kumoai 2.13.0.dev202511261731__cp313-cp313-macosx_11_0_arm64.whl → 2.13.0.dev202512081731__cp313-cp313-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. kumoai/__init__.py +12 -0
  2. kumoai/_version.py +1 -1
  3. kumoai/connector/utils.py +23 -2
  4. kumoai/experimental/rfm/__init__.py +20 -45
  5. kumoai/experimental/rfm/backend/__init__.py +0 -0
  6. kumoai/experimental/rfm/backend/local/__init__.py +42 -0
  7. kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +20 -30
  8. kumoai/experimental/rfm/backend/local/sampler.py +116 -0
  9. kumoai/experimental/rfm/backend/local/table.py +109 -0
  10. kumoai/experimental/rfm/backend/snow/__init__.py +35 -0
  11. kumoai/experimental/rfm/backend/snow/table.py +117 -0
  12. kumoai/experimental/rfm/backend/sqlite/__init__.py +30 -0
  13. kumoai/experimental/rfm/backend/sqlite/table.py +101 -0
  14. kumoai/experimental/rfm/base/__init__.py +14 -0
  15. kumoai/experimental/rfm/base/column.py +66 -0
  16. kumoai/experimental/rfm/base/sampler.py +373 -0
  17. kumoai/experimental/rfm/base/source.py +18 -0
  18. kumoai/experimental/rfm/{local_table.py → base/table.py} +139 -139
  19. kumoai/experimental/rfm/{local_graph.py → graph.py} +334 -79
  20. kumoai/experimental/rfm/infer/__init__.py +6 -0
  21. kumoai/experimental/rfm/infer/dtype.py +79 -0
  22. kumoai/experimental/rfm/infer/pkey.py +126 -0
  23. kumoai/experimental/rfm/infer/time_col.py +62 -0
  24. kumoai/experimental/rfm/local_graph_sampler.py +43 -2
  25. kumoai/experimental/rfm/local_pquery_driver.py +1 -1
  26. kumoai/experimental/rfm/rfm.py +7 -17
  27. kumoai/experimental/rfm/sagemaker.py +11 -3
  28. kumoai/testing/decorators.py +1 -1
  29. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512081731.dist-info}/METADATA +9 -8
  30. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512081731.dist-info}/RECORD +33 -19
  31. kumoai/experimental/rfm/utils.py +0 -344
  32. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512081731.dist-info}/WHEEL +0 -0
  33. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512081731.dist-info}/licenses/LICENSE +0 -0
  34. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512081731.dist-info}/top_level.txt +0 -0
kumoai/__init__.py CHANGED
@@ -280,7 +280,19 @@ __all__ = [
280
280
  ]
281
281
 
282
282
 
283
+ def in_snowflake_notebook() -> bool:
284
+ try:
285
+ from snowflake.snowpark.context import get_active_session
286
+ import streamlit # noqa: F401
287
+ get_active_session()
288
+ return True
289
+ except Exception:
290
+ return False
291
+
292
+
283
293
  def in_notebook() -> bool:
294
+ if in_snowflake_notebook():
295
+ return True
284
296
  try:
285
297
  from IPython import get_ipython
286
298
  shell = get_ipython()
kumoai/_version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '2.13.0.dev202511261731'
1
+ __version__ = '2.13.0.dev202512081731'
kumoai/connector/utils.py CHANGED
@@ -381,8 +381,29 @@ def _handle_duplicate_names(names: List[str]) -> List[str]:
381
381
 
382
382
 
383
383
  def _sanitize_columns(names: List[str]) -> Tuple[List[str], bool]:
384
- _SAN_RE = re.compile(r"[^0-9A-Za-z]+")
384
+ """Normalize column names in a CSV or Parquet file.
385
+
386
+ Rules:
387
+ - Replace any non-alphanumeric character with "_"
388
+ - Strip leading/trailing underscores
389
+ - Ensure uniqueness by appending suffixes: _1, _2, ...
390
+ - Auto-name empty columns as auto_named_<n>
391
+
392
+ Returns:
393
+ (new_column_names, changed)
394
+ """
395
+ _SAN_RE = re.compile(r"[^0-9A-Za-z,\t]")
396
+ # 1) Replace non-alphanumeric sequences with underscore
385
397
  new = [_SAN_RE.sub("_", n).strip("_") for n in names]
398
+
399
+ # 2) Auto-name any empty column names to match UI behavior
400
+ unnamed_counter = 0
401
+ for i, n in enumerate(new):
402
+ if not n:
403
+ new[i] = f"auto_named_{unnamed_counter}"
404
+ unnamed_counter += 1
405
+
406
+ # 3) Ensure uniqueness (append suffixes where needed)
386
407
  new = _handle_duplicate_names(new)
387
408
  return new, new != names
388
409
 
@@ -1168,7 +1189,7 @@ def _detect_and_validate_csv(head_bytes: bytes) -> str:
1168
1189
  - Re-serializes those rows and validates with pandas (small nrows) to catch
1169
1190
  malformed inputs.
1170
1191
  - Raises ValueError on empty input or if parsing fails with the chosen
1171
- delimiter.
1192
+ delimiter.
1172
1193
  """
1173
1194
  if not head_bytes:
1174
1195
  raise ValueError("Could not auto-detect a delimiter: file is empty.")
@@ -1,54 +1,26 @@
1
- try:
2
- import kumoai.kumolib # noqa: F401
3
- except Exception as e:
4
- import platform
5
-
6
- _msg = f"""RFM is not supported in your environment.
7
-
8
- 💻 Your Environment:
9
- Python version: {platform.python_version()}
10
- Operating system: {platform.system()}
11
- CPU architecture: {platform.machine()}
12
- glibc version: {platform.libc_ver()[1]}
13
-
14
- ✅ Supported Environments:
15
- * Python versions: 3.10, 3.11, 3.12, 3.13
16
- * Operating systems and CPU architectures:
17
- * Linux (x86_64)
18
- * macOS (arm64)
19
- * Windows (x86_64)
20
- * glibc versions: >=2.28
21
-
22
- ❌ Unsupported Environments:
23
- * Python versions: 3.8, 3.9, 3.14
24
- * Operating systems and CPU architectures:
25
- * Linux (arm64)
26
- * macOS (x86_64)
27
- * Windows (arm64)
28
- * glibc versions: <2.28
29
-
30
- Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
31
-
32
- raise RuntimeError(_msg) from e
33
-
34
- from dataclasses import dataclass
35
- from enum import Enum
36
1
  import ipaddress
37
2
  import logging
3
+ import os
38
4
  import re
39
5
  import socket
40
6
  import threading
41
- from typing import Optional, Dict, Tuple
42
- import os
7
+ from dataclasses import dataclass
8
+ from enum import Enum
9
+ from typing import Dict, Optional, Tuple
43
10
  from urllib.parse import urlparse
11
+
44
12
  import kumoai
45
13
  from kumoai.client.client import KumoClient
46
- from .sagemaker import (KumoClient_SageMakerAdapter,
47
- KumoClient_SageMakerProxy_Local)
48
- from .local_table import LocalTable
49
- from .local_graph import LocalGraph
50
- from .rfm import ExplainConfig, Explanation, KumoRFM
14
+
51
15
  from .authenticate import authenticate
16
+ from .sagemaker import (
17
+ KumoClient_SageMakerAdapter,
18
+ KumoClient_SageMakerProxy_Local,
19
+ )
20
+ from .base import Table
21
+ from .backend.local import LocalTable
22
+ from .graph import Graph
23
+ from .rfm import ExplainConfig, Explanation, KumoRFM
52
24
 
53
25
  logger = logging.getLogger('kumoai_rfm')
54
26
 
@@ -197,12 +169,15 @@ def init(
197
169
  url)
198
170
 
199
171
 
172
+ LocalGraph = Graph # NOTE Backward compatibility - do not use anymore.
173
+
200
174
  __all__ = [
175
+ 'authenticate',
176
+ 'init',
177
+ 'Table',
201
178
  'LocalTable',
202
- 'LocalGraph',
179
+ 'Graph',
203
180
  'KumoRFM',
204
181
  'ExplainConfig',
205
182
  'Explanation',
206
- 'authenticate',
207
- 'init',
208
183
  ]
File without changes
@@ -0,0 +1,42 @@
1
+ try:
2
+ import kumoai.kumolib # noqa: F401
3
+ except Exception as e:
4
+ import platform
5
+
6
+ _msg = f"""RFM is not supported in your environment.
7
+
8
+ 💻 Your Environment:
9
+ Python version: {platform.python_version()}
10
+ Operating system: {platform.system()}
11
+ CPU architecture: {platform.machine()}
12
+ glibc version: {platform.libc_ver()[1]}
13
+
14
+ ✅ Supported Environments:
15
+ * Python versions: 3.10, 3.11, 3.12, 3.13
16
+ * Operating systems and CPU architectures:
17
+ * Linux (x86_64)
18
+ * macOS (arm64)
19
+ * Windows (x86_64)
20
+ * glibc versions: >=2.28
21
+
22
+ ❌ Unsupported Environments:
23
+ * Python versions: 3.8, 3.9, 3.14
24
+ * Operating systems and CPU architectures:
25
+ * Linux (arm64)
26
+ * macOS (x86_64)
27
+ * Windows (arm64)
28
+ * glibc versions: <2.28
29
+
30
+ Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
31
+
32
+ raise RuntimeError(_msg) from e
33
+
34
+ from .table import LocalTable
35
+ from .graph_store import LocalGraphStore
36
+ from .sampler import LocalSampler
37
+
38
+ __all__ = [
39
+ 'LocalTable',
40
+ 'LocalGraphStore',
41
+ 'LocalSampler',
42
+ ]
@@ -1,13 +1,12 @@
1
1
  import warnings
2
- from typing import Dict, List, Optional, Tuple, Union
2
+ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
3
3
 
4
4
  import numpy as np
5
5
  import pandas as pd
6
6
  from kumoapi.rfm.context import Subgraph
7
7
  from kumoapi.typing import Stype
8
8
 
9
- from kumoai.experimental.rfm import LocalGraph
10
- from kumoai.experimental.rfm.utils import normalize_text
9
+ from kumoai.experimental.rfm.backend.local import LocalTable
11
10
  from kumoai.utils import InteractiveProgressLogger, ProgressLogger
12
11
 
13
12
  try:
@@ -16,12 +15,14 @@ try:
16
15
  except ImportError:
17
16
  WITH_TORCH = False
18
17
 
18
+ if TYPE_CHECKING:
19
+ from kumoai.experimental.rfm import Graph
20
+
19
21
 
20
22
  class LocalGraphStore:
21
23
  def __init__(
22
24
  self,
23
- graph: LocalGraph,
24
- preprocess: bool = False,
25
+ graph: 'Graph',
25
26
  verbose: Union[bool, ProgressLogger] = True,
26
27
  ) -> None:
27
28
 
@@ -32,7 +33,7 @@ class LocalGraphStore:
32
33
  )
33
34
 
34
35
  with verbose as logger:
35
- self.df_dict, self.mask_dict = self.sanitize(graph, preprocess)
36
+ self.df_dict, self.mask_dict = self.sanitize(graph)
36
37
  self.stype_dict = self.get_stype_dict(graph)
37
38
  logger.log("Sanitized input data")
38
39
 
@@ -105,8 +106,7 @@ class LocalGraphStore:
105
106
 
106
107
  def sanitize(
107
108
  self,
108
- graph: LocalGraph,
109
- preprocess: bool = False,
109
+ graph: 'Graph',
110
110
  ) -> Tuple[Dict[str, pd.DataFrame], Dict[str, np.ndarray]]:
111
111
  r"""Sanitizes raw data according to table schema definition:
112
112
 
@@ -115,17 +115,12 @@ class LocalGraphStore:
115
115
  * drops timezone information from timestamps
116
116
  * drops duplicate primary keys
117
117
  * removes rows with missing primary keys or time values
118
-
119
- If ``preprocess`` is set to ``True``, it will additionally pre-process
120
- data for faster model processing. In particular, it:
121
- * tokenizes any text column that is not a foreign key
122
118
  """
123
- df_dict: Dict[str, pd.DataFrame] = {
124
- table_name: table._data.copy(deep=False).reset_index(drop=True)
125
- for table_name, table in graph.tables.items()
126
- }
127
-
128
- foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
119
+ df_dict: Dict[str, pd.DataFrame] = {}
120
+ for table_name, table in graph.tables.items():
121
+ assert isinstance(table, LocalTable)
122
+ df = table._data
123
+ df_dict[table_name] = df.copy(deep=False).reset_index(drop=True)
129
124
 
130
125
  mask_dict: Dict[str, np.ndarray] = {}
131
126
  for table in graph.tables.values():
@@ -144,12 +139,6 @@ class LocalGraphStore:
144
139
  ser = ser.dt.tz_localize(None)
145
140
  df_dict[table.name][col.name] = ser
146
141
 
147
- # Normalize text in advance (but exclude foreign keys):
148
- if (preprocess and col.stype == Stype.text
149
- and (table.name, col.name) not in foreign_keys):
150
- ser = df_dict[table.name][col.name]
151
- df_dict[table.name][col.name] = normalize_text(ser)
152
-
153
142
  mask: Optional[np.ndarray] = None
154
143
  if table._time_column is not None:
155
144
  ser = df_dict[table.name][table._time_column]
@@ -165,7 +154,7 @@ class LocalGraphStore:
165
154
 
166
155
  return df_dict, mask_dict
167
156
 
168
- def get_stype_dict(self, graph: LocalGraph) -> Dict[str, Dict[str, Stype]]:
157
+ def get_stype_dict(self, graph: 'Graph') -> Dict[str, Dict[str, Stype]]:
169
158
  stype_dict: Dict[str, Dict[str, Stype]] = {}
170
159
  foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
171
160
  for table in graph.tables.values():
@@ -180,7 +169,7 @@ class LocalGraphStore:
180
169
 
181
170
  def get_pkey_data(
182
171
  self,
183
- graph: LocalGraph,
172
+ graph: 'Graph',
184
173
  ) -> Tuple[
185
174
  Dict[str, str],
186
175
  Dict[str, pd.DataFrame],
@@ -218,7 +207,7 @@ class LocalGraphStore:
218
207
 
219
208
  def get_time_data(
220
209
  self,
221
- graph: LocalGraph,
210
+ graph: 'Graph',
222
211
  ) -> Tuple[
223
212
  Dict[str, str],
224
213
  Dict[str, str],
@@ -239,8 +228,9 @@ class LocalGraphStore:
239
228
  continue
240
229
 
241
230
  time = self.df_dict[table.name][table._time_column]
242
- time_dict[table.name] = time.astype('datetime64[ns]').astype(
243
- int).to_numpy() // 1000**3
231
+ if time.dtype != 'datetime64[ns]':
232
+ time = time.astype('datetime64[ns]')
233
+ time_dict[table.name] = time.astype(int).to_numpy() // 1000**3
244
234
  time_column_dict[table.name] = table._time_column
245
235
 
246
236
  if table.name in self.mask_dict.keys():
@@ -259,7 +249,7 @@ class LocalGraphStore:
259
249
 
260
250
  def get_csc(
261
251
  self,
262
- graph: LocalGraph,
252
+ graph: 'Graph',
263
253
  ) -> Tuple[
264
254
  Dict[Tuple[str, str, str], np.ndarray],
265
255
  Dict[Tuple[str, str, str], np.ndarray],
@@ -0,0 +1,116 @@
1
+ from typing import TYPE_CHECKING
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+
6
+ from kumoai.experimental.rfm.backend.local import LocalGraphStore
7
+ from kumoai.experimental.rfm.base import BackwardSamplerOutput, Sampler
8
+ from kumoai.utils import ProgressLogger
9
+
10
+ if TYPE_CHECKING:
11
+ from kumoai.experimental.rfm import Graph
12
+
13
+
14
+ class LocalSampler(Sampler):
15
+ def __init__(
16
+ self,
17
+ graph: 'Graph',
18
+ verbose: bool | ProgressLogger = True,
19
+ ) -> None:
20
+ super().__init__(graph=graph)
21
+
22
+ import kumoai.kumolib as kumolib
23
+
24
+ self._graph_store = LocalGraphStore(graph, verbose)
25
+ self._graph_sampler = kumolib.NeighborSampler(
26
+ list(self.table_stype_dict.keys()),
27
+ self.edge_types,
28
+ {
29
+ '__'.join(edge_type): colptr
30
+ for edge_type, colptr in self._graph_store.colptr_dict.items()
31
+ },
32
+ {
33
+ '__'.join(edge_type): row
34
+ for edge_type, row in self._graph_store.row_dict.items()
35
+ },
36
+ self._graph_store.time_dict,
37
+ )
38
+
39
+ def _sample_backward(
40
+ self,
41
+ entity_table_name: str,
42
+ entity_pkey: pd.Series,
43
+ anchor_time: pd.Series,
44
+ columns_dict: dict[str, set[str]],
45
+ num_neighbors: list[int],
46
+ ) -> BackwardSamplerOutput:
47
+
48
+ num_neighbors_dict: dict[str, list[int]] = {
49
+ '__'.join(edge_type): num_neighbors
50
+ for edge_type in self.edge_types
51
+ }
52
+
53
+ (
54
+ row_dict,
55
+ col_dict,
56
+ node_dict,
57
+ batch_dict,
58
+ num_sampled_nodes_dict,
59
+ num_sampled_edges_dict,
60
+ ) = self._graph_sampler.sample(
61
+ num_neighbors_dict,
62
+ {},
63
+ entity_table_name,
64
+ self._graph_store.get_node_id(entity_table_name, entity_pkey),
65
+ anchor_time.astype(int).to_numpy() // 1000**3, # to seconds
66
+ )
67
+
68
+ df_dict: dict[str, pd.DataFrame] = {}
69
+ inverse_dict: dict[str, np.ndarray] = {}
70
+ for table_name, node in node_dict.items():
71
+ df = self._graph_store.df_dict[table_name]
72
+ columns = columns_dict[table_name]
73
+ if self.end_time_column_dict.get(table_name, None) in columns:
74
+ df = df.iloc[node]
75
+ elif len(columns) == 0:
76
+ df = df.iloc[node]
77
+ else:
78
+ # Only store unique rows in `df` above a certain threshold:
79
+ unique_node, inverse = np.unique(node, return_inverse=True)
80
+ if len(node) > 1.05 * len(unique_node):
81
+ df = df.iloc[unique_node]
82
+ inverse_dict[table_name] = inverse
83
+ else:
84
+ df = df.iloc[node]
85
+ df = df.reset_index(drop=True)
86
+ df = df[list(columns)]
87
+ df_dict[table_name] = df
88
+
89
+ num_sampled_nodes_dict = {
90
+ table_name: num_sampled_nodes.tolist()
91
+ for table_name, num_sampled_nodes in
92
+ num_sampled_nodes_dict.items()
93
+ }
94
+
95
+ row_dict = {
96
+ edge_type: row_dict['__'.join(edge_type)]
97
+ for edge_type in self.edge_types
98
+ }
99
+ col_dict = {
100
+ edge_type: col_dict['__'.join(edge_type)]
101
+ for edge_type in self.edge_types
102
+ }
103
+ num_sampled_edges_dict = {
104
+ edge_type: num_sampled_edges_dict['__'.join(edge_type)].tolist()
105
+ for edge_type in self.edge_types
106
+ }
107
+
108
+ return BackwardSamplerOutput(
109
+ df_dict=df_dict,
110
+ inverse_dict=inverse_dict,
111
+ batch_dict=batch_dict,
112
+ num_sampled_nodes_dict=num_sampled_nodes_dict,
113
+ row_dict=row_dict,
114
+ col_dict=col_dict,
115
+ num_sampled_edges_dict=num_sampled_edges_dict,
116
+ )
@@ -0,0 +1,109 @@
1
+ import warnings
2
+ from typing import List, Optional
3
+
4
+ import pandas as pd
5
+
6
+ from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
7
+ from kumoai.experimental.rfm.infer import infer_dtype
8
+
9
+
10
+ class LocalTable(Table):
11
+ r"""A table backed by a :class:`pandas.DataFrame`.
12
+
13
+ A :class:`LocalTable` fully specifies the relevant metadata, *i.e.*
14
+ selected columns, column semantic types, primary keys and time columns.
15
+ :class:`LocalTable` is used to create a :class:`Graph`.
16
+
17
+ .. code-block:: python
18
+
19
+ import pandas as pd
20
+ import kumoai.experimental.rfm as rfm
21
+
22
+ # Load data from a CSV file:
23
+ df = pd.read_csv("data.csv")
24
+
25
+ # Create a table from a `pandas.DataFrame` and infer its metadata ...
26
+ table = rfm.LocalTable(df, name="my_table").infer_metadata()
27
+
28
+ # ... or create a table explicitly:
29
+ table = rfm.LocalTable(
30
+ df=df,
31
+ name="my_table",
32
+ primary_key="id",
33
+ time_column="time",
34
+ end_time_column=None,
35
+ )
36
+
37
+ # Verify metadata:
38
+ table.print_metadata()
39
+
40
+ # Change the semantic type of a column:
41
+ table[column].stype = "text"
42
+
43
+ Args:
44
+ df: The data frame to create this table from.
45
+ name: The name of this table.
46
+ primary_key: The name of the primary key of this table, if it exists.
47
+ time_column: The name of the time column of this table, if it exists.
48
+ end_time_column: The name of the end time column of this table, if it
49
+ exists.
50
+ """
51
+ def __init__(
52
+ self,
53
+ df: pd.DataFrame,
54
+ name: str,
55
+ primary_key: Optional[str] = None,
56
+ time_column: Optional[str] = None,
57
+ end_time_column: Optional[str] = None,
58
+ ) -> None:
59
+
60
+ if df.empty:
61
+ raise ValueError("Data frame is empty")
62
+ if isinstance(df.columns, pd.MultiIndex):
63
+ raise ValueError("Data frame must not have a multi-index")
64
+ if not df.columns.is_unique:
65
+ raise ValueError("Data frame must have unique column names")
66
+ if any(col == '' for col in df.columns):
67
+ raise ValueError("Data frame must have non-empty column names")
68
+
69
+ self._data = df.copy(deep=False)
70
+
71
+ super().__init__(
72
+ name=name,
73
+ columns=list(df.columns),
74
+ primary_key=primary_key,
75
+ time_column=time_column,
76
+ end_time_column=end_time_column,
77
+ )
78
+
79
+ def _get_source_columns(self) -> List[SourceColumn]:
80
+ source_columns: List[SourceColumn] = []
81
+ for column in self._data.columns:
82
+ ser = self._data[column]
83
+ try:
84
+ dtype = infer_dtype(ser)
85
+ except Exception:
86
+ warnings.warn(f"Data type inference for column '{column}' in "
87
+ f"table '{self.name}' failed. Consider changing "
88
+ f"the data type of the column to use it within "
89
+ f"this table.")
90
+ continue
91
+
92
+ source_column = SourceColumn(
93
+ name=column,
94
+ dtype=dtype,
95
+ is_primary_key=False,
96
+ is_unique_key=False,
97
+ )
98
+ source_columns.append(source_column)
99
+
100
+ return source_columns
101
+
102
+ def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
103
+ return []
104
+
105
+ def _get_sample_df(self) -> pd.DataFrame:
106
+ return self._data
107
+
108
+ def _get_num_rows(self) -> Optional[int]:
109
+ return len(self._data)
@@ -0,0 +1,35 @@
1
+ from typing import Any, TypeAlias
2
+
3
+ try:
4
+ import snowflake.connector
5
+ except ImportError:
6
+ raise ImportError("No module named 'snowflake'. Please install Kumo SDK "
7
+ "with the 'snowflake' extension via "
8
+ "`pip install kumoai[snowflake]`.")
9
+
10
+ Connection: TypeAlias = snowflake.connector.SnowflakeConnection
11
+
12
+
13
+ def connect(**kwargs: Any) -> Connection:
14
+ r"""Opens a connection to a :class:`snowflake` database.
15
+
16
+ If available, will return a connection to the active session.
17
+
18
+ kwargs: Connection arguments, following the :class:`snowflake` protocol.
19
+ """
20
+ try:
21
+ from snowflake.snowpark.context import get_active_session
22
+ return get_active_session().connection
23
+ except Exception:
24
+ pass
25
+
26
+ return snowflake.connector.connect(**kwargs)
27
+
28
+
29
+ from .table import SnowTable # noqa: E402
30
+
31
+ __all__ = [
32
+ 'connect',
33
+ 'Connection',
34
+ 'SnowTable',
35
+ ]