kumoai 2.13.0.dev202512040651__cp312-cp312-win_amd64.whl → 2.14.0.dev202512111731__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +12 -0
- kumoai/_version.py +1 -1
- kumoai/experimental/rfm/backend/local/__init__.py +4 -0
- kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +31 -70
- kumoai/experimental/rfm/backend/local/sampler.py +313 -0
- kumoai/experimental/rfm/backend/snow/table.py +1 -1
- kumoai/experimental/rfm/base/__init__.py +3 -0
- kumoai/experimental/rfm/base/sampler.py +763 -0
- kumoai/experimental/rfm/base/table.py +8 -3
- kumoai/experimental/rfm/graph.py +33 -17
- kumoai/experimental/rfm/pquery/pandas_executor.py +1 -1
- kumoai/experimental/rfm/rfm.py +199 -151
- kumoai/kumolib.cp312-win_amd64.pyd +0 -0
- kumoai/pquery/predictive_query.py +10 -6
- {kumoai-2.13.0.dev202512040651.dist-info → kumoai-2.14.0.dev202512111731.dist-info}/METADATA +2 -2
- {kumoai-2.13.0.dev202512040651.dist-info → kumoai-2.14.0.dev202512111731.dist-info}/RECORD +19 -19
- kumoai/experimental/rfm/local_graph_sampler.py +0 -223
- kumoai/experimental/rfm/local_pquery_driver.py +0 -689
- {kumoai-2.13.0.dev202512040651.dist-info → kumoai-2.14.0.dev202512111731.dist-info}/WHEEL +0 -0
- {kumoai-2.13.0.dev202512040651.dist-info → kumoai-2.14.0.dev202512111731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.13.0.dev202512040651.dist-info → kumoai-2.14.0.dev202512111731.dist-info}/top_level.txt +0 -0
kumoai/__init__.py
CHANGED
|
@@ -280,7 +280,19 @@ __all__ = [
|
|
|
280
280
|
]
|
|
281
281
|
|
|
282
282
|
|
|
283
|
+
def in_snowflake_notebook() -> bool:
|
|
284
|
+
try:
|
|
285
|
+
from snowflake.snowpark.context import get_active_session
|
|
286
|
+
import streamlit # noqa: F401
|
|
287
|
+
get_active_session()
|
|
288
|
+
return True
|
|
289
|
+
except Exception:
|
|
290
|
+
return False
|
|
291
|
+
|
|
292
|
+
|
|
283
293
|
def in_notebook() -> bool:
|
|
294
|
+
if in_snowflake_notebook():
|
|
295
|
+
return True
|
|
284
296
|
try:
|
|
285
297
|
from IPython import get_ipython
|
|
286
298
|
shell = get_ipython()
|
kumoai/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = '2.
|
|
1
|
+
__version__ = '2.14.0.dev202512111731'
|
|
@@ -32,7 +32,11 @@ Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
|
|
|
32
32
|
raise RuntimeError(_msg) from e
|
|
33
33
|
|
|
34
34
|
from .table import LocalTable
|
|
35
|
+
from .graph_store import LocalGraphStore
|
|
36
|
+
from .sampler import LocalSampler
|
|
35
37
|
|
|
36
38
|
__all__ = [
|
|
37
39
|
'LocalTable',
|
|
40
|
+
'LocalGraphStore',
|
|
41
|
+
'LocalSampler',
|
|
38
42
|
]
|
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
import warnings
|
|
2
|
-
from typing import Dict, List, Optional, Tuple, Union
|
|
2
|
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
|
3
3
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
import pandas as pd
|
|
6
6
|
from kumoapi.rfm.context import Subgraph
|
|
7
7
|
from kumoapi.typing import Stype
|
|
8
8
|
|
|
9
|
-
from kumoai.experimental.rfm import
|
|
9
|
+
from kumoai.experimental.rfm.backend.local import LocalTable
|
|
10
10
|
from kumoai.utils import InteractiveProgressLogger, ProgressLogger
|
|
11
11
|
|
|
12
12
|
try:
|
|
@@ -15,11 +15,14 @@ try:
|
|
|
15
15
|
except ImportError:
|
|
16
16
|
WITH_TORCH = False
|
|
17
17
|
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from kumoai.experimental.rfm import Graph
|
|
20
|
+
|
|
18
21
|
|
|
19
22
|
class LocalGraphStore:
|
|
20
23
|
def __init__(
|
|
21
24
|
self,
|
|
22
|
-
graph: Graph,
|
|
25
|
+
graph: 'Graph',
|
|
23
26
|
verbose: Union[bool, ProgressLogger] = True,
|
|
24
27
|
) -> None:
|
|
25
28
|
|
|
@@ -31,26 +34,21 @@ class LocalGraphStore:
|
|
|
31
34
|
|
|
32
35
|
with verbose as logger:
|
|
33
36
|
self.df_dict, self.mask_dict = self.sanitize(graph)
|
|
34
|
-
self.stype_dict = self.get_stype_dict(graph)
|
|
35
37
|
logger.log("Sanitized input data")
|
|
36
38
|
|
|
37
|
-
self.
|
|
39
|
+
self.pkey_map_dict = self.get_pkey_map_dict(graph)
|
|
38
40
|
num_pkeys = sum(t.has_primary_key() for t in graph.tables.values())
|
|
39
41
|
if num_pkeys > 1:
|
|
40
42
|
logger.log(f"Collected primary keys from {num_pkeys} tables")
|
|
41
43
|
else:
|
|
42
44
|
logger.log(f"Collected primary key from {num_pkeys} table")
|
|
43
45
|
|
|
44
|
-
(
|
|
45
|
-
|
|
46
|
-
self.
|
|
47
|
-
self.
|
|
48
|
-
self.min_time,
|
|
49
|
-
self.max_time,
|
|
50
|
-
) = self.get_time_data(graph)
|
|
51
|
-
if self.max_time != pd.Timestamp.min:
|
|
46
|
+
self.time_dict, self.min_max_time_dict = self.get_time_data(graph)
|
|
47
|
+
if len(self.min_max_time_dict) > 0:
|
|
48
|
+
min_time = min(t for t, _ in self.min_max_time_dict.values())
|
|
49
|
+
max_time = max(t for _, t in self.min_max_time_dict.values())
|
|
52
50
|
logger.log(f"Identified temporal graph from "
|
|
53
|
-
f"{
|
|
51
|
+
f"{min_time.date()} to {max_time.date()}")
|
|
54
52
|
else:
|
|
55
53
|
logger.log("Identified static graph without timestamps")
|
|
56
54
|
|
|
@@ -60,14 +58,6 @@ class LocalGraphStore:
|
|
|
60
58
|
logger.log(f"Created graph with {num_nodes:,} nodes and "
|
|
61
59
|
f"{num_edges:,} edges")
|
|
62
60
|
|
|
63
|
-
@property
|
|
64
|
-
def node_types(self) -> List[str]:
|
|
65
|
-
return list(self.df_dict.keys())
|
|
66
|
-
|
|
67
|
-
@property
|
|
68
|
-
def edge_types(self) -> List[Tuple[str, str, str]]:
|
|
69
|
-
return list(self.row_dict.keys())
|
|
70
|
-
|
|
71
61
|
def get_node_id(self, table_name: str, pkey: pd.Series) -> np.ndarray:
|
|
72
62
|
r"""Returns the node ID given primary keys.
|
|
73
63
|
|
|
@@ -103,7 +93,7 @@ class LocalGraphStore:
|
|
|
103
93
|
|
|
104
94
|
def sanitize(
|
|
105
95
|
self,
|
|
106
|
-
graph: Graph,
|
|
96
|
+
graph: 'Graph',
|
|
107
97
|
) -> Tuple[Dict[str, pd.DataFrame], Dict[str, np.ndarray]]:
|
|
108
98
|
r"""Sanitizes raw data according to table schema definition:
|
|
109
99
|
|
|
@@ -151,34 +141,16 @@ class LocalGraphStore:
|
|
|
151
141
|
|
|
152
142
|
return df_dict, mask_dict
|
|
153
143
|
|
|
154
|
-
def
|
|
155
|
-
stype_dict: Dict[str, Dict[str, Stype]] = {}
|
|
156
|
-
foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
|
|
157
|
-
for table in graph.tables.values():
|
|
158
|
-
stype_dict[table.name] = {}
|
|
159
|
-
for column in table.columns:
|
|
160
|
-
if column == table.primary_key:
|
|
161
|
-
continue
|
|
162
|
-
if (table.name, column.name) in foreign_keys:
|
|
163
|
-
continue
|
|
164
|
-
stype_dict[table.name][column.name] = column.stype
|
|
165
|
-
return stype_dict
|
|
166
|
-
|
|
167
|
-
def get_pkey_data(
|
|
144
|
+
def get_pkey_map_dict(
|
|
168
145
|
self,
|
|
169
|
-
graph: Graph,
|
|
170
|
-
) ->
|
|
171
|
-
Dict[str, str],
|
|
172
|
-
Dict[str, pd.DataFrame],
|
|
173
|
-
]:
|
|
174
|
-
pkey_name_dict: Dict[str, str] = {}
|
|
146
|
+
graph: 'Graph',
|
|
147
|
+
) -> Dict[str, pd.DataFrame]:
|
|
175
148
|
pkey_map_dict: Dict[str, pd.DataFrame] = {}
|
|
176
149
|
|
|
177
150
|
for table in graph.tables.values():
|
|
178
151
|
if table._primary_key is None:
|
|
179
152
|
continue
|
|
180
153
|
|
|
181
|
-
pkey_name_dict[table.name] = table._primary_key
|
|
182
154
|
pkey = self.df_dict[table.name][table._primary_key]
|
|
183
155
|
pkey_map = pd.DataFrame(
|
|
184
156
|
dict(arange=range(len(pkey))),
|
|
@@ -200,52 +172,41 @@ class LocalGraphStore:
|
|
|
200
172
|
|
|
201
173
|
pkey_map_dict[table.name] = pkey_map
|
|
202
174
|
|
|
203
|
-
return
|
|
175
|
+
return pkey_map_dict
|
|
204
176
|
|
|
205
177
|
def get_time_data(
|
|
206
178
|
self,
|
|
207
|
-
graph: Graph,
|
|
179
|
+
graph: 'Graph',
|
|
208
180
|
) -> Tuple[
|
|
209
|
-
Dict[str, str],
|
|
210
|
-
Dict[str, str],
|
|
211
181
|
Dict[str, np.ndarray],
|
|
212
|
-
pd.Timestamp,
|
|
213
|
-
pd.Timestamp,
|
|
182
|
+
Dict[str, Tuple[pd.Timestamp, pd.Timestamp]],
|
|
214
183
|
]:
|
|
215
|
-
time_column_dict: Dict[str, str] = {}
|
|
216
|
-
end_time_column_dict: Dict[str, str] = {}
|
|
217
184
|
time_dict: Dict[str, np.ndarray] = {}
|
|
218
|
-
|
|
219
|
-
max_time = pd.Timestamp.min
|
|
185
|
+
min_max_time_dict: Dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
|
|
220
186
|
for table in graph.tables.values():
|
|
221
|
-
if table._end_time_column is not None:
|
|
222
|
-
end_time_column_dict[table.name] = table._end_time_column
|
|
223
|
-
|
|
224
187
|
if table._time_column is None:
|
|
225
188
|
continue
|
|
226
189
|
|
|
227
190
|
time = self.df_dict[table.name][table._time_column]
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
191
|
+
if time.dtype != 'datetime64[ns]':
|
|
192
|
+
time = time.astype('datetime64[ns]')
|
|
193
|
+
time_dict[table.name] = time.astype(int).to_numpy() // 1000**3
|
|
231
194
|
|
|
232
195
|
if table.name in self.mask_dict.keys():
|
|
233
196
|
time = time[self.mask_dict[table.name]]
|
|
234
197
|
if len(time) > 0:
|
|
235
|
-
|
|
236
|
-
|
|
198
|
+
min_max_time_dict[table.name] = (time.min(), time.max())
|
|
199
|
+
else:
|
|
200
|
+
min_max_time_dict[table.name] = (
|
|
201
|
+
pd.Timestamp.max,
|
|
202
|
+
pd.Timestamp.min,
|
|
203
|
+
)
|
|
237
204
|
|
|
238
|
-
return
|
|
239
|
-
time_column_dict,
|
|
240
|
-
end_time_column_dict,
|
|
241
|
-
time_dict,
|
|
242
|
-
min_time,
|
|
243
|
-
max_time,
|
|
244
|
-
)
|
|
205
|
+
return time_dict, min_max_time_dict
|
|
245
206
|
|
|
246
207
|
def get_csc(
|
|
247
208
|
self,
|
|
248
|
-
graph: Graph,
|
|
209
|
+
graph: 'Graph',
|
|
249
210
|
) -> Tuple[
|
|
250
211
|
Dict[Tuple[str, str, str], np.ndarray],
|
|
251
212
|
Dict[Tuple[str, str, str], np.ndarray],
|
|
@@ -0,0 +1,313 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING, Literal
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from kumoapi.pquery import ValidatedPredictiveQuery
|
|
6
|
+
|
|
7
|
+
from kumoai.experimental.rfm.backend.local import LocalGraphStore
|
|
8
|
+
from kumoai.experimental.rfm.base import Sampler, SamplerOutput
|
|
9
|
+
from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
|
|
10
|
+
from kumoai.utils import ProgressLogger
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from kumoai.experimental.rfm import Graph
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class LocalSampler(Sampler):
|
|
17
|
+
def __init__(
|
|
18
|
+
self,
|
|
19
|
+
graph: 'Graph',
|
|
20
|
+
verbose: bool | ProgressLogger = True,
|
|
21
|
+
) -> None:
|
|
22
|
+
super().__init__(graph=graph)
|
|
23
|
+
|
|
24
|
+
import kumoai.kumolib as kumolib
|
|
25
|
+
|
|
26
|
+
self._graph_store = LocalGraphStore(graph, verbose)
|
|
27
|
+
self._graph_sampler = kumolib.NeighborSampler(
|
|
28
|
+
list(self.table_stype_dict.keys()),
|
|
29
|
+
self.edge_types,
|
|
30
|
+
{
|
|
31
|
+
'__'.join(edge_type): colptr
|
|
32
|
+
for edge_type, colptr in self._graph_store.colptr_dict.items()
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
'__'.join(edge_type): row
|
|
36
|
+
for edge_type, row in self._graph_store.row_dict.items()
|
|
37
|
+
},
|
|
38
|
+
self._graph_store.time_dict,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
def _get_min_max_time_dict(
|
|
42
|
+
self,
|
|
43
|
+
table_names: list[str],
|
|
44
|
+
) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
|
|
45
|
+
return {
|
|
46
|
+
key: value
|
|
47
|
+
for key, value in self._graph_store.min_max_time_dict.items()
|
|
48
|
+
if key in table_names
|
|
49
|
+
}
|
|
50
|
+
|
|
51
|
+
def _sample_subgraph(
|
|
52
|
+
self,
|
|
53
|
+
entity_table_name: str,
|
|
54
|
+
entity_pkey: pd.Series,
|
|
55
|
+
anchor_time: pd.Series | Literal['entity'],
|
|
56
|
+
columns_dict: dict[str, set[str]],
|
|
57
|
+
num_neighbors: list[int],
|
|
58
|
+
) -> SamplerOutput:
|
|
59
|
+
|
|
60
|
+
index = self._graph_store.get_node_id(entity_table_name, entity_pkey)
|
|
61
|
+
|
|
62
|
+
if isinstance(anchor_time, pd.Series):
|
|
63
|
+
time = anchor_time.astype(int).to_numpy() // 1000**3 # to seconds
|
|
64
|
+
else:
|
|
65
|
+
assert anchor_time == 'entity'
|
|
66
|
+
time = self._graph_store.time_dict[entity_table_name][index]
|
|
67
|
+
|
|
68
|
+
(
|
|
69
|
+
row_dict,
|
|
70
|
+
col_dict,
|
|
71
|
+
node_dict,
|
|
72
|
+
batch_dict,
|
|
73
|
+
num_sampled_nodes_dict,
|
|
74
|
+
num_sampled_edges_dict,
|
|
75
|
+
) = self._graph_sampler.sample(
|
|
76
|
+
{
|
|
77
|
+
'__'.join(edge_type): num_neighbors
|
|
78
|
+
for edge_type in self.edge_types
|
|
79
|
+
},
|
|
80
|
+
{},
|
|
81
|
+
entity_table_name,
|
|
82
|
+
index,
|
|
83
|
+
time,
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
df_dict: dict[str, pd.DataFrame] = {}
|
|
87
|
+
inverse_dict: dict[str, np.ndarray] = {}
|
|
88
|
+
for table_name, node in node_dict.items():
|
|
89
|
+
df = self._graph_store.df_dict[table_name]
|
|
90
|
+
columns = columns_dict[table_name]
|
|
91
|
+
if self.end_time_column_dict.get(table_name, None) in columns:
|
|
92
|
+
df = df.iloc[node]
|
|
93
|
+
elif len(columns) == 0:
|
|
94
|
+
df = df.iloc[node]
|
|
95
|
+
else:
|
|
96
|
+
# Only store unique rows in `df` above a certain threshold:
|
|
97
|
+
unique_node, inverse = np.unique(node, return_inverse=True)
|
|
98
|
+
if len(node) > 1.05 * len(unique_node):
|
|
99
|
+
df = df.iloc[unique_node]
|
|
100
|
+
inverse_dict[table_name] = inverse
|
|
101
|
+
else:
|
|
102
|
+
df = df.iloc[node]
|
|
103
|
+
df = df.reset_index(drop=True)
|
|
104
|
+
df = df[list(columns)]
|
|
105
|
+
df_dict[table_name] = df
|
|
106
|
+
|
|
107
|
+
num_sampled_nodes_dict = {
|
|
108
|
+
table_name: num_sampled_nodes.tolist()
|
|
109
|
+
for table_name, num_sampled_nodes in
|
|
110
|
+
num_sampled_nodes_dict.items()
|
|
111
|
+
}
|
|
112
|
+
|
|
113
|
+
row_dict = {
|
|
114
|
+
edge_type: row_dict['__'.join(edge_type)]
|
|
115
|
+
for edge_type in self.edge_types
|
|
116
|
+
}
|
|
117
|
+
col_dict = {
|
|
118
|
+
edge_type: col_dict['__'.join(edge_type)]
|
|
119
|
+
for edge_type in self.edge_types
|
|
120
|
+
}
|
|
121
|
+
num_sampled_edges_dict = {
|
|
122
|
+
edge_type: num_sampled_edges_dict['__'.join(edge_type)].tolist()
|
|
123
|
+
for edge_type in self.edge_types
|
|
124
|
+
}
|
|
125
|
+
|
|
126
|
+
return SamplerOutput(
|
|
127
|
+
anchor_time=time * 1000**3, # to nanoseconds
|
|
128
|
+
df_dict=df_dict,
|
|
129
|
+
inverse_dict=inverse_dict,
|
|
130
|
+
batch_dict=batch_dict,
|
|
131
|
+
num_sampled_nodes_dict=num_sampled_nodes_dict,
|
|
132
|
+
row_dict=row_dict,
|
|
133
|
+
col_dict=col_dict,
|
|
134
|
+
num_sampled_edges_dict=num_sampled_edges_dict,
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
def _sample_entity_table(
|
|
138
|
+
self,
|
|
139
|
+
table_name: str,
|
|
140
|
+
columns: set[str],
|
|
141
|
+
num_rows: int,
|
|
142
|
+
random_seed: int | None = None,
|
|
143
|
+
) -> pd.DataFrame:
|
|
144
|
+
pkey_map = self._graph_store.pkey_map_dict[table_name]
|
|
145
|
+
if len(pkey_map) > num_rows:
|
|
146
|
+
pkey_map = pkey_map.sample(
|
|
147
|
+
n=num_rows,
|
|
148
|
+
random_state=random_seed,
|
|
149
|
+
ignore_index=True,
|
|
150
|
+
)
|
|
151
|
+
df = self._graph_store.df_dict[table_name]
|
|
152
|
+
df = df.iloc[pkey_map['arange']][list(columns)]
|
|
153
|
+
return df
|
|
154
|
+
|
|
155
|
+
def _sample_target(
|
|
156
|
+
self,
|
|
157
|
+
query: ValidatedPredictiveQuery,
|
|
158
|
+
entity_df: pd.DataFrame,
|
|
159
|
+
train_index: np.ndarray,
|
|
160
|
+
train_time: pd.Series,
|
|
161
|
+
num_train_examples: int,
|
|
162
|
+
test_index: np.ndarray,
|
|
163
|
+
test_time: pd.Series,
|
|
164
|
+
num_test_examples: int,
|
|
165
|
+
columns_dict: dict[str, set[str]],
|
|
166
|
+
time_offset_dict: dict[
|
|
167
|
+
tuple[str, str, str],
|
|
168
|
+
tuple[pd.DateOffset | None, pd.DateOffset],
|
|
169
|
+
],
|
|
170
|
+
) -> tuple[pd.Series, np.ndarray, pd.Series, np.ndarray]:
|
|
171
|
+
|
|
172
|
+
train_y, train_mask = self._sample_target_set(
|
|
173
|
+
query=query,
|
|
174
|
+
pkey=entity_df[self.primary_key_dict[query.entity_table]],
|
|
175
|
+
index=train_index,
|
|
176
|
+
anchor_time=train_time,
|
|
177
|
+
num_examples=num_train_examples,
|
|
178
|
+
columns_dict=columns_dict,
|
|
179
|
+
time_offset_dict=time_offset_dict,
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
test_y, test_mask = self._sample_target_set(
|
|
183
|
+
query=query,
|
|
184
|
+
pkey=entity_df[self.primary_key_dict[query.entity_table]],
|
|
185
|
+
index=test_index,
|
|
186
|
+
anchor_time=test_time,
|
|
187
|
+
num_examples=num_test_examples,
|
|
188
|
+
columns_dict=columns_dict,
|
|
189
|
+
time_offset_dict=time_offset_dict,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
return train_y, train_mask, test_y, test_mask
|
|
193
|
+
|
|
194
|
+
def _sample_target_set(
|
|
195
|
+
self,
|
|
196
|
+
query: ValidatedPredictiveQuery,
|
|
197
|
+
pkey: pd.Series,
|
|
198
|
+
index: np.ndarray,
|
|
199
|
+
anchor_time: pd.Series,
|
|
200
|
+
num_examples: int,
|
|
201
|
+
columns_dict: dict[str, set[str]],
|
|
202
|
+
time_offset_dict: dict[
|
|
203
|
+
tuple[str, str, str],
|
|
204
|
+
tuple[pd.DateOffset | None, pd.DateOffset],
|
|
205
|
+
],
|
|
206
|
+
batch_size: int = 10_000,
|
|
207
|
+
) -> tuple[pd.Series, np.ndarray]:
|
|
208
|
+
|
|
209
|
+
num_hops = 1 if len(time_offset_dict) > 0 else 0
|
|
210
|
+
num_neighbors_dict: dict[str, list[int]] = {}
|
|
211
|
+
unix_time_offset_dict: dict[str, list[list[int | None]]] = {}
|
|
212
|
+
for edge_type, (start, end) in time_offset_dict.items():
|
|
213
|
+
unix_time_offset_dict['__'.join(edge_type)] = [[
|
|
214
|
+
date_offset_to_seconds(start) if start is not None else None,
|
|
215
|
+
date_offset_to_seconds(end),
|
|
216
|
+
]]
|
|
217
|
+
for edge_type in set(self.edge_types) - set(time_offset_dict.keys()):
|
|
218
|
+
num_neighbors_dict['__'.join(edge_type)] = [0] * num_hops
|
|
219
|
+
|
|
220
|
+
if anchor_time.dtype != 'datetime64[ns]':
|
|
221
|
+
anchor_time = anchor_time.astype('datetime64')
|
|
222
|
+
|
|
223
|
+
count = 0
|
|
224
|
+
ys: list[pd.Series] = []
|
|
225
|
+
mask = np.full(len(index), False, dtype=bool)
|
|
226
|
+
for start in range(0, len(index), batch_size):
|
|
227
|
+
subset = pkey.iloc[index[start:start + batch_size]]
|
|
228
|
+
time = anchor_time.iloc[start:start + batch_size]
|
|
229
|
+
|
|
230
|
+
_, _, node_dict, batch_dict, _, _ = self._graph_sampler.sample(
|
|
231
|
+
num_neighbors_dict,
|
|
232
|
+
unix_time_offset_dict,
|
|
233
|
+
query.entity_table,
|
|
234
|
+
self._graph_store.get_node_id(query.entity_table, subset),
|
|
235
|
+
time.astype(int).to_numpy() // 1000**3, # to seconds
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
feat_dict: dict[str, pd.DataFrame] = {}
|
|
239
|
+
time_dict: dict[str, pd.Series] = {}
|
|
240
|
+
for table_name, columns in columns_dict.items():
|
|
241
|
+
df = self._graph_store.df_dict[table_name]
|
|
242
|
+
df = df.iloc[node_dict[table_name]].reset_index(drop=True)
|
|
243
|
+
df = df[list(columns)]
|
|
244
|
+
feat_dict[table_name] = df
|
|
245
|
+
|
|
246
|
+
time_column = self.time_column_dict.get(table_name)
|
|
247
|
+
if time_column in columns:
|
|
248
|
+
time_dict[table_name] = df[time_column]
|
|
249
|
+
|
|
250
|
+
y, _mask = PQueryPandasExecutor().execute(
|
|
251
|
+
query=query,
|
|
252
|
+
feat_dict=feat_dict,
|
|
253
|
+
time_dict=time_dict,
|
|
254
|
+
batch_dict=batch_dict,
|
|
255
|
+
anchor_time=time,
|
|
256
|
+
num_forecasts=query.num_forecasts,
|
|
257
|
+
)
|
|
258
|
+
ys.append(y)
|
|
259
|
+
mask[start:start + batch_size] = _mask
|
|
260
|
+
|
|
261
|
+
count += len(y)
|
|
262
|
+
if count >= num_examples:
|
|
263
|
+
break
|
|
264
|
+
|
|
265
|
+
if len(ys) == 0:
|
|
266
|
+
y = pd.Series([], dtype=float)
|
|
267
|
+
elif len(ys) == 1:
|
|
268
|
+
y = ys[0]
|
|
269
|
+
else:
|
|
270
|
+
y = pd.concat(ys, axis=0, ignore_index=True)
|
|
271
|
+
|
|
272
|
+
return y, mask
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
# Helper Methods ##############################################################
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
def date_offset_to_seconds(offset: pd.DateOffset) -> int:
|
|
279
|
+
r"""Convert a :class:`pandas.DateOffset` into a number of seconds.
|
|
280
|
+
|
|
281
|
+
.. note::
|
|
282
|
+
We are conservative and take months and years as their maximum value.
|
|
283
|
+
Additional values are then dropped in label computation where we know
|
|
284
|
+
the actual dates.
|
|
285
|
+
"""
|
|
286
|
+
MAX_DAYS_IN_MONTH = 31
|
|
287
|
+
MAX_DAYS_IN_YEAR = 366
|
|
288
|
+
|
|
289
|
+
SECONDS_IN_MINUTE = 60
|
|
290
|
+
SECONDS_IN_HOUR = 60 * SECONDS_IN_MINUTE
|
|
291
|
+
SECONDS_IN_DAY = 24 * SECONDS_IN_HOUR
|
|
292
|
+
|
|
293
|
+
total_sec = 0
|
|
294
|
+
multiplier = getattr(offset, 'n', 1) # The multiplier (if present).
|
|
295
|
+
|
|
296
|
+
for attr, value in offset.__dict__.items():
|
|
297
|
+
if value is None or value == 0:
|
|
298
|
+
continue
|
|
299
|
+
scaled_value = value * multiplier
|
|
300
|
+
if attr == 'years':
|
|
301
|
+
total_sec += scaled_value * MAX_DAYS_IN_YEAR * SECONDS_IN_DAY
|
|
302
|
+
elif attr == 'months':
|
|
303
|
+
total_sec += scaled_value * MAX_DAYS_IN_MONTH * SECONDS_IN_DAY
|
|
304
|
+
elif attr == 'days':
|
|
305
|
+
total_sec += scaled_value * SECONDS_IN_DAY
|
|
306
|
+
elif attr == 'hours':
|
|
307
|
+
total_sec += scaled_value * SECONDS_IN_HOUR
|
|
308
|
+
elif attr == 'minutes':
|
|
309
|
+
total_sec += scaled_value * SECONDS_IN_MINUTE
|
|
310
|
+
elif attr == 'seconds':
|
|
311
|
+
total_sec += scaled_value
|
|
312
|
+
|
|
313
|
+
return total_sec
|
|
@@ -4,7 +4,7 @@ from typing import List, Optional, Sequence
|
|
|
4
4
|
import pandas as pd
|
|
5
5
|
from kumoapi.typing import Dtype
|
|
6
6
|
|
|
7
|
-
from kumoai.experimental.rfm.backend.
|
|
7
|
+
from kumoai.experimental.rfm.backend.snow import Connection
|
|
8
8
|
from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
|
|
9
9
|
|
|
10
10
|
|
|
@@ -1,10 +1,13 @@
|
|
|
1
1
|
from .source import SourceColumn, SourceForeignKey
|
|
2
2
|
from .column import Column
|
|
3
3
|
from .table import Table
|
|
4
|
+
from .sampler import SamplerOutput, Sampler
|
|
4
5
|
|
|
5
6
|
__all__ = [
|
|
6
7
|
'SourceColumn',
|
|
7
8
|
'SourceForeignKey',
|
|
8
9
|
'Column',
|
|
9
10
|
'Table',
|
|
11
|
+
'SamplerOutput',
|
|
12
|
+
'Sampler',
|
|
10
13
|
]
|