kumoai 2.13.0.dev202512040649__cp313-cp313-win_amd64.whl → 2.14.0.dev202601081732__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. kumoai/__init__.py +35 -26
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +6 -0
  4. kumoai/client/jobs.py +26 -0
  5. kumoai/client/pquery.py +6 -2
  6. kumoai/connector/utils.py +21 -7
  7. kumoai/experimental/rfm/__init__.py +51 -24
  8. kumoai/experimental/rfm/authenticate.py +3 -4
  9. kumoai/experimental/rfm/backend/local/__init__.py +4 -0
  10. kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +62 -110
  11. kumoai/experimental/rfm/backend/local/sampler.py +312 -0
  12. kumoai/experimental/rfm/backend/local/table.py +35 -31
  13. kumoai/experimental/rfm/backend/snow/__init__.py +2 -0
  14. kumoai/experimental/rfm/backend/snow/sampler.py +366 -0
  15. kumoai/experimental/rfm/backend/snow/table.py +177 -50
  16. kumoai/experimental/rfm/backend/sqlite/__init__.py +4 -2
  17. kumoai/experimental/rfm/backend/sqlite/sampler.py +454 -0
  18. kumoai/experimental/rfm/backend/sqlite/table.py +131 -48
  19. kumoai/experimental/rfm/base/__init__.py +23 -3
  20. kumoai/experimental/rfm/base/column.py +96 -10
  21. kumoai/experimental/rfm/base/expression.py +44 -0
  22. kumoai/experimental/rfm/base/sampler.py +782 -0
  23. kumoai/experimental/rfm/base/source.py +2 -1
  24. kumoai/experimental/rfm/base/sql_sampler.py +247 -0
  25. kumoai/experimental/rfm/base/table.py +404 -203
  26. kumoai/experimental/rfm/graph.py +374 -172
  27. kumoai/experimental/rfm/infer/__init__.py +6 -4
  28. kumoai/experimental/rfm/infer/dtype.py +7 -4
  29. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  30. kumoai/experimental/rfm/infer/pkey.py +4 -2
  31. kumoai/experimental/rfm/infer/stype.py +35 -0
  32. kumoai/experimental/rfm/infer/time_col.py +1 -2
  33. kumoai/experimental/rfm/pquery/executor.py +27 -27
  34. kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
  35. kumoai/experimental/rfm/relbench.py +76 -0
  36. kumoai/experimental/rfm/rfm.py +762 -467
  37. kumoai/experimental/rfm/sagemaker.py +4 -4
  38. kumoai/experimental/rfm/task_table.py +292 -0
  39. kumoai/kumolib.cp313-win_amd64.pyd +0 -0
  40. kumoai/pquery/predictive_query.py +10 -6
  41. kumoai/pquery/training_table.py +16 -2
  42. kumoai/testing/snow.py +50 -0
  43. kumoai/trainer/distilled_trainer.py +175 -0
  44. kumoai/utils/__init__.py +3 -2
  45. kumoai/utils/display.py +87 -0
  46. kumoai/utils/progress_logger.py +190 -12
  47. kumoai/utils/sql.py +3 -0
  48. {kumoai-2.13.0.dev202512040649.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/METADATA +3 -2
  49. {kumoai-2.13.0.dev202512040649.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/RECORD +52 -41
  50. kumoai/experimental/rfm/local_graph_sampler.py +0 -223
  51. kumoai/experimental/rfm/local_pquery_driver.py +0 -689
  52. {kumoai-2.13.0.dev202512040649.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/WHEEL +0 -0
  53. {kumoai-2.13.0.dev202512040649.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/licenses/LICENSE +0 -0
  54. {kumoai-2.13.0.dev202512040649.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,5 @@
1
1
  from pathlib import Path
2
- from typing import Any, TypeAlias, Union
2
+ from typing import Any, TypeAlias
3
3
 
4
4
  try:
5
5
  import adbc_driver_sqlite.dbapi as adbc
@@ -11,7 +11,7 @@ except ImportError:
11
11
  Connection: TypeAlias = adbc.AdbcSqliteConnection
12
12
 
13
13
 
14
- def connect(uri: Union[str, Path, None] = None, **kwargs: Any) -> Connection:
14
+ def connect(uri: str | Path | None = None, **kwargs: Any) -> Connection:
15
15
  r"""Opens a connection to a :class:`sqlite` database.
16
16
 
17
17
  uri: The path to the database file to be opened.
@@ -22,9 +22,11 @@ def connect(uri: Union[str, Path, None] = None, **kwargs: Any) -> Connection:
22
22
 
23
23
 
24
24
  from .table import SQLiteTable # noqa: E402
25
+ from .sampler import SQLiteSampler # noqa: E402
25
26
 
26
27
  __all__ = [
27
28
  'connect',
28
29
  'Connection',
29
30
  'SQLiteTable',
31
+ 'SQLiteSampler',
30
32
  ]
@@ -0,0 +1,454 @@
1
+ import warnings
2
+ from collections import defaultdict
3
+ from typing import TYPE_CHECKING
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ import pyarrow as pa
8
+ from kumoapi.pquery import ValidatedPredictiveQuery
9
+
10
+ from kumoai.experimental.rfm.backend.sqlite import SQLiteTable
11
+ from kumoai.experimental.rfm.base import SQLSampler, Table
12
+ from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
13
+ from kumoai.utils import ProgressLogger, quote_ident
14
+
15
+ if TYPE_CHECKING:
16
+ from kumoai.experimental.rfm import Graph
17
+
18
+
19
+ class SQLiteSampler(SQLSampler):
20
+ def __init__(
21
+ self,
22
+ graph: 'Graph',
23
+ verbose: bool | ProgressLogger = True,
24
+ optimize: bool = False,
25
+ ) -> None:
26
+ super().__init__(graph=graph, verbose=verbose)
27
+
28
+ for table in graph.tables.values():
29
+ assert isinstance(table, SQLiteTable)
30
+ self._connection = table._connection
31
+
32
+ if optimize:
33
+ with self._connection.cursor() as cursor:
34
+ cursor.execute("PRAGMA temp_store = MEMORY")
35
+ cursor.execute("PRAGMA cache_size = -2000000") # 2 GB
36
+
37
+ # Collect database indices for speeding sampling:
38
+ index_dict: dict[str, set[tuple[str, ...]]] = defaultdict(set)
39
+ for table_name, primary_key in self.primary_key_dict.items():
40
+ source_table = self.source_table_dict[table_name]
41
+ if primary_key not in source_table:
42
+ continue # No physical column.
43
+ if source_table[primary_key].is_unique_key:
44
+ continue
45
+ index_dict[table_name].add((primary_key, ))
46
+ for src_table_name, foreign_key, _ in graph.edges:
47
+ source_table = self.source_table_dict[src_table_name]
48
+ if foreign_key not in source_table:
49
+ continue # No physical column.
50
+ if source_table[foreign_key].is_unique_key:
51
+ continue
52
+ time_column = self.time_column_dict.get(src_table_name)
53
+ if time_column is not None and time_column in source_table:
54
+ index_dict[src_table_name].add((foreign_key, time_column))
55
+ else:
56
+ index_dict[src_table_name].add((foreign_key, ))
57
+
58
+ # Only maintain missing indices:
59
+ with self._connection.cursor() as cursor:
60
+ for table_name in list(index_dict.keys()):
61
+ indices = index_dict[table_name]
62
+ source_name = self.source_name_dict[table_name]
63
+ sql = f"PRAGMA index_list({source_name})"
64
+ cursor.execute(sql)
65
+ for _, index_name, *_ in cursor.fetchall():
66
+ sql = f"PRAGMA index_info({quote_ident(index_name)})"
67
+ cursor.execute(sql)
68
+ # Fetch index information and sort by `seqno`:
69
+ index_info = tuple(info[2] for info in sorted(
70
+ cursor.fetchall(), key=lambda x: x[0]))
71
+ # Remove all indices in case primary index already exists:
72
+ for index in list(indices):
73
+ if index_info[0] == index[0]:
74
+ indices.discard(index)
75
+ if len(indices) == 0:
76
+ del index_dict[table_name]
77
+
78
+ if optimize and len(index_dict) > 0:
79
+ if not isinstance(verbose, ProgressLogger):
80
+ verbose = ProgressLogger.default(
81
+ msg="Optimizing SQLite database",
82
+ verbose=verbose,
83
+ )
84
+
85
+ with verbose as logger, self._connection.cursor() as cursor:
86
+ for table_name, indices in index_dict.items():
87
+ for index in indices:
88
+ name = f"kumo_index_{table_name}_{'_'.join(index)}"
89
+ name = quote_ident(name)
90
+ columns = ', '.join(quote_ident(v) for v in index)
91
+ columns += ' DESC' if len(index) > 1 else ''
92
+ source_name = self.source_name_dict[table_name]
93
+ sql = (f"CREATE INDEX IF NOT EXISTS {name}\n"
94
+ f"ON {source_name}({columns})")
95
+ cursor.execute(sql)
96
+ self._connection.commit()
97
+ if len(index) > 1:
98
+ logger.log(f"Created index on {index} in table "
99
+ f"'{table_name}'")
100
+ else:
101
+ logger.log(f"Created index on '{index[0]}' in "
102
+ f"table '{table_name}'")
103
+
104
+ elif len(index_dict) > 0:
105
+ num = sum(len(indices) for indices in index_dict.values())
106
+ index_repr = '1 index' if num == 1 else f'{num} indices'
107
+ num = len(index_dict)
108
+ table_repr = '1 table' if num == 1 else f'{num} tables'
109
+ warnings.warn(f"Missing {index_repr} in {table_repr} for optimal "
110
+ f"database querying. For improving runtime, we "
111
+ f"strongly suggest to create indices for primary "
112
+ f"and foreign keys, e.g., automatically by "
113
+ f"instantiating KumoRFM via "
114
+ f"`KumoRFM(graph, optimize=True)`.")
115
+
116
+ def _get_min_max_time_dict(
117
+ self,
118
+ table_names: list[str],
119
+ ) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
120
+ selects: list[str] = []
121
+ for table_name in table_names:
122
+ column = self.time_column_dict[table_name]
123
+ column_ref = self.table_column_ref_dict[table_name][column]
124
+ select = (f"SELECT\n"
125
+ f" ? as table_name,\n"
126
+ f" MIN({column_ref}) as min_date,\n"
127
+ f" MAX({column_ref}) as max_date\n"
128
+ f"FROM {self.source_name_dict[table_name]}")
129
+ selects.append(select)
130
+ sql = "\nUNION ALL\n".join(selects)
131
+
132
+ out_dict: dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
133
+ with self._connection.cursor() as cursor:
134
+ cursor.execute(sql, table_names)
135
+ for table_name, _min, _max in cursor.fetchall():
136
+ out_dict[table_name] = (
137
+ pd.Timestamp.max if _min is None else pd.Timestamp(_min),
138
+ pd.Timestamp.min if _max is None else pd.Timestamp(_max),
139
+ )
140
+ return out_dict
141
+
142
+ def _sample_entity_table(
143
+ self,
144
+ table_name: str,
145
+ columns: set[str],
146
+ num_rows: int,
147
+ random_seed: int | None = None,
148
+ ) -> pd.DataFrame:
149
+ # NOTE SQLite does not natively support passing a `random_seed`.
150
+
151
+ source_table = self.source_table_dict[table_name]
152
+ filters: list[str] = []
153
+
154
+ key = self.primary_key_dict[table_name]
155
+ if key not in source_table or source_table[key].is_nullable:
156
+ key_ref = self.table_column_ref_dict[table_name][key]
157
+ filters.append(f" {key_ref} IS NOT NULL")
158
+
159
+ column = self.time_column_dict.get(table_name)
160
+ if column is None:
161
+ pass
162
+ elif column not in source_table or source_table[column].is_nullable:
163
+ column_ref = self.table_column_ref_dict[table_name][column]
164
+ filters.append(f" {column_ref} IS NOT NULL")
165
+
166
+ # TODO Make this query more efficient - it does full table scan.
167
+ projections = [
168
+ self.table_column_proj_dict[table_name][column]
169
+ for column in columns
170
+ ]
171
+ sql = (f"SELECT {', '.join(projections)}\n"
172
+ f"FROM {self.source_name_dict[table_name]}")
173
+ if len(filters) > 0:
174
+ sql += f"\nWHERE{' AND'.join(filters)}"
175
+ sql += f"\nORDER BY RANDOM() LIMIT {num_rows}"
176
+
177
+ with self._connection.cursor() as cursor:
178
+ # NOTE This may return duplicate primary keys. This is okay.
179
+ cursor.execute(sql)
180
+ table = cursor.fetch_arrow_table()
181
+
182
+ return Table._sanitize(
183
+ df=table.to_pandas(types_mapper=pd.ArrowDtype),
184
+ dtype_dict=self.table_dtype_dict[table_name],
185
+ stype_dict=self.table_stype_dict[table_name],
186
+ )
187
+
188
+ def _sample_target(
189
+ self,
190
+ query: ValidatedPredictiveQuery,
191
+ entity_df: pd.DataFrame,
192
+ train_index: np.ndarray,
193
+ train_time: pd.Series,
194
+ num_train_examples: int,
195
+ test_index: np.ndarray,
196
+ test_time: pd.Series,
197
+ num_test_examples: int,
198
+ columns_dict: dict[str, set[str]],
199
+ time_offset_dict: dict[
200
+ tuple[str, str, str],
201
+ tuple[pd.DateOffset | None, pd.DateOffset],
202
+ ],
203
+ ) -> tuple[pd.Series, np.ndarray, pd.Series, np.ndarray]:
204
+ train_y, train_mask = self._sample_target_set(
205
+ query=query,
206
+ entity_df=entity_df,
207
+ index=train_index,
208
+ anchor_time=train_time,
209
+ num_examples=num_train_examples,
210
+ columns_dict=columns_dict,
211
+ time_offset_dict=time_offset_dict,
212
+ )
213
+
214
+ test_y, test_mask = self._sample_target_set(
215
+ query=query,
216
+ entity_df=entity_df,
217
+ index=test_index,
218
+ anchor_time=test_time,
219
+ num_examples=num_test_examples,
220
+ columns_dict=columns_dict,
221
+ time_offset_dict=time_offset_dict,
222
+ )
223
+
224
+ return train_y, train_mask, test_y, test_mask
225
+
226
+ def _by_pkey(
227
+ self,
228
+ table_name: str,
229
+ index: pd.Series,
230
+ columns: set[str],
231
+ ) -> tuple[pd.DataFrame, np.ndarray]:
232
+ source_table = self.source_table_dict[table_name]
233
+ key = self.primary_key_dict[table_name]
234
+ key_ref = self.table_column_ref_dict[table_name][key]
235
+ projections = [
236
+ self.table_column_proj_dict[table_name][column]
237
+ for column in columns
238
+ ]
239
+
240
+ tmp = pa.table([pa.array(index)], names=['__kumo_id__'])
241
+ tmp_name = f'tmp_{table_name}_{key}_{id(tmp)}'
242
+
243
+ sql = (f"SELECT "
244
+ f"tmp.rowid - 1 as __kumo_batch__, "
245
+ f"{', '.join(projections)}\n"
246
+ f"FROM {quote_ident(tmp_name)} tmp\n"
247
+ f"JOIN {self.source_name_dict[table_name]} ent\n")
248
+ if key in source_table and source_table[key].is_unique_key:
249
+ sql += (f" ON {key_ref} = tmp.__kumo_id__")
250
+ else:
251
+ sql += (f" ON ent.rowid = (\n"
252
+ f" SELECT rowid\n"
253
+ f" FROM {self.source_name_dict[table_name]}\n"
254
+ f" WHERE {key_ref} == tmp.__kumo_id__\n"
255
+ f" LIMIT 1\n"
256
+ f")")
257
+
258
+ with self._connection.cursor() as cursor:
259
+ cursor.adbc_ingest(tmp_name, tmp, mode='replace')
260
+ cursor.execute(sql)
261
+ table = cursor.fetch_arrow_table()
262
+
263
+ batch = table['__kumo_batch__'].to_numpy()
264
+ batch_index = table.schema.get_field_index('__kumo_batch__')
265
+ table = table.remove_column(batch_index)
266
+
267
+ return Table._sanitize(
268
+ df=table.to_pandas(),
269
+ dtype_dict=self.table_dtype_dict[table_name],
270
+ stype_dict=self.table_stype_dict[table_name],
271
+ ), batch
272
+
273
+ def _by_fkey(
274
+ self,
275
+ table_name: str,
276
+ foreign_key: str,
277
+ index: pd.Series,
278
+ num_neighbors: int,
279
+ anchor_time: pd.Series | None,
280
+ columns: set[str],
281
+ ) -> tuple[pd.DataFrame, np.ndarray]:
282
+ time_column = self.time_column_dict.get(table_name)
283
+
284
+ # NOTE SQLite does not have a native datetime format. Currently, we
285
+ # assume timestamps are given as `TEXT` in `ISO-8601 UTC`:
286
+ tmp = pa.table([pa.array(index)], names=['__kumo_id__'])
287
+ if time_column is not None and anchor_time is not None:
288
+ anchor_time = anchor_time.dt.strftime("%Y-%m-%d %H:%M:%S")
289
+ tmp = tmp.append_column('__kumo_time__', pa.array(anchor_time))
290
+ tmp_name = f'tmp_{table_name}_{foreign_key}_{id(tmp)}'
291
+
292
+ key_ref = self.table_column_ref_dict[table_name][foreign_key]
293
+ projections = [
294
+ self.table_column_proj_dict[table_name][column]
295
+ for column in columns
296
+ ]
297
+ sql = (f"SELECT "
298
+ f"tmp.rowid - 1 as __kumo_batch__, "
299
+ f"{', '.join(projections)}\n"
300
+ f"FROM {quote_ident(tmp_name)} tmp\n"
301
+ f"JOIN {self.source_name_dict[table_name]} fact\n"
302
+ f"ON fact.rowid IN (\n"
303
+ f" SELECT rowid\n"
304
+ f" FROM {self.source_name_dict[table_name]}\n"
305
+ f" WHERE {key_ref} = tmp.__kumo_id__\n")
306
+ if time_column is not None and anchor_time is not None:
307
+ time_ref = self.table_column_ref_dict[table_name][time_column]
308
+ sql += f" AND {time_ref} <= tmp.__kumo_time__\n"
309
+ if time_column is not None:
310
+ time_ref = self.table_column_ref_dict[table_name][time_column]
311
+ sql += f" ORDER BY {time_ref} DESC\n"
312
+ sql += (f" LIMIT {num_neighbors}\n"
313
+ f")")
314
+
315
+ with self._connection.cursor() as cursor:
316
+ cursor.adbc_ingest(tmp_name, tmp, mode='replace')
317
+ cursor.execute(sql)
318
+ table = cursor.fetch_arrow_table()
319
+
320
+ batch = table['__kumo_batch__'].to_numpy()
321
+ batch_index = table.schema.get_field_index('__kumo_batch__')
322
+ table = table.remove_column(batch_index)
323
+
324
+ return Table._sanitize(
325
+ df=table.to_pandas(),
326
+ dtype_dict=self.table_dtype_dict[table_name],
327
+ stype_dict=self.table_stype_dict[table_name],
328
+ ), batch
329
+
330
+ # Helper Methods ##########################################################
331
+
332
+ def _by_time(
333
+ self,
334
+ table_name: str,
335
+ foreign_key: str,
336
+ index: pd.Series,
337
+ anchor_time: pd.Series,
338
+ min_offset: pd.DateOffset | None,
339
+ max_offset: pd.DateOffset,
340
+ columns: set[str],
341
+ ) -> tuple[pd.DataFrame, np.ndarray]:
342
+ time_column = self.time_column_dict[table_name]
343
+
344
+ # NOTE SQLite does not have a native datetime format. Currently, we
345
+ # assume timestamps are given as `TEXT` in `ISO-8601 UTC`:
346
+ tmp = pa.table([pa.array(index)], names=['__kumo_id__'])
347
+ end_time = anchor_time + max_offset
348
+ end_time = end_time.dt.strftime("%Y-%m-%d %H:%M:%S")
349
+ tmp = tmp.append_column('__kumo_end__', pa.array(end_time))
350
+ if min_offset is not None:
351
+ start_time = anchor_time + min_offset
352
+ start_time = start_time.dt.strftime("%Y-%m-%d %H:%M:%S")
353
+ tmp = tmp.append_column('__kumo_start__', pa.array(start_time))
354
+ tmp_name = f'tmp_{table_name}_{foreign_key}_{id(tmp)}'
355
+
356
+ key_ref = self.table_column_ref_dict[table_name][foreign_key]
357
+ time_ref = self.table_column_ref_dict[table_name][time_column]
358
+ projections = [
359
+ self.table_column_proj_dict[table_name][column]
360
+ for column in columns
361
+ ]
362
+ sql = (f"SELECT "
363
+ f"tmp.rowid - 1 as __kumo_batch__, "
364
+ f"{', '.join(projections)}\n"
365
+ f"FROM {quote_ident(tmp_name)} tmp\n"
366
+ f"JOIN {self.source_name_dict[table_name]}\n"
367
+ f" ON {key_ref} = tmp.__kumo_id__\n"
368
+ f" AND {time_ref} <= tmp.__kumo_end__")
369
+ if min_offset is not None:
370
+ sql += f"\n AND {time_ref} > tmp.__kumo_start__"
371
+
372
+ with self._connection.cursor() as cursor:
373
+ cursor.adbc_ingest(tmp_name, tmp, mode='replace')
374
+ cursor.execute(sql)
375
+ table = cursor.fetch_arrow_table()
376
+
377
+ batch = table['__kumo_batch__'].to_numpy()
378
+ batch_index = table.schema.get_field_index('__kumo_batch__')
379
+ table = table.remove_column(batch_index)
380
+
381
+ return Table._sanitize(
382
+ df=table.to_pandas(types_mapper=pd.ArrowDtype),
383
+ dtype_dict=self.table_dtype_dict[table_name],
384
+ stype_dict=self.table_stype_dict[table_name],
385
+ ), batch
386
+
387
+ def _sample_target_set(
388
+ self,
389
+ query: ValidatedPredictiveQuery,
390
+ entity_df: pd.DataFrame,
391
+ index: np.ndarray,
392
+ anchor_time: pd.Series,
393
+ num_examples: int,
394
+ columns_dict: dict[str, set[str]],
395
+ time_offset_dict: dict[
396
+ tuple[str, str, str],
397
+ tuple[pd.DateOffset | None, pd.DateOffset],
398
+ ],
399
+ batch_size: int = 10_000,
400
+ ) -> tuple[pd.Series, np.ndarray]:
401
+
402
+ count = 0
403
+ ys: list[pd.Series] = []
404
+ mask = np.full(len(index), False, dtype=bool)
405
+ for start in range(0, len(index), batch_size):
406
+ df = entity_df.iloc[index[start:start + batch_size]]
407
+ time = anchor_time.iloc[start:start + batch_size]
408
+
409
+ feat_dict: dict[str, pd.DataFrame] = {query.entity_table: df}
410
+ time_dict: dict[str, pd.Series] = {}
411
+ time_column = self.time_column_dict.get(query.entity_table)
412
+ if time_column in columns_dict[query.entity_table]:
413
+ time_dict[query.entity_table] = df[time_column]
414
+ batch_dict: dict[str, np.ndarray] = {
415
+ query.entity_table: np.arange(len(df)),
416
+ }
417
+ for edge_type, (_min, _max) in time_offset_dict.items():
418
+ table_name, foreign_key, _ = edge_type
419
+ feat_dict[table_name], batch_dict[table_name] = self._by_time(
420
+ table_name=table_name,
421
+ foreign_key=foreign_key,
422
+ index=df[self.primary_key_dict[query.entity_table]],
423
+ anchor_time=time,
424
+ min_offset=_min,
425
+ max_offset=_max,
426
+ columns=columns_dict[table_name],
427
+ )
428
+ time_column = self.time_column_dict.get(table_name)
429
+ if time_column in columns_dict[table_name]:
430
+ time_dict[table_name] = feat_dict[table_name][time_column]
431
+
432
+ y, _mask = PQueryPandasExecutor().execute(
433
+ query=query,
434
+ feat_dict=feat_dict,
435
+ time_dict=time_dict,
436
+ batch_dict=batch_dict,
437
+ anchor_time=anchor_time,
438
+ num_forecasts=query.num_forecasts,
439
+ )
440
+ ys.append(y)
441
+ mask[start:start + batch_size] = _mask
442
+
443
+ count += len(y)
444
+ if count >= num_examples:
445
+ break
446
+
447
+ if len(ys) == 0:
448
+ y = pd.Series([], dtype=float)
449
+ elif len(ys) == 1:
450
+ y = ys[0]
451
+ else:
452
+ y = pd.concat(ys, axis=0, ignore_index=True)
453
+
454
+ return y, mask