
  31. kumoai/experimental/rfm/sagemaker.py +4 -4
  32. kumoai/pquery/predictive_query.py +10 -6
  33. kumoai/testing/snow.py +50 -0
  34. kumoai/utils/__init__.py +3 -2
  35. kumoai/utils/progress_logger.py +178 -12
  36. kumoai/utils/sql.py +3 -0
  37. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202512191731.dist-info}/METADATA +3 -2
  38. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202512191731.dist-info}/RECORD +41 -35
  39. kumoai/experimental/rfm/local_graph_sampler.py +0 -223
  40. kumoai/experimental/rfm/local_pquery_driver.py +0 -689
  41. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202512191731.dist-info}/WHEEL +0 -0
  42. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202512191731.dist-info}/licenses/LICENSE +0 -0
  43. {kumoai-2.13.0.dev202512091732.dist-info → kumoai-2.14.0.dev202512191731.dist-info}/top_level.txt +0 -0
@@ -1,23 +1,30 @@
1
1
  import copy
2
2
  import re
3
+ import warnings
3
4
  from abc import ABC, abstractmethod
4
5
  from collections import defaultdict
5
6
  from dataclasses import dataclass
6
- from typing import TYPE_CHECKING, Literal
7
+ from typing import TYPE_CHECKING, Any, Literal, NamedTuple
7
8
 
8
9
  import numpy as np
9
10
  import pandas as pd
10
- from kumoapi.pquery import ValidatedPredictiveQuery
11
+ from kumoapi.pquery import QueryType, ValidatedPredictiveQuery
11
12
  from kumoapi.pquery.AST import Aggregation, ASTNode
12
13
  from kumoapi.rfm.context import EdgeLayout, Link, Subgraph, Table
13
14
  from kumoapi.typing import Stype
14
15
 
16
+ from kumoai.experimental.rfm.base import SourceColumn
17
+ from kumoai.utils import ProgressLogger
18
+
15
19
  if TYPE_CHECKING:
16
20
  from kumoai.experimental.rfm import Graph
17
21
 
22
+ _coverage_warned = False
23
+
18
24
 
19
25
  @dataclass
20
26
  class SamplerOutput:
27
+ anchor_time: np.ndarray
21
28
  df_dict: dict[str, pd.DataFrame]
22
29
  inverse_dict: dict[str, np.ndarray]
23
30
  batch_dict: dict[str, np.ndarray]
@@ -27,16 +34,25 @@ class SamplerOutput:
27
34
  num_sampled_edges_dict: dict[tuple[str, str, str], list[int]]
28
35
 
29
36
 
30
- @dataclass
31
- class TargetOutput:
37
+ class TargetOutput(NamedTuple):
32
38
  entity_pkey: pd.Series
33
39
  anchor_time: pd.Series
34
40
  target: pd.Series
35
- num_trials: int
36
41
 
37
42
 
38
43
  class Sampler(ABC):
39
- def __init__(self, graph: 'Graph') -> None:
44
+ r"""A base class to sample relational data (*i.e.*, subgraphs and
45
+ ground-truth targets) from a custom backend.
46
+
47
+ Args:
48
+ graph: The graph.
49
+ verbose: Whether to print verbose output.
50
+ """
51
+ def __init__(
52
+ self,
53
+ graph: 'Graph',
54
+ verbose: bool | ProgressLogger = True,
55
+ ) -> None:
40
56
  self._edge_types: list[tuple[str, str, str]] = []
41
57
  for edge in graph.edges:
42
58
  edge_type = (edge.src_table, edge.fkey, edge.dst_table)
@@ -72,35 +88,106 @@ class Sampler(ABC):
72
88
  continue
73
89
  self._table_stype_dict[table.name][column.name] = column.stype
74
90
 
91
+ self._source_table_dict: dict[str, dict[str, SourceColumn]] = {}
92
+ for table in graph.tables.values():
93
+ self._source_table_dict[table.name] = table._source_column_dict
94
+
95
+ self._min_time_dict: dict[str, pd.Timestamp] = {}
96
+ self._max_time_dict: dict[str, pd.Timestamp] = {}
97
+
98
+ # Properties ##############################################################
99
+
75
100
  @property
76
101
  def edge_types(self) -> list[tuple[str, str, str]]:
102
+ r"""All available edge types in the graph."""
77
103
  return self._edge_types
78
104
 
79
105
  @property
80
106
  def primary_key_dict(self) -> dict[str, str]:
107
+ r"""All available primary keys in the graph."""
81
108
  return self._primary_key_dict
82
109
 
83
110
  @property
84
111
  def time_column_dict(self) -> dict[str, str]:
112
+ r"""All available time columns in the graph."""
85
113
  return self._time_column_dict
86
114
 
87
115
  @property
88
116
  def end_time_column_dict(self) -> dict[str, str]:
117
+ r"""All available end time columns in the graph."""
89
118
  return self._end_time_column_dict
90
119
 
91
120
  @property
92
121
  def table_stype_dict(self) -> dict[str, dict[str, Stype]]:
122
+ r"""The registered semantic types for all columns in all tables in
123
+ the graph.
124
+ """
93
125
  return self._table_stype_dict
94
126
 
127
+ @property
128
+ def source_table_dict(self) -> dict[str, dict[str, SourceColumn]]:
129
+ r"""Source column information for all tables in the graph."""
130
+ return self._source_table_dict
131
+
132
+ def get_min_time(
133
+ self,
134
+ table_names: list[str] | None = None,
135
+ ) -> pd.Timestamp:
136
+ r"""Returns the minimal timestamp in the union of a set of tables.
137
+
138
+ Args:
139
+ table_names: The set of tables.
140
+ """
141
+ if table_names is None or len(table_names) == 0:
142
+ table_names = list(self.time_column_dict.keys())
143
+ unknown = list(set(table_names) - set(self._min_time_dict.keys()))
144
+ if len(unknown) > 0:
145
+ min_max_time_dict = self._get_min_max_time_dict(unknown)
146
+ for table_name, (min_time, max_time) in min_max_time_dict.items():
147
+ self._min_time_dict[table_name] = min_time
148
+ self._max_time_dict[table_name] = max_time
149
+ return min([self._min_time_dict[table]
150
+ for table in table_names] + [pd.Timestamp.max])
151
+
152
+ def get_max_time(
153
+ self,
154
+ table_names: list[str] | None = None,
155
+ ) -> pd.Timestamp:
156
+ r"""Returns the maximum timestamp in the union of a set of tables.
157
+
158
+ Args:
159
+ table_names: The set of tables.
160
+ """
161
+ if table_names is None or len(table_names) == 0:
162
+ table_names = list(self.time_column_dict.keys())
163
+ unknown = list(set(table_names) - set(self._max_time_dict.keys()))
164
+ if len(unknown) > 0:
165
+ min_max_time_dict = self._get_min_max_time_dict(unknown)
166
+ for table_name, (min_time, max_time) in min_max_time_dict.items():
167
+ self._min_time_dict[table_name] = min_time
168
+ self._max_time_dict[table_name] = max_time
169
+ return max([self._max_time_dict[table]
170
+ for table in table_names] + [pd.Timestamp.min])
171
+
172
+ # Subgraph Sampling #######################################################
173
+
95
174
  def sample_subgraph(
96
175
  self,
97
176
  entity_table_names: tuple[str, ...],
98
177
  entity_pkey: pd.Series,
99
- anchor_time: pd.Series,
178
+ anchor_time: pd.Series | Literal['entity'],
100
179
  num_neighbors: list[int],
101
180
  exclude_cols_dict: dict[str, list[str]] | None = None,
102
181
  ) -> Subgraph:
103
-
182
+ r"""Samples distinct subgraphs for each entity primary key.
183
+
184
+ Args:
185
+ entity_table_names: The entity table names.
186
+ entity_pkey: The primary keys to use as seed nodes.
187
+ anchor_time: The anchor time of the subgraphs.
188
+ num_neighbors: The number of neighbors to sample for each hop.
189
+ exclude_cols_dict: The columns to exclude from the subgraph.
190
+ """
104
191
  # Exclude all columns that leak target information:
105
192
  table_stype_dict: dict[str, dict[str, Stype]] = self._table_stype_dict
106
193
  if exclude_cols_dict is not None:
@@ -118,7 +205,8 @@ class Sampler(ABC):
118
205
  for table_name in entity_table_names:
119
206
  columns_dict[table_name].add(self.primary_key_dict[table_name])
120
207
 
121
- if anchor_time.dtype != 'datetime64[ns]':
208
+ if (isinstance(anchor_time, pd.Series)
209
+ and anchor_time.dtype != 'datetime64[ns]'):
122
210
  anchor_time = anchor_time.astype('datetime64[ns]')
123
211
 
124
212
  out = self._sample_subgraph(
@@ -129,8 +217,9 @@ class Sampler(ABC):
129
217
  num_neighbors=num_neighbors,
130
218
  )
131
219
 
220
+ # Parse `SubgraphOutput` into `Subgraph` structure:
132
221
  subgraph = Subgraph(
133
- anchor_time=anchor_time.astype(int).to_numpy(),
222
+ anchor_time=out.anchor_time,
134
223
  table_dict={},
135
224
  link_dict={},
136
225
  )
@@ -150,7 +239,7 @@ class Sampler(ABC):
150
239
  ser = df[end_time_column]
151
240
  if ser.dtype != 'datetime64[ns]':
152
241
  ser = ser.astype('datetime64[ns]')
153
- mask = ser > anchor_time.iloc[batch]
242
+ mask = ser.astype(int).to_numpy() > out.anchor_time[batch]
154
243
  ser.iloc[mask] = pd.NaT
155
244
  df[end_time_column] = ser
156
245
 
@@ -213,24 +302,31 @@ class Sampler(ABC):
213
302
 
214
303
  return subgraph
215
304
 
216
- def sample_target(
305
+ # Predictive Query ########################################################
306
+
307
+ def _get_query_columns_dict(
217
308
  self,
218
309
  query: ValidatedPredictiveQuery,
219
- num_examples: int,
220
- anchor_time: pd.Timestamp | Literal['entity'],
221
- random_seed: int | None = None,
222
- ) -> TargetOutput:
223
-
310
+ ) -> dict[str, set[str]]:
224
311
  columns_dict: dict[str, set[str]] = defaultdict(set)
225
312
  for fqn in query.all_query_columns + [query.entity_column]:
226
313
  table_name, column_name = fqn.split('.')
314
+ if column_name == '*':
315
+ continue
227
316
  columns_dict[table_name].add(column_name)
228
-
229
317
  if column_name := self.time_column_dict.get(query.entity_table):
230
318
  columns_dict[table_name].add(column_name)
231
319
  if column_name := self.end_time_column_dict.get(query.entity_table):
232
320
  columns_dict[table_name].add(column_name)
321
+ return columns_dict
233
322
 
323
+ def _get_query_time_offset_dict(
324
+ self,
325
+ query: ValidatedPredictiveQuery,
326
+ ) -> dict[
327
+ tuple[str, str, str],
328
+ tuple[pd.DateOffset | None, pd.DateOffset],
329
+ ]:
234
330
  time_offset_dict: dict[
235
331
  tuple[str, str, str],
236
332
  tuple[pd.DateOffset | None, pd.DateOffset],
@@ -239,7 +335,6 @@ class Sampler(ABC):
239
335
  def _add_time_offset(node: ASTNode, num_forecasts: int = 1) -> None:
240
336
  if isinstance(node, Aggregation):
241
337
  table_name = node._get_target_column_name().split('.')[0]
242
- columns_dict[table_name].add(self.time_column_dict[table_name])
243
338
 
244
339
  edge_types = [
245
340
  edge_type for edge_type in self.edge_types
@@ -273,42 +368,342 @@ class Sampler(ABC):
273
368
  if query.whatif_ast is not None:
274
369
  _add_time_offset(query.whatif_ast)
275
370
 
276
- return self._sample_target(
371
+ return time_offset_dict
372
+
373
+ def sample_target(
374
+ self,
375
+ query: ValidatedPredictiveQuery,
376
+ num_train_examples: int,
377
+ train_anchor_time: pd.Timestamp | Literal['entity'],
378
+ num_train_trials: int,
379
+ num_test_examples: int,
380
+ test_anchor_time: pd.Timestamp | Literal['entity'],
381
+ num_test_trials: int,
382
+ random_seed: int | None = None,
383
+ ) -> tuple[TargetOutput, TargetOutput]:
384
+ r"""Samples ground-truth targets given a predictive query, split into
385
+ training and test set.
386
+
387
+ Args:
388
+ query: The predictive query.
389
+ num_train_examples: How many training examples to produce.
390
+ train_anchor_time: The anchor timestamp for the training set.
391
+ If set to ``"entity"``, will use the timestamp of the entity.
392
+ num_train_trials: The number of training examples to try before
393
+ aborting.
394
+ num_test_examples: How many test examples to produce.
395
+ test_anchor_time: The anchor timestamp for the test set.
396
+ If set to ``"entity"``, will use the timestamp of the entity.
397
+ num_test_trials: The number of test examples to try before
398
+ aborting.
399
+ random_seed: A manual seed for generating pseudo-random numbers.
400
+ """
401
+ rng = np.random.default_rng(random_seed)
402
+
403
+ if num_train_examples == 0 or num_train_trials == 0:
404
+ num_train_examples = num_train_trials = 0
405
+ if num_test_examples == 0 or num_test_trials == 0:
406
+ num_test_examples = num_test_trials = 0
407
+
408
+ # 1. Collect information on what to query #############################
409
+ columns_dict = self._get_query_columns_dict(query)
410
+ time_offset_dict = self._get_query_time_offset_dict(query)
411
+ for table_name, _, _ in time_offset_dict.keys():
412
+ columns_dict[table_name].add(self.time_column_dict[table_name])
413
+
414
+ # 2. Sample random rows from entity table #############################
415
+ shared_train_test = query.query_type == QueryType.STATIC
416
+ shared_train_test &= train_anchor_time == test_anchor_time
417
+ if shared_train_test:
418
+ num_entity_rows = num_train_trials + num_test_trials
419
+ else:
420
+ num_entity_rows = max(num_train_trials, num_test_trials)
421
+ assert num_entity_rows > 0
422
+
423
+ entity_df = self._sample_entity_table(
424
+ table_name=query.entity_table,
425
+ columns=columns_dict[query.entity_table],
426
+ num_rows=num_entity_rows,
427
+ random_seed=random_seed,
428
+ )
429
+
430
+ if len(entity_df) == 0:
431
+ raise ValueError("Failed to find any rows in the entity table "
432
+ "'{query.entity_table}'.")
433
+
434
+ entity_pkey = entity_df[self.primary_key_dict[query.entity_table]]
435
+ entity_time: pd.Series | None = None
436
+ if column_name := self.time_column_dict.get(query.entity_table):
437
+ entity_time = entity_df[column_name]
438
+ entity_end_time: pd.Series | None = None
439
+ if column_name := self.end_time_column_dict.get(query.entity_table):
440
+ entity_end_time = entity_df[column_name]
441
+
442
+ def get_valid_entity_index(
443
+ time: pd.Timestamp | Literal['entity'],
444
+ max_size: int | None = None,
445
+ ) -> np.ndarray:
446
+
447
+ if time == 'entity':
448
+ index: np.ndarray = np.arange(len(entity_pkey))
449
+ elif entity_time is None and entity_end_time is None:
450
+ index = np.arange(len(entity_pkey))
451
+ else:
452
+ mask: np.ndarray | None = None
453
+ if entity_time is not None:
454
+ mask = (entity_time <= time).to_numpy()
455
+ if entity_end_time is not None:
456
+ _mask = (entity_end_time > time).to_numpy()
457
+ _mask |= entity_end_time.isna().to_numpy()
458
+ mask = _mask if mask is None else mask & _mask
459
+ assert mask is not None
460
+ index = mask.nonzero()[0]
461
+
462
+ rng.shuffle(index)
463
+
464
+ if max_size is not None:
465
+ index = index[:max_size]
466
+
467
+ return index
468
+
469
+ # 3. Build training and test candidates ###############################
470
+ train_index = test_index = np.array([], dtype=np.int64)
471
+ train_time = test_time = pd.Series([], dtype='datetime64[ns]')
472
+
473
+ if shared_train_test:
474
+ train_index = get_valid_entity_index(train_anchor_time)
475
+ if train_anchor_time == 'entity': # Sort by timestamp:
476
+ assert entity_time is not None
477
+ train_time = entity_time.iloc[train_index]
478
+ train_time = train_time.reset_index(drop=True)
479
+ train_time = train_time.sort_values(ascending=False)
480
+ perm = train_time.index.to_numpy()
481
+ train_index = train_index[perm]
482
+ train_time = train_time.reset_index(drop=True)
483
+ else:
484
+ train_time = to_ser(train_anchor_time, size=len(train_index))
485
+ else:
486
+ if num_test_examples > 0:
487
+ test_index = get_valid_entity_index( #
488
+ test_anchor_time, max_size=num_test_trials)
489
+ assert test_anchor_time != 'entity'
490
+ test_time = to_ser(test_anchor_time, len(test_index))
491
+
492
+ if query.query_type == QueryType.STATIC and num_train_examples > 0:
493
+ train_index = get_valid_entity_index( #
494
+ train_anchor_time, max_size=num_train_trials)
495
+ assert train_anchor_time != 'entity'
496
+ train_time = to_ser(train_anchor_time, len(train_index))
497
+ elif query.query_type == QueryType.TEMPORAL and num_train_examples:
498
+ aggr_table_names = [
499
+ aggr._get_target_column_name().split('.')[0]
500
+ for aggr in query.get_all_target_aggregations()
501
+ ]
502
+ offset = query.target_timeframe.timeframe * query.num_forecasts
503
+
504
+ train_indices: list[np.ndarray] = []
505
+ train_times: list[pd.Series] = []
506
+ while True:
507
+ train_index = get_valid_entity_index( #
508
+ train_anchor_time, max_size=num_train_trials)
509
+ assert train_anchor_time != 'entity'
510
+ train_time = to_ser(train_anchor_time, len(train_index))
511
+ train_indices.append(train_index)
512
+ train_times.append(train_time)
513
+ if sum(len(x) for x in train_indices) >= num_train_trials:
514
+ break
515
+ train_anchor_time -= offset
516
+ if train_anchor_time < self.get_min_time(aggr_table_names):
517
+ break
518
+ train_index = np.concatenate(train_indices, axis=0)
519
+ train_index = train_index[:num_train_trials]
520
+ train_time = pd.concat(train_times, axis=0, ignore_index=True)
521
+ train_time = train_time.iloc[:num_train_trials]
522
+
523
+ # 4. Sample training and test labels ##################################
524
+ train_y, train_mask, test_y, test_mask = self._sample_target(
277
525
  query=query,
278
- num_examples=num_examples,
279
- anchor_time=anchor_time,
526
+ entity_df=entity_df,
527
+ train_index=train_index,
528
+ train_time=train_time,
529
+ num_train_examples=(num_train_examples + num_test_examples
530
+ if shared_train_test else num_train_examples),
531
+ test_index=test_index,
532
+ test_time=test_time,
533
+ num_test_examples=0 if shared_train_test else num_test_examples,
280
534
  columns_dict=columns_dict,
281
535
  time_offset_dict=time_offset_dict,
282
- random_seed=random_seed,
536
+ )
537
+
538
+ # 5. Post-processing ##################################################
539
+ if shared_train_test:
540
+ num_examples = num_train_examples + num_test_examples
541
+ train_index = train_index[train_mask][:num_examples]
542
+ train_time = train_time.iloc[train_mask].iloc[:num_examples]
543
+ train_y = train_y.iloc[:num_examples]
544
+
545
+ _num_test = num_test_examples
546
+ _num_train = min(num_train_examples, 1000)
547
+ if (num_test_examples > 0 and num_train_examples > 0
548
+ and len(train_y) < num_examples
549
+ and len(train_y) < _num_test + _num_train):
550
+ # Not enough labels to satisfy requested split without losing
551
+ # large number of training examples:
552
+ _num_test = len(train_y) - _num_train
553
+ if _num_test < _num_train: # Fallback to 50/50 split:
554
+ _num_test = len(train_y) // 2
555
+
556
+ test_index = train_index[:_num_test]
557
+ test_pkey = entity_pkey.iloc[test_index]
558
+ test_time = train_time.iloc[:_num_test]
559
+ test_y = train_y.iloc[:_num_test]
560
+
561
+ train_index = train_index[_num_test:]
562
+ train_pkey = entity_pkey.iloc[train_index]
563
+ train_time = train_time.iloc[_num_test:]
564
+ train_y = train_y.iloc[_num_test:]
565
+ else:
566
+ train_index = train_index[train_mask][:num_train_examples]
567
+ train_pkey = entity_pkey.iloc[train_index]
568
+ train_time = train_time.iloc[train_mask].iloc[:num_train_examples]
569
+ train_y = train_y.iloc[:num_train_examples]
570
+
571
+ test_index = test_index[test_mask][:num_test_examples]
572
+ test_pkey = entity_pkey.iloc[test_index]
573
+ test_time = test_time.iloc[test_mask].iloc[:num_test_examples]
574
+ test_y = test_y.iloc[:num_test_examples]
575
+
576
+ train_pkey = train_pkey.reset_index(drop=True)
577
+ train_time = train_time.reset_index(drop=True)
578
+ train_y = train_y.reset_index(drop=True)
579
+ test_pkey = test_pkey.reset_index(drop=True)
580
+ test_time = test_time.reset_index(drop=True)
581
+ test_y = test_y.reset_index(drop=True)
582
+
583
+ if num_train_examples > 0 and len(train_y) == 0:
584
+ raise RuntimeError("Failed to collect any context examples. Is "
585
+ "your predictive query too restrictive?")
586
+
587
+ if num_test_examples > 0 and len(test_y) == 0:
588
+ raise RuntimeError("Failed to collect any test examples for "
589
+ "evaluation. Is your predictive query too "
590
+ "restrictive?")
591
+
592
+ global _coverage_warned
593
+ if (not num_train_examples > 0 #
594
+ and not _coverage_warned #
595
+ and len(entity_df) >= num_entity_rows
596
+ and len(train_y) < num_train_examples // 2):
597
+ _coverage_warned = True
598
+ warnings.warn(f"Failed to collect {num_train_examples:,} context "
599
+ f"examples within {num_train_trials:,} candidates. "
600
+ f"To improve coverage, consider increasing the "
601
+ f"number of PQ iterations using the "
602
+ f"'max_pq_iterations' option. This warning will not "
603
+ f"be shown again in this run.")
604
+
605
+ if (not num_test_examples > 0 #
606
+ and not _coverage_warned #
607
+ and len(entity_df) >= num_entity_rows
608
+ and len(test_y) < num_test_examples // 2):
609
+ _coverage_warned = True
610
+ warnings.warn(f"Failed to collect {num_test_examples:,} test "
611
+ f"examples within {num_test_trials:,} candidates. "
612
+ f"To improve coverage, consider increasing the "
613
+ f"number of PQ iterations using the "
614
+ f"'max_pq_iterations' option. This warning will not "
615
+ f"be shown again in this run.")
616
+
617
+ return (
618
+ TargetOutput(train_pkey, train_time, train_y),
619
+ TargetOutput(test_pkey, test_time, test_y),
283
620
  )
284
621
 
285
622
  # Abstract Methods ########################################################
286
623
 
624
+ @abstractmethod
625
+ def _get_min_max_time_dict(
626
+ self,
627
+ table_names: list[str],
628
+ ) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
629
+ r"""Returns the minimum and maximum timestamps for a set of tables.
630
+
631
+ Args:
632
+ table_names: The tables.
633
+ """
634
+
287
635
  @abstractmethod
288
636
  def _sample_subgraph(
289
637
  self,
290
638
  entity_table_name: str,
291
639
  entity_pkey: pd.Series,
292
- anchor_time: pd.Series,
640
+ anchor_time: pd.Series | Literal['entity'],
293
641
  columns_dict: dict[str, set[str]],
294
642
  num_neighbors: list[int],
295
643
  ) -> SamplerOutput:
296
- pass
644
+ r"""Samples distinct subgraphs for each entity primary key.
645
+
646
+ Args:
647
+ entity_table_name: The entity table name.
648
+ entity_pkey: The primary keys to use as seed nodes.
649
+ anchor_time: The anchor time of the subgraphs.
650
+ columns_dict: The columns to return for each table.
651
+ num_neighbors: The number of neighbors to sample for each hop.
652
+ """
653
+
654
+ @abstractmethod
655
+ def _sample_entity_table(
656
+ self,
657
+ table_name: str,
658
+ columns: set[str],
659
+ num_rows: int,
660
+ random_seed: int | None = None,
661
+ ) -> pd.DataFrame:
662
+ r"""Returns a random sample of rows from the entity table.
663
+
664
+ Args:
665
+ table_name: The table.
666
+ columns: The columns to return.
667
+ num_rows: Maximum number of rows to return. Can be smaller in case
668
+ the entity table contains less rows.
669
+ random_seed: A manual seed for generating pseudo-random numbers.
670
+ """
297
671
 
298
672
  @abstractmethod
299
673
  def _sample_target(
300
674
  self,
301
675
  query: ValidatedPredictiveQuery,
302
- num_examples: int,
303
- anchor_time: pd.Timestamp | Literal['entity'],
676
+ entity_df: pd.DataFrame,
677
+ train_index: np.ndarray,
678
+ train_time: pd.Series,
679
+ num_train_examples: int,
680
+ test_index: np.ndarray,
681
+ test_time: pd.Series,
682
+ num_test_examples: int,
304
683
  columns_dict: dict[str, set[str]],
305
684
  time_offset_dict: dict[
306
685
  tuple[str, str, str],
307
686
  tuple[pd.DateOffset | None, pd.DateOffset],
308
687
  ],
309
- random_seed: int | None = None,
310
- ) -> TargetOutput:
311
- pass
688
+ ) -> tuple[pd.Series, np.ndarray, pd.Series, np.ndarray]:
689
+ r"""Samples ground-truth targets given a predictive query from a set of
690
+ training and test candidates.
691
+
692
+ Args:
693
+ query: The predictive query.
694
+ entity_df: The entity data frame, containing the union of all train
695
+ and test candidates.
696
+ train_index: The indices of training candidates.
697
+ train_time: The anchor time of training candidates.
698
+ num_train_examples: How many training examples to produce.
699
+ test_index: The indices of test candidates.
700
+ test_time: The anchor time of test candidates.
701
+ num_test_examples: How many test examples to produce.
702
+ columns_dict: The columns that are being used to compute
703
+ ground-truth targets.
704
+ time_offset_dict: The date offsets to query for each edge type,
705
+ relative to the anchor time.
706
+ """
312
707
 
313
708
 
314
709
  # Helper Functions ############################################################
@@ -372,3 +767,7 @@ def max_date_offset(*args: pd.DateOffset) -> pd.DateOffset:
372
767
  assert len(timestamps) > 0
373
768
  argmax = max(range(len(timestamps)), key=lambda i: timestamps[i])
374
769
  return args[argmax]
770
+
771
+
772
+ def to_ser(value: Any, size: int) -> pd.Series:
773
+ return pd.Series([value]).repeat(size).reset_index(drop=True)
@@ -9,6 +9,7 @@ class SourceColumn:
9
9
  dtype: Dtype
10
10
  is_primary_key: bool
11
11
  is_unique_key: bool
12
+ is_nullable: bool
12
13
 
13
14
 
14
15
  @dataclass