kumoai 2.13.0.dev202511261731__cp313-cp313-macosx_11_0_arm64.whl → 2.13.0.dev202512061731__cp313-cp313-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +12 -0
- kumoai/_version.py +1 -1
- kumoai/connector/utils.py +23 -2
- kumoai/experimental/rfm/__init__.py +20 -45
- kumoai/experimental/rfm/backend/__init__.py +0 -0
- kumoai/experimental/rfm/backend/local/__init__.py +42 -0
- kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +20 -30
- kumoai/experimental/rfm/backend/local/sampler.py +131 -0
- kumoai/experimental/rfm/backend/local/table.py +109 -0
- kumoai/experimental/rfm/backend/snow/__init__.py +35 -0
- kumoai/experimental/rfm/backend/snow/table.py +117 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +30 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +101 -0
- kumoai/experimental/rfm/base/__init__.py +14 -0
- kumoai/experimental/rfm/base/column.py +66 -0
- kumoai/experimental/rfm/base/sampler.py +287 -0
- kumoai/experimental/rfm/base/source.py +18 -0
- kumoai/experimental/rfm/{local_table.py → base/table.py} +139 -139
- kumoai/experimental/rfm/{local_graph.py → graph.py} +334 -79
- kumoai/experimental/rfm/infer/__init__.py +6 -0
- kumoai/experimental/rfm/infer/dtype.py +79 -0
- kumoai/experimental/rfm/infer/pkey.py +126 -0
- kumoai/experimental/rfm/infer/time_col.py +62 -0
- kumoai/experimental/rfm/local_graph_sampler.py +43 -2
- kumoai/experimental/rfm/local_pquery_driver.py +1 -1
- kumoai/experimental/rfm/rfm.py +7 -17
- kumoai/experimental/rfm/sagemaker.py +11 -3
- kumoai/testing/decorators.py +1 -1
- {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/METADATA +9 -8
- {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/RECORD +33 -19
- kumoai/experimental/rfm/utils.py +0 -344
- {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/WHEEL +0 -0
- {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from typing import List, Optional, Sequence
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from kumoapi.typing import Dtype
|
|
6
|
+
|
|
7
|
+
from kumoai.experimental.rfm.backend.snow import Connection
|
|
8
|
+
from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class SnowTable(Table):
|
|
12
|
+
r"""A table backed by a :class:`sqlite` database.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
connection: The connection to a :class:`snowflake` database.
|
|
16
|
+
name: The name of this table.
|
|
17
|
+
database: The database.
|
|
18
|
+
schema: The schema.
|
|
19
|
+
columns: The selected columns of this table.
|
|
20
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
21
|
+
time_column: The name of the time column of this table, if it exists.
|
|
22
|
+
end_time_column: The name of the end time column of this table, if it
|
|
23
|
+
exists.
|
|
24
|
+
"""
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
connection: Connection,
|
|
28
|
+
name: str,
|
|
29
|
+
database: str | None = None,
|
|
30
|
+
schema: str | None = None,
|
|
31
|
+
columns: Optional[Sequence[str]] = None,
|
|
32
|
+
primary_key: Optional[str] = None,
|
|
33
|
+
time_column: Optional[str] = None,
|
|
34
|
+
end_time_column: Optional[str] = None,
|
|
35
|
+
) -> None:
|
|
36
|
+
|
|
37
|
+
if database is not None and schema is None:
|
|
38
|
+
raise ValueError(f"Missing 'schema' for table '{name}' in "
|
|
39
|
+
f"database '{database}'")
|
|
40
|
+
|
|
41
|
+
self._connection = connection
|
|
42
|
+
self._database = database
|
|
43
|
+
self._schema = schema
|
|
44
|
+
|
|
45
|
+
super().__init__(
|
|
46
|
+
name=name,
|
|
47
|
+
columns=columns,
|
|
48
|
+
primary_key=primary_key,
|
|
49
|
+
time_column=time_column,
|
|
50
|
+
end_time_column=end_time_column,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
@property
|
|
54
|
+
def fqn_name(self) -> str:
|
|
55
|
+
names: List[str] = []
|
|
56
|
+
if self._database is not None:
|
|
57
|
+
assert self._schema is not None
|
|
58
|
+
names.extend([self._database, self._schema])
|
|
59
|
+
elif self._schema is not None:
|
|
60
|
+
names.append(self._schema)
|
|
61
|
+
names.append(self._name)
|
|
62
|
+
return '.'.join(names)
|
|
63
|
+
|
|
64
|
+
def _get_source_columns(self) -> List[SourceColumn]:
|
|
65
|
+
source_columns: List[SourceColumn] = []
|
|
66
|
+
with self._connection.cursor() as cursor:
|
|
67
|
+
try:
|
|
68
|
+
cursor.execute(f"DESCRIBE TABLE {self.fqn_name}")
|
|
69
|
+
except Exception as e:
|
|
70
|
+
raise ValueError(
|
|
71
|
+
f"Table '{self.fqn_name}' does not exist") from e
|
|
72
|
+
|
|
73
|
+
for row in cursor.fetchall():
|
|
74
|
+
column, type, _, _, _, is_pkey, is_unique = row[:7]
|
|
75
|
+
|
|
76
|
+
type = type.strip().upper()
|
|
77
|
+
if type.startswith('NUMBER'):
|
|
78
|
+
dtype = Dtype.int
|
|
79
|
+
elif type.startswith('VARCHAR'):
|
|
80
|
+
dtype = Dtype.string
|
|
81
|
+
elif type == 'FLOAT':
|
|
82
|
+
dtype = Dtype.float
|
|
83
|
+
elif type == 'BOOLEAN':
|
|
84
|
+
dtype = Dtype.bool
|
|
85
|
+
elif re.search('DATE|TIMESTAMP', type):
|
|
86
|
+
dtype = Dtype.date
|
|
87
|
+
else:
|
|
88
|
+
continue
|
|
89
|
+
|
|
90
|
+
source_column = SourceColumn(
|
|
91
|
+
name=column,
|
|
92
|
+
dtype=dtype,
|
|
93
|
+
is_primary_key=is_pkey.strip().upper() == 'Y',
|
|
94
|
+
is_unique_key=is_unique.strip().upper() == 'Y',
|
|
95
|
+
)
|
|
96
|
+
source_columns.append(source_column)
|
|
97
|
+
|
|
98
|
+
return source_columns
|
|
99
|
+
|
|
100
|
+
def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
|
|
101
|
+
source_fkeys: List[SourceForeignKey] = []
|
|
102
|
+
with self._connection.cursor() as cursor:
|
|
103
|
+
cursor.execute(f"SHOW IMPORTED KEYS IN TABLE {self.fqn_name}")
|
|
104
|
+
for row in cursor.fetchall():
|
|
105
|
+
_, _, _, dst_table, pkey, _, _, _, fkey = row[:9]
|
|
106
|
+
source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
|
|
107
|
+
return source_fkeys
|
|
108
|
+
|
|
109
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
110
|
+
with self._connection.cursor() as cursor:
|
|
111
|
+
columns = ', '.join(self._source_column_dict.keys())
|
|
112
|
+
cursor.execute(f"SELECT {columns} FROM {self.fqn_name} LIMIT 1000")
|
|
113
|
+
table = cursor.fetch_arrow_all()
|
|
114
|
+
return table.to_pandas(types_mapper=pd.ArrowDtype)
|
|
115
|
+
|
|
116
|
+
def _get_num_rows(self) -> Optional[int]:
|
|
117
|
+
return None
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
from pathlib import Path
|
|
2
|
+
from typing import Any, TypeAlias, Union
|
|
3
|
+
|
|
4
|
+
try:
|
|
5
|
+
import adbc_driver_sqlite.dbapi as adbc
|
|
6
|
+
except ImportError:
|
|
7
|
+
raise ImportError("No module named 'adbc_driver_sqlite'. Please install "
|
|
8
|
+
"Kumo SDK with the 'sqlite' extension via "
|
|
9
|
+
"`pip install kumoai[sqlite]`.")
|
|
10
|
+
|
|
11
|
+
Connection: TypeAlias = adbc.AdbcSqliteConnection
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def connect(uri: Union[str, Path, None] = None, **kwargs: Any) -> Connection:
|
|
15
|
+
r"""Opens a connection to a :class:`sqlite` database.
|
|
16
|
+
|
|
17
|
+
uri: The path to the database file to be opened.
|
|
18
|
+
kwargs: Additional connection arguments, following the
|
|
19
|
+
:class:`adbc_driver_sqlite` protocol.
|
|
20
|
+
"""
|
|
21
|
+
return adbc.connect(uri, **kwargs)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
from .table import SQLiteTable # noqa: E402
|
|
25
|
+
|
|
26
|
+
__all__ = [
|
|
27
|
+
'connect',
|
|
28
|
+
'Connection',
|
|
29
|
+
'SQLiteTable',
|
|
30
|
+
]
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
import re
|
|
2
|
+
import warnings
|
|
3
|
+
from typing import List, Optional, Sequence
|
|
4
|
+
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from kumoapi.typing import Dtype
|
|
7
|
+
|
|
8
|
+
from kumoai.experimental.rfm.backend.sqlite import Connection
|
|
9
|
+
from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
|
|
10
|
+
from kumoai.experimental.rfm.infer import infer_dtype
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class SQLiteTable(Table):
|
|
14
|
+
r"""A table backed by a :class:`sqlite` database.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
connection: The connection to a :class:`sqlite` database.
|
|
18
|
+
name: The name of this table.
|
|
19
|
+
columns: The selected columns of this table.
|
|
20
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
21
|
+
time_column: The name of the time column of this table, if it exists.
|
|
22
|
+
end_time_column: The name of the end time column of this table, if it
|
|
23
|
+
exists.
|
|
24
|
+
"""
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
connection: Connection,
|
|
28
|
+
name: str,
|
|
29
|
+
columns: Optional[Sequence[str]] = None,
|
|
30
|
+
primary_key: Optional[str] = None,
|
|
31
|
+
time_column: Optional[str] = None,
|
|
32
|
+
end_time_column: Optional[str] = None,
|
|
33
|
+
) -> None:
|
|
34
|
+
|
|
35
|
+
self._connection = connection
|
|
36
|
+
|
|
37
|
+
super().__init__(
|
|
38
|
+
name=name,
|
|
39
|
+
columns=columns,
|
|
40
|
+
primary_key=primary_key,
|
|
41
|
+
time_column=time_column,
|
|
42
|
+
end_time_column=end_time_column,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
def _get_source_columns(self) -> List[SourceColumn]:
|
|
46
|
+
source_columns: List[SourceColumn] = []
|
|
47
|
+
with self._connection.cursor() as cursor:
|
|
48
|
+
cursor.execute(f"PRAGMA table_info({self.name})")
|
|
49
|
+
rows = cursor.fetchall()
|
|
50
|
+
|
|
51
|
+
if len(rows) == 0:
|
|
52
|
+
raise ValueError(f"Table '{self.name}' does not exist")
|
|
53
|
+
|
|
54
|
+
for _, column, type, _, _, is_pkey in rows:
|
|
55
|
+
# Determine column affinity:
|
|
56
|
+
type = type.strip().upper()
|
|
57
|
+
if re.search('INT', type):
|
|
58
|
+
dtype = Dtype.int
|
|
59
|
+
elif re.search('TEXT|CHAR|CLOB', type):
|
|
60
|
+
dtype = Dtype.string
|
|
61
|
+
elif re.search('REAL|FLOA|DOUB', type):
|
|
62
|
+
dtype = Dtype.float
|
|
63
|
+
else: # NUMERIC affinity.
|
|
64
|
+
ser = self._sample_df[column]
|
|
65
|
+
try:
|
|
66
|
+
dtype = infer_dtype(ser)
|
|
67
|
+
except Exception:
|
|
68
|
+
warnings.warn(
|
|
69
|
+
f"Data type inference for column '{column}' in "
|
|
70
|
+
f"table '{self.name}' failed. Consider changing "
|
|
71
|
+
f"the data type of the column to use it within "
|
|
72
|
+
f"this table.")
|
|
73
|
+
continue
|
|
74
|
+
|
|
75
|
+
source_column = SourceColumn(
|
|
76
|
+
name=column,
|
|
77
|
+
dtype=dtype,
|
|
78
|
+
is_primary_key=bool(is_pkey),
|
|
79
|
+
is_unique_key=False,
|
|
80
|
+
)
|
|
81
|
+
source_columns.append(source_column)
|
|
82
|
+
|
|
83
|
+
return source_columns
|
|
84
|
+
|
|
85
|
+
def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
|
|
86
|
+
source_fkeys: List[SourceForeignKey] = []
|
|
87
|
+
with self._connection.cursor() as cursor:
|
|
88
|
+
cursor.execute(f"PRAGMA foreign_key_list({self.name})")
|
|
89
|
+
for _, _, dst_table, fkey, pkey, _, _, _ in cursor.fetchall():
|
|
90
|
+
source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
|
|
91
|
+
return source_fkeys
|
|
92
|
+
|
|
93
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
94
|
+
with self._connection.cursor() as cursor:
|
|
95
|
+
cursor.execute(f"SELECT * FROM {self.name} "
|
|
96
|
+
f"ORDER BY rowid LIMIT 1000")
|
|
97
|
+
table = cursor.fetch_arrow_table()
|
|
98
|
+
return table.to_pandas(types_mapper=pd.ArrowDtype)
|
|
99
|
+
|
|
100
|
+
def _get_num_rows(self) -> Optional[int]:
|
|
101
|
+
return None
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
from .source import SourceColumn, SourceForeignKey
|
|
2
|
+
from .column import Column
|
|
3
|
+
from .table import Table
|
|
4
|
+
from .sampler import EdgeSpec, SamplerOutput, Sampler
|
|
5
|
+
|
|
6
|
+
__all__ = [
|
|
7
|
+
'SourceColumn',
|
|
8
|
+
'SourceForeignKey',
|
|
9
|
+
'Column',
|
|
10
|
+
'Table',
|
|
11
|
+
'EdgeSpec',
|
|
12
|
+
'SamplerOutput',
|
|
13
|
+
'Sampler',
|
|
14
|
+
]
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Any
|
|
3
|
+
|
|
4
|
+
from kumoapi.typing import Dtype, Stype
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@dataclass(init=False, repr=False, eq=False)
|
|
8
|
+
class Column:
|
|
9
|
+
stype: Stype
|
|
10
|
+
|
|
11
|
+
def __init__(
|
|
12
|
+
self,
|
|
13
|
+
name: str,
|
|
14
|
+
dtype: Dtype,
|
|
15
|
+
stype: Stype,
|
|
16
|
+
is_primary_key: bool = False,
|
|
17
|
+
is_time_column: bool = False,
|
|
18
|
+
is_end_time_column: bool = False,
|
|
19
|
+
) -> None:
|
|
20
|
+
self._name = name
|
|
21
|
+
self._dtype = Dtype(dtype)
|
|
22
|
+
self._is_primary_key = is_primary_key
|
|
23
|
+
self._is_time_column = is_time_column
|
|
24
|
+
self._is_end_time_column = is_end_time_column
|
|
25
|
+
self.stype = Stype(stype)
|
|
26
|
+
|
|
27
|
+
@property
|
|
28
|
+
def name(self) -> str:
|
|
29
|
+
return self._name
|
|
30
|
+
|
|
31
|
+
@property
|
|
32
|
+
def dtype(self) -> Dtype:
|
|
33
|
+
return self._dtype
|
|
34
|
+
|
|
35
|
+
def __setattr__(self, key: str, val: Any) -> None:
|
|
36
|
+
if key == 'stype':
|
|
37
|
+
if isinstance(val, str):
|
|
38
|
+
val = Stype(val)
|
|
39
|
+
assert isinstance(val, Stype)
|
|
40
|
+
if not val.supports_dtype(self.dtype):
|
|
41
|
+
raise ValueError(f"Column '{self.name}' received an "
|
|
42
|
+
f"incompatible semantic type (got "
|
|
43
|
+
f"dtype='{self.dtype}' and stype='{val}')")
|
|
44
|
+
if self._is_primary_key and val != Stype.ID:
|
|
45
|
+
raise ValueError(f"Primary key '{self.name}' must have 'ID' "
|
|
46
|
+
f"semantic type (got '{val}')")
|
|
47
|
+
if self._is_time_column and val != Stype.timestamp:
|
|
48
|
+
raise ValueError(f"Time column '{self.name}' must have "
|
|
49
|
+
f"'timestamp' semantic type (got '{val}')")
|
|
50
|
+
if self._is_end_time_column and val != Stype.timestamp:
|
|
51
|
+
raise ValueError(f"End time column '{self.name}' must have "
|
|
52
|
+
f"'timestamp' semantic type (got '{val}')")
|
|
53
|
+
|
|
54
|
+
super().__setattr__(key, val)
|
|
55
|
+
|
|
56
|
+
def __hash__(self) -> int:
|
|
57
|
+
return hash((self.name, self.stype, self.dtype))
|
|
58
|
+
|
|
59
|
+
def __eq__(self, other: Any) -> bool:
|
|
60
|
+
if not isinstance(other, Column):
|
|
61
|
+
return False
|
|
62
|
+
return hash(self) == hash(other)
|
|
63
|
+
|
|
64
|
+
def __repr__(self) -> str:
|
|
65
|
+
return (f'{self.__class__.__name__}(name={self.name}, '
|
|
66
|
+
f'stype={self.stype}, dtype={self.dtype})')
|
|
@@ -0,0 +1,287 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
import re
|
|
3
|
+
from abc import ABC, abstractmethod
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from typing import TYPE_CHECKING
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import pandas as pd
|
|
9
|
+
from kumoapi.rfm.context import EdgeLayout, Link, Subgraph, Table
|
|
10
|
+
from kumoapi.typing import Stype
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from kumoai.experimental.rfm import Graph
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@dataclass
|
|
17
|
+
class EdgeSpec:
|
|
18
|
+
num_neighbors: int | None = None
|
|
19
|
+
time_offsets: tuple[
|
|
20
|
+
pd.DateOffset | None,
|
|
21
|
+
pd.DateOffset,
|
|
22
|
+
] | None = None
|
|
23
|
+
|
|
24
|
+
def __post_init__(self) -> None:
|
|
25
|
+
if (self.num_neighbors is None) == (self.time_offsets is None):
|
|
26
|
+
raise ValueError("Only one of 'num_neighbors' and 'time_offsets' "
|
|
27
|
+
"must be provided")
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@dataclass
|
|
31
|
+
class SamplerOutput:
|
|
32
|
+
df_dict: dict[str, pd.DataFrame]
|
|
33
|
+
inverse_dict: dict[str, np.ndarray]
|
|
34
|
+
batch_dict: dict[str, np.ndarray]
|
|
35
|
+
num_sampled_nodes_dict: dict[str, list[int]]
|
|
36
|
+
row_dict: dict[tuple[str, str, str], np.ndarray] | None = None
|
|
37
|
+
col_dict: dict[tuple[str, str, str], np.ndarray] | None = None
|
|
38
|
+
num_sampled_edges_dict: dict[tuple[str, str, str], list[int]] | None = None
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class Sampler(ABC):
|
|
42
|
+
def __init__(self, graph: 'Graph') -> None:
|
|
43
|
+
self._edge_types: list[tuple[str, str, str]] = []
|
|
44
|
+
for edge in graph.edges:
|
|
45
|
+
edge_type = (edge.src_table, edge.fkey, edge.dst_table)
|
|
46
|
+
self._edge_types.append(edge_type)
|
|
47
|
+
self._edge_types.append(Subgraph.rev_edge_type(edge_type))
|
|
48
|
+
|
|
49
|
+
self._primary_key_dict: dict[str, str] = {
|
|
50
|
+
table.name: table._primary_key
|
|
51
|
+
for table in graph.tables.values()
|
|
52
|
+
if table._primary_key is not None
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
self._time_column_dict: dict[str, str] = {
|
|
56
|
+
table.name: table._time_column
|
|
57
|
+
for table in graph.tables.values()
|
|
58
|
+
if table._time_column is not None
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
self._end_time_column_dict: dict[str, str] = {
|
|
62
|
+
table.name: table._end_time_column
|
|
63
|
+
for table in graph.tables.values()
|
|
64
|
+
if table._end_time_column is not None
|
|
65
|
+
}
|
|
66
|
+
|
|
67
|
+
foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
|
|
68
|
+
self._table_stype_dict: dict[str, dict[str, Stype]] = {}
|
|
69
|
+
for table in graph.tables.values():
|
|
70
|
+
self._table_stype_dict[table.name] = {}
|
|
71
|
+
for column in table.columns:
|
|
72
|
+
if column == table.primary_key:
|
|
73
|
+
continue
|
|
74
|
+
if (table.name, column.name) in foreign_keys:
|
|
75
|
+
continue
|
|
76
|
+
self._table_stype_dict[table.name][column.name] = column.stype
|
|
77
|
+
|
|
78
|
+
@property
|
|
79
|
+
def edge_types(self) -> list[tuple[str, str, str]]:
|
|
80
|
+
return self._edge_types
|
|
81
|
+
|
|
82
|
+
@property
|
|
83
|
+
def primary_key_dict(self) -> dict[str, str]:
|
|
84
|
+
return self._primary_key_dict
|
|
85
|
+
|
|
86
|
+
@property
|
|
87
|
+
def time_column_dict(self) -> dict[str, str]:
|
|
88
|
+
return self._time_column_dict
|
|
89
|
+
|
|
90
|
+
@property
|
|
91
|
+
def end_time_column_dict(self) -> dict[str, str]:
|
|
92
|
+
return self._end_time_column_dict
|
|
93
|
+
|
|
94
|
+
@property
|
|
95
|
+
def table_stype_dict(self) -> dict[str, dict[str, Stype]]:
|
|
96
|
+
return self._table_stype_dict
|
|
97
|
+
|
|
98
|
+
def sample_subgraph(
|
|
99
|
+
self,
|
|
100
|
+
entity_table_names: tuple[str, ...],
|
|
101
|
+
entity_pkey: pd.Series,
|
|
102
|
+
anchor_time: pd.Series,
|
|
103
|
+
num_neighbors: list[int],
|
|
104
|
+
exclude_cols_dict: dict[str, list[str]] | None = None,
|
|
105
|
+
) -> Subgraph:
|
|
106
|
+
|
|
107
|
+
edge_spec_dict: dict[tuple[str, str, str], list[EdgeSpec]] = {
|
|
108
|
+
edge_type: [EdgeSpec(value) for value in num_neighbors]
|
|
109
|
+
for edge_type in self.edge_types
|
|
110
|
+
}
|
|
111
|
+
|
|
112
|
+
# Exclude all columns that leak target information:
|
|
113
|
+
table_stype_dict: dict[str, dict[str, Stype]] = self._table_stype_dict
|
|
114
|
+
if exclude_cols_dict is not None:
|
|
115
|
+
table_stype_dict = copy.deepcopy(table_stype_dict)
|
|
116
|
+
for table_name, exclude_cols in exclude_cols_dict.items():
|
|
117
|
+
for column_name in exclude_cols:
|
|
118
|
+
del table_stype_dict[table_name][column_name]
|
|
119
|
+
|
|
120
|
+
# Collect all columns being used as features:
|
|
121
|
+
column_spec_dict: dict[str, list[str]] = {
|
|
122
|
+
table_name: list(stype_dict.keys())
|
|
123
|
+
for table_name, stype_dict in table_stype_dict.items()
|
|
124
|
+
}
|
|
125
|
+
# Make sure to store primary key information for entity tables:
|
|
126
|
+
for table_name in entity_table_names:
|
|
127
|
+
column_spec_dict[table_name] = (
|
|
128
|
+
[self.primary_key_dict[table_name]] +
|
|
129
|
+
column_spec_dict[table_name])
|
|
130
|
+
|
|
131
|
+
if anchor_time.dtype != 'datetime64[ns]':
|
|
132
|
+
anchor_time = anchor_time.astype('datetime64[ns]')
|
|
133
|
+
out = self.sample(
|
|
134
|
+
entity_table_name=entity_table_names[0],
|
|
135
|
+
entity_pkey=entity_pkey,
|
|
136
|
+
anchor_time=anchor_time,
|
|
137
|
+
column_spec_dict=column_spec_dict,
|
|
138
|
+
edge_spec_dict=edge_spec_dict,
|
|
139
|
+
drop_duplicates=True,
|
|
140
|
+
return_edges=True,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
subgraph = Subgraph(
|
|
144
|
+
anchor_time=anchor_time.astype(int).to_numpy(),
|
|
145
|
+
table_dict={},
|
|
146
|
+
link_dict={},
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
for table_name, batch in out.batch_dict.items():
|
|
150
|
+
if len(batch) == 0:
|
|
151
|
+
continue
|
|
152
|
+
|
|
153
|
+
primary_key = None
|
|
154
|
+
if table_name in entity_table_names:
|
|
155
|
+
primary_key = self.primary_key_dict.get(table_name, None)
|
|
156
|
+
|
|
157
|
+
df = out.df_dict[table_name].reset_index(drop=True)
|
|
158
|
+
if table_name in self.end_time_column_dict:
|
|
159
|
+
# Set end time to NaT for all values greater than anchor time:
|
|
160
|
+
end_time_column = self.end_time_column_dict[table_name]
|
|
161
|
+
ser = df[end_time_column]
|
|
162
|
+
if ser.dtype != 'datetime64[ns]':
|
|
163
|
+
ser = ser.astype('datetime64[ns]')
|
|
164
|
+
mask = ser > anchor_time.iloc[batch]
|
|
165
|
+
ser.iloc[mask] = pd.NaT
|
|
166
|
+
df[end_time_column] = ser
|
|
167
|
+
|
|
168
|
+
stype_dict = table_stype_dict[table_name]
|
|
169
|
+
for column_name, stype in stype_dict.items():
|
|
170
|
+
if stype == Stype.text:
|
|
171
|
+
df[column_name] = _normalize_text(df[column_name])
|
|
172
|
+
|
|
173
|
+
subgraph.table_dict[table_name] = Table(
|
|
174
|
+
df=df,
|
|
175
|
+
row=out.inverse_dict.get(table_name),
|
|
176
|
+
batch=batch,
|
|
177
|
+
num_sampled_nodes=out.num_sampled_nodes_dict[table_name],
|
|
178
|
+
stype_dict=stype_dict,
|
|
179
|
+
primary_key=primary_key,
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
assert out.row_dict is not None
|
|
183
|
+
assert out.col_dict is not None
|
|
184
|
+
assert out.num_sampled_edges_dict is not None
|
|
185
|
+
for edge_type in out.row_dict.keys():
|
|
186
|
+
row: np.ndarray | None = out.row_dict[edge_type]
|
|
187
|
+
col: np.ndarray | None = out.col_dict[edge_type]
|
|
188
|
+
|
|
189
|
+
if row is None or col is None or len(row) == 0:
|
|
190
|
+
continue
|
|
191
|
+
|
|
192
|
+
# Do not store reverse edge type if it is an exact replica:
|
|
193
|
+
rev_edge_type = Subgraph.rev_edge_type(edge_type)
|
|
194
|
+
if (rev_edge_type in subgraph.link_dict
|
|
195
|
+
and np.array_equal(row, out.col_dict[rev_edge_type])
|
|
196
|
+
and np.array_equal(col, out.row_dict[rev_edge_type])):
|
|
197
|
+
subgraph.link_dict[edge_type] = Link(
|
|
198
|
+
layout=EdgeLayout.REV,
|
|
199
|
+
row=None,
|
|
200
|
+
col=None,
|
|
201
|
+
num_sampled_edges=out.num_sampled_edges_dict[edge_type],
|
|
202
|
+
)
|
|
203
|
+
continue
|
|
204
|
+
|
|
205
|
+
# Do not store non-informative edges:
|
|
206
|
+
layout = EdgeLayout.COO
|
|
207
|
+
if np.array_equal(row, np.arange(len(row))):
|
|
208
|
+
row = None
|
|
209
|
+
if np.array_equal(col, np.arange(len(col))):
|
|
210
|
+
col = None
|
|
211
|
+
|
|
212
|
+
# Store in compressed representation if more efficient:
|
|
213
|
+
num_cols = subgraph.table_dict[edge_type[2]].num_rows
|
|
214
|
+
if col is not None and len(col) > num_cols + 1:
|
|
215
|
+
layout = EdgeLayout.CSC
|
|
216
|
+
colcount = np.bincount(col, minlength=num_cols)
|
|
217
|
+
col = np.empty(num_cols + 1, dtype=col.dtype)
|
|
218
|
+
col[0] = 0
|
|
219
|
+
np.cumsum(colcount, out=col[1:])
|
|
220
|
+
|
|
221
|
+
subgraph.link_dict[edge_type] = Link(
|
|
222
|
+
layout=layout,
|
|
223
|
+
row=row,
|
|
224
|
+
col=col,
|
|
225
|
+
num_sampled_edges=out.num_sampled_edges_dict[edge_type],
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
return subgraph
|
|
229
|
+
|
|
230
|
+
# Abstract Methods ########################################################
|
|
231
|
+
|
|
232
|
+
@abstractmethod
|
|
233
|
+
def sample(
|
|
234
|
+
self,
|
|
235
|
+
entity_table_name: str,
|
|
236
|
+
entity_pkey: pd.Series,
|
|
237
|
+
anchor_time: pd.Series,
|
|
238
|
+
column_spec_dict: dict[str, list[str]],
|
|
239
|
+
edge_spec_dict: dict[tuple[str, str, str], list[EdgeSpec]],
|
|
240
|
+
drop_duplicates: bool = False,
|
|
241
|
+
return_edges: bool = False,
|
|
242
|
+
) -> SamplerOutput:
|
|
243
|
+
pass
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
# Helper Functions ############################################################
|
|
247
|
+
|
|
248
|
+
PUNCTUATION = re.compile(r"[\'\"\.,\(\)\!\?\;\:]")
|
|
249
|
+
MULTISPACE = re.compile(r"\s+")
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def _normalize_text(
|
|
253
|
+
ser: pd.Series,
|
|
254
|
+
max_words: int | None = 50,
|
|
255
|
+
) -> pd.Series:
|
|
256
|
+
r"""Normalizes text into a list of lower-case words.
|
|
257
|
+
|
|
258
|
+
Args:
|
|
259
|
+
ser: The :class:`pandas.Series` to normalize.
|
|
260
|
+
max_words: The maximum number of words to return.
|
|
261
|
+
This will auto-shrink any large text column to avoid blowing up
|
|
262
|
+
context size.
|
|
263
|
+
"""
|
|
264
|
+
if len(ser) == 0 or pd.api.types.is_list_like(ser.iloc[0]):
|
|
265
|
+
return ser
|
|
266
|
+
|
|
267
|
+
def normalize_fn(line: str) -> list[str]:
|
|
268
|
+
line = PUNCTUATION.sub(" ", line)
|
|
269
|
+
line = re.sub(r"<br\s*/?>", " ", line) # Handle <br /> or <br>
|
|
270
|
+
line = MULTISPACE.sub(" ", line)
|
|
271
|
+
words = line.split()
|
|
272
|
+
if max_words is not None:
|
|
273
|
+
words = words[:max_words]
|
|
274
|
+
return words
|
|
275
|
+
|
|
276
|
+
ser = ser.fillna('').astype(str)
|
|
277
|
+
|
|
278
|
+
if max_words is not None:
|
|
279
|
+
# We estimate the number of words as 5 characters + 1 space in an
|
|
280
|
+
# English text on average. We need this pre-filter here, as word
|
|
281
|
+
# splitting on a giant text can be very expensive:
|
|
282
|
+
ser = ser.str[:6 * max_words]
|
|
283
|
+
|
|
284
|
+
ser = ser.str.lower()
|
|
285
|
+
ser = ser.map(normalize_fn)
|
|
286
|
+
|
|
287
|
+
return ser
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
|
|
3
|
+
from kumoapi.typing import Dtype
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@dataclass
|
|
7
|
+
class SourceColumn:
|
|
8
|
+
name: str
|
|
9
|
+
dtype: Dtype
|
|
10
|
+
is_primary_key: bool
|
|
11
|
+
is_unique_key: bool
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@dataclass
|
|
15
|
+
class SourceForeignKey:
|
|
16
|
+
name: str
|
|
17
|
+
dst_table: str
|
|
18
|
+
primary_key: str
|