kumoai 2.13.0.dev202511261731__cp310-cp310-win_amd64.whl → 2.13.0.dev202512040252__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. kumoai/_version.py +1 -1
  2. kumoai/connector/utils.py +23 -2
  3. kumoai/experimental/rfm/__init__.py +20 -45
  4. kumoai/experimental/rfm/backend/__init__.py +0 -0
  5. kumoai/experimental/rfm/backend/local/__init__.py +38 -0
  6. kumoai/experimental/rfm/backend/local/table.py +109 -0
  7. kumoai/experimental/rfm/backend/snow/__init__.py +35 -0
  8. kumoai/experimental/rfm/backend/snow/table.py +115 -0
  9. kumoai/experimental/rfm/backend/sqlite/__init__.py +30 -0
  10. kumoai/experimental/rfm/backend/sqlite/table.py +101 -0
  11. kumoai/experimental/rfm/base/__init__.py +10 -0
  12. kumoai/experimental/rfm/base/column.py +66 -0
  13. kumoai/experimental/rfm/base/source.py +18 -0
  14. kumoai/experimental/rfm/{local_table.py → base/table.py} +134 -139
  15. kumoai/experimental/rfm/{local_graph.py → graph.py} +287 -62
  16. kumoai/experimental/rfm/infer/__init__.py +6 -0
  17. kumoai/experimental/rfm/infer/dtype.py +79 -0
  18. kumoai/experimental/rfm/infer/pkey.py +126 -0
  19. kumoai/experimental/rfm/infer/time_col.py +62 -0
  20. kumoai/experimental/rfm/local_graph_sampler.py +42 -1
  21. kumoai/experimental/rfm/local_graph_store.py +13 -27
  22. kumoai/experimental/rfm/rfm.py +6 -16
  23. kumoai/experimental/rfm/sagemaker.py +11 -3
  24. kumoai/kumolib.cp310-win_amd64.pyd +0 -0
  25. kumoai/testing/decorators.py +1 -1
  26. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512040252.dist-info}/METADATA +9 -8
  27. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512040252.dist-info}/RECORD +30 -18
  28. kumoai/experimental/rfm/utils.py +0 -344
  29. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512040252.dist-info}/WHEEL +0 -0
  30. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512040252.dist-info}/licenses/LICENSE +0 -0
  31. {kumoai-2.13.0.dev202511261731.dist-info → kumoai-2.13.0.dev202512040252.dist-info}/top_level.txt +0 -0
kumoai/_version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '2.13.0.dev202511261731'
1
+ __version__ = '2.13.0.dev202512040252'
kumoai/connector/utils.py CHANGED
@@ -381,8 +381,29 @@ def _handle_duplicate_names(names: List[str]) -> List[str]:
381
381
 
382
382
 
383
383
  def _sanitize_columns(names: List[str]) -> Tuple[List[str], bool]:
384
- _SAN_RE = re.compile(r"[^0-9A-Za-z]+")
384
+ """Normalize column names in a CSV or Parquet file.
385
+
386
+ Rules:
387
+ - Replace any non-alphanumeric character with "_"
388
+ - Strip leading/trailing underscores
389
+ - Ensure uniqueness by appending suffixes: _1, _2, ...
390
+ - Auto-name empty columns as auto_named_<n>
391
+
392
+ Returns:
393
+ (new_column_names, changed)
394
+ """
395
+ _SAN_RE = re.compile(r"[^0-9A-Za-z,\t]")
396
+ # 1) Replace non-alphanumeric sequences with underscore
385
397
  new = [_SAN_RE.sub("_", n).strip("_") for n in names]
398
+
399
+ # 2) Auto-name any empty column names to match UI behavior
400
+ unnamed_counter = 0
401
+ for i, n in enumerate(new):
402
+ if not n:
403
+ new[i] = f"auto_named_{unnamed_counter}"
404
+ unnamed_counter += 1
405
+
406
+ # 3) Ensure uniqueness (append suffixes where needed)
386
407
  new = _handle_duplicate_names(new)
387
408
  return new, new != names
388
409
 
@@ -1168,7 +1189,7 @@ def _detect_and_validate_csv(head_bytes: bytes) -> str:
1168
1189
  - Re-serializes those rows and validates with pandas (small nrows) to catch
1169
1190
  malformed inputs.
1170
1191
  - Raises ValueError on empty input or if parsing fails with the chosen
1171
- delimiter.
1192
+ delimiter.
1172
1193
  """
1173
1194
  if not head_bytes:
1174
1195
  raise ValueError("Could not auto-detect a delimiter: file is empty.")
@@ -1,54 +1,26 @@
1
- try:
2
- import kumoai.kumolib # noqa: F401
3
- except Exception as e:
4
- import platform
5
-
6
- _msg = f"""RFM is not supported in your environment.
7
-
8
- 💻 Your Environment:
9
- Python version: {platform.python_version()}
10
- Operating system: {platform.system()}
11
- CPU architecture: {platform.machine()}
12
- glibc version: {platform.libc_ver()[1]}
13
-
14
- ✅ Supported Environments:
15
- * Python versions: 3.10, 3.11, 3.12, 3.13
16
- * Operating systems and CPU architectures:
17
- * Linux (x86_64)
18
- * macOS (arm64)
19
- * Windows (x86_64)
20
- * glibc versions: >=2.28
21
-
22
- ❌ Unsupported Environments:
23
- * Python versions: 3.8, 3.9, 3.14
24
- * Operating systems and CPU architectures:
25
- * Linux (arm64)
26
- * macOS (x86_64)
27
- * Windows (arm64)
28
- * glibc versions: <2.28
29
-
30
- Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
31
-
32
- raise RuntimeError(_msg) from e
33
-
34
- from dataclasses import dataclass
35
- from enum import Enum
36
1
  import ipaddress
37
2
  import logging
3
+ import os
38
4
  import re
39
5
  import socket
40
6
  import threading
41
- from typing import Optional, Dict, Tuple
42
- import os
7
+ from dataclasses import dataclass
8
+ from enum import Enum
9
+ from typing import Dict, Optional, Tuple
43
10
  from urllib.parse import urlparse
11
+
44
12
  import kumoai
45
13
  from kumoai.client.client import KumoClient
46
- from .sagemaker import (KumoClient_SageMakerAdapter,
47
- KumoClient_SageMakerProxy_Local)
48
- from .local_table import LocalTable
49
- from .local_graph import LocalGraph
50
- from .rfm import ExplainConfig, Explanation, KumoRFM
14
+
51
15
  from .authenticate import authenticate
16
+ from .sagemaker import (
17
+ KumoClient_SageMakerAdapter,
18
+ KumoClient_SageMakerProxy_Local,
19
+ )
20
+ from .base import Table
21
+ from .backend.local import LocalTable
22
+ from .graph import Graph
23
+ from .rfm import ExplainConfig, Explanation, KumoRFM
52
24
 
53
25
  logger = logging.getLogger('kumoai_rfm')
54
26
 
@@ -197,12 +169,15 @@ def init(
197
169
  url)
198
170
 
199
171
 
172
+ LocalGraph = Graph # NOTE Backward compatibility - do not use anymore.
173
+
200
174
  __all__ = [
175
+ 'authenticate',
176
+ 'init',
177
+ 'Table',
201
178
  'LocalTable',
202
- 'LocalGraph',
179
+ 'Graph',
203
180
  'KumoRFM',
204
181
  'ExplainConfig',
205
182
  'Explanation',
206
- 'authenticate',
207
- 'init',
208
183
  ]
File without changes
@@ -0,0 +1,38 @@
1
+ try:
2
+ import kumoai.kumolib # noqa: F401
3
+ except Exception as e:
4
+ import platform
5
+
6
+ _msg = f"""RFM is not supported in your environment.
7
+
8
+ 💻 Your Environment:
9
+ Python version: {platform.python_version()}
10
+ Operating system: {platform.system()}
11
+ CPU architecture: {platform.machine()}
12
+ glibc version: {platform.libc_ver()[1]}
13
+
14
+ ✅ Supported Environments:
15
+ * Python versions: 3.10, 3.11, 3.12, 3.13
16
+ * Operating systems and CPU architectures:
17
+ * Linux (x86_64)
18
+ * macOS (arm64)
19
+ * Windows (x86_64)
20
+ * glibc versions: >=2.28
21
+
22
+ ❌ Unsupported Environments:
23
+ * Python versions: 3.8, 3.9, 3.14
24
+ * Operating systems and CPU architectures:
25
+ * Linux (arm64)
26
+ * macOS (x86_64)
27
+ * Windows (arm64)
28
+ * glibc versions: <2.28
29
+
30
+ Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
31
+
32
+ raise RuntimeError(_msg) from e
33
+
34
+ from .table import LocalTable
35
+
36
+ __all__ = [
37
+ 'LocalTable',
38
+ ]
@@ -0,0 +1,109 @@
1
+ import warnings
2
+ from typing import List, Optional
3
+
4
+ import pandas as pd
5
+
6
+ from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
7
+ from kumoai.experimental.rfm.infer import infer_dtype
8
+
9
+
10
+ class LocalTable(Table):
11
+ r"""A table backed by a :class:`pandas.DataFrame`.
12
+
13
+ A :class:`LocalTable` fully specifies the relevant metadata, *i.e.*
14
+ selected columns, column semantic types, primary keys and time columns.
15
+ :class:`LocalTable` is used to create a :class:`Graph`.
16
+
17
+ .. code-block:: python
18
+
19
+ import pandas as pd
20
+ import kumoai.experimental.rfm as rfm
21
+
22
+ # Load data from a CSV file:
23
+ df = pd.read_csv("data.csv")
24
+
25
+ # Create a table from a `pandas.DataFrame` and infer its metadata ...
26
+ table = rfm.LocalTable(df, name="my_table").infer_metadata()
27
+
28
+ # ... or create a table explicitly:
29
+ table = rfm.LocalTable(
30
+ df=df,
31
+ name="my_table",
32
+ primary_key="id",
33
+ time_column="time",
34
+ end_time_column=None,
35
+ )
36
+
37
+ # Verify metadata:
38
+ table.print_metadata()
39
+
40
+ # Change the semantic type of a column:
41
+ table[column].stype = "text"
42
+
43
+ Args:
44
+ df: The data frame to create this table from.
45
+ name: The name of this table.
46
+ primary_key: The name of the primary key of this table, if it exists.
47
+ time_column: The name of the time column of this table, if it exists.
48
+ end_time_column: The name of the end time column of this table, if it
49
+ exists.
50
+ """
51
+ def __init__(
52
+ self,
53
+ df: pd.DataFrame,
54
+ name: str,
55
+ primary_key: Optional[str] = None,
56
+ time_column: Optional[str] = None,
57
+ end_time_column: Optional[str] = None,
58
+ ) -> None:
59
+
60
+ if df.empty:
61
+ raise ValueError("Data frame is empty")
62
+ if isinstance(df.columns, pd.MultiIndex):
63
+ raise ValueError("Data frame must not have a multi-index")
64
+ if not df.columns.is_unique:
65
+ raise ValueError("Data frame must have unique column names")
66
+ if any(col == '' for col in df.columns):
67
+ raise ValueError("Data frame must have non-empty column names")
68
+
69
+ self._data = df.copy(deep=False)
70
+
71
+ super().__init__(
72
+ name=name,
73
+ columns=list(df.columns),
74
+ primary_key=primary_key,
75
+ time_column=time_column,
76
+ end_time_column=end_time_column,
77
+ )
78
+
79
+ def _get_source_columns(self) -> List[SourceColumn]:
80
+ source_columns: List[SourceColumn] = []
81
+ for column in self._data.columns:
82
+ ser = self._data[column]
83
+ try:
84
+ dtype = infer_dtype(ser)
85
+ except Exception:
86
+ warnings.warn(f"Data type inference for column '{column}' in "
87
+ f"table '{self.name}' failed. Consider changing "
88
+ f"the data type of the column to use it within "
89
+ f"this table.")
90
+ continue
91
+
92
+ source_column = SourceColumn(
93
+ name=column,
94
+ dtype=dtype,
95
+ is_primary_key=False,
96
+ is_unique_key=False,
97
+ )
98
+ source_columns.append(source_column)
99
+
100
+ return source_columns
101
+
102
+ def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
103
+ return []
104
+
105
+ def _get_sample_df(self) -> pd.DataFrame:
106
+ return self._data
107
+
108
+ def _get_num_rows(self) -> Optional[int]:
109
+ return len(self._data)
@@ -0,0 +1,35 @@
1
+ from typing import Any, TypeAlias
2
+
3
+ try:
4
+ import snowflake.connector
5
+ except ImportError:
6
+ raise ImportError("No module named 'snowflake'. Please install Kumo SDK "
7
+ "with the 'snowflake' extension via "
8
+ "`pip install kumoai[snowflake]`.")
9
+
10
+ Connection: TypeAlias = snowflake.connector.SnowflakeConnection
11
+
12
+
13
+ def connect(**kwargs: Any) -> Connection:
14
+ r"""Opens a connection to a :class:`snowflake` database.
15
+
16
+ If available, will return a connection to the active session.
17
+
18
+ kwargs: Connection arguments, following the :class:`snowflake` protocol.
19
+ """
20
+ try:
21
+ from snowflake.snowpark.context import get_active_session
22
+ return get_active_session().connection
23
+ except Exception:
24
+ pass
25
+
26
+ return snowflake.connector.connect(**kwargs)
27
+
28
+
29
+ from .table import SnowTable # noqa: E402
30
+
31
+ __all__ = [
32
+ 'connect',
33
+ 'Connection',
34
+ 'SnowTable',
35
+ ]
@@ -0,0 +1,115 @@
1
+ import re
2
+ from typing import List, Optional, Sequence
3
+
4
+ import pandas as pd
5
+ from kumoapi.typing import Dtype
6
+
7
+ from kumoai.experimental.rfm.backend.sqlite import Connection
8
+ from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
9
+
10
+
11
+ class SnowTable(Table):
12
+ r"""A table backed by a :class:`sqlite` database.
13
+
14
+ Args:
15
+ connection: The connection to a :class:`snowflake` database.
16
+ name: The name of this table.
17
+ columns: The selected columns of this table.
18
+ primary_key: The name of the primary key of this table, if it exists.
19
+ time_column: The name of the time column of this table, if it exists.
20
+ end_time_column: The name of the end time column of this table, if it
21
+ exists.
22
+ """
23
+ def __init__(
24
+ self,
25
+ connection: Connection,
26
+ name: str,
27
+ database: str | None = None,
28
+ schema: str | None = None,
29
+ columns: Optional[Sequence[str]] = None,
30
+ primary_key: Optional[str] = None,
31
+ time_column: Optional[str] = None,
32
+ end_time_column: Optional[str] = None,
33
+ ) -> None:
34
+
35
+ if database is not None and schema is None:
36
+ raise ValueError(f"Missing 'schema' for table '{name}' in "
37
+ f"database '{database}'")
38
+
39
+ self._connection = connection
40
+ self._database = database
41
+ self._schema = schema
42
+
43
+ super().__init__(
44
+ name=name,
45
+ columns=columns,
46
+ primary_key=primary_key,
47
+ time_column=time_column,
48
+ end_time_column=end_time_column,
49
+ )
50
+
51
+ @property
52
+ def fqn_name(self) -> str:
53
+ names: List[str] = []
54
+ if self._database is not None:
55
+ assert self._schema is not None
56
+ names.extend([self._database, self._schema])
57
+ elif self._schema is not None:
58
+ names.append(self._schema)
59
+ names.append(self._name)
60
+ return '.'.join(names)
61
+
62
+ def _get_source_columns(self) -> List[SourceColumn]:
63
+ source_columns: List[SourceColumn] = []
64
+ with self._connection.cursor() as cursor:
65
+ try:
66
+ cursor.execute(f"DESCRIBE TABLE {self.fqn_name}")
67
+ except Exception as e:
68
+ raise ValueError(
69
+ f"Table '{self.fqn_name}' does not exist") from e
70
+
71
+ for row in cursor.fetchall():
72
+ column, type, _, _, _, is_pkey, is_unique = row[:7]
73
+
74
+ type = type.strip().upper()
75
+ if type.startswith('NUMBER'):
76
+ dtype = Dtype.int
77
+ elif type.startswith('VARCHAR'):
78
+ dtype = Dtype.string
79
+ elif type == 'FLOAT':
80
+ dtype = Dtype.float
81
+ elif type == 'BOOLEAN':
82
+ dtype = Dtype.bool
83
+ elif re.search('DATE|TIMESTAMP', type):
84
+ dtype = Dtype.date
85
+ else:
86
+ continue
87
+
88
+ source_column = SourceColumn(
89
+ name=column,
90
+ dtype=dtype,
91
+ is_primary_key=is_pkey.strip().upper() == 'Y',
92
+ is_unique_key=is_unique.strip().upper() == 'Y',
93
+ )
94
+ source_columns.append(source_column)
95
+
96
+ return source_columns
97
+
98
+ def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
99
+ source_fkeys: List[SourceForeignKey] = []
100
+ with self._connection.cursor() as cursor:
101
+ cursor.execute(f"SHOW IMPORTED KEYS IN TABLE {self.fqn_name}")
102
+ for row in cursor.fetchall():
103
+ _, _, _, dst_table, pkey, _, _, _, fkey = row[:9]
104
+ source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
105
+ return source_fkeys
106
+
107
+ def _get_sample_df(self) -> pd.DataFrame:
108
+ with self._connection.cursor() as cursor:
109
+ columns = ', '.join(self._source_column_dict.keys())
110
+ cursor.execute(f"SELECT {columns} FROM {self.fqn_name} LIMIT 1000")
111
+ table = cursor.fetch_arrow_all()
112
+ return table.to_pandas(types_mapper=pd.ArrowDtype)
113
+
114
+ def _get_num_rows(self) -> Optional[int]:
115
+ return None
@@ -0,0 +1,30 @@
1
+ from pathlib import Path
2
+ from typing import Any, TypeAlias, Union
3
+
4
+ try:
5
+ import adbc_driver_sqlite.dbapi as adbc
6
+ except ImportError:
7
+ raise ImportError("No module named 'adbc_driver_sqlite'. Please install "
8
+ "Kumo SDK with the 'sqlite' extension via "
9
+ "`pip install kumoai[sqlite]`.")
10
+
11
+ Connection: TypeAlias = adbc.AdbcSqliteConnection
12
+
13
+
14
+ def connect(uri: Union[str, Path, None] = None, **kwargs: Any) -> Connection:
15
+ r"""Opens a connection to a :class:`sqlite` database.
16
+
17
+ uri: The path to the database file to be opened.
18
+ kwargs: Additional connection arguments, following the
19
+ :class:`adbc_driver_sqlite` protocol.
20
+ """
21
+ return adbc.connect(uri, **kwargs)
22
+
23
+
24
+ from .table import SQLiteTable # noqa: E402
25
+
26
+ __all__ = [
27
+ 'connect',
28
+ 'Connection',
29
+ 'SQLiteTable',
30
+ ]
@@ -0,0 +1,101 @@
1
+ import re
2
+ import warnings
3
+ from typing import List, Optional, Sequence
4
+
5
+ import pandas as pd
6
+ from kumoapi.typing import Dtype
7
+
8
+ from kumoai.experimental.rfm.backend.sqlite import Connection
9
+ from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
10
+ from kumoai.experimental.rfm.infer import infer_dtype
11
+
12
+
13
+ class SQLiteTable(Table):
14
+ r"""A table backed by a :class:`sqlite` database.
15
+
16
+ Args:
17
+ connection: The connection to a :class:`sqlite` database.
18
+ name: The name of this table.
19
+ columns: The selected columns of this table.
20
+ primary_key: The name of the primary key of this table, if it exists.
21
+ time_column: The name of the time column of this table, if it exists.
22
+ end_time_column: The name of the end time column of this table, if it
23
+ exists.
24
+ """
25
+ def __init__(
26
+ self,
27
+ connection: Connection,
28
+ name: str,
29
+ columns: Optional[Sequence[str]] = None,
30
+ primary_key: Optional[str] = None,
31
+ time_column: Optional[str] = None,
32
+ end_time_column: Optional[str] = None,
33
+ ) -> None:
34
+
35
+ self._connection = connection
36
+
37
+ super().__init__(
38
+ name=name,
39
+ columns=columns,
40
+ primary_key=primary_key,
41
+ time_column=time_column,
42
+ end_time_column=end_time_column,
43
+ )
44
+
45
+ def _get_source_columns(self) -> List[SourceColumn]:
46
+ source_columns: List[SourceColumn] = []
47
+ with self._connection.cursor() as cursor:
48
+ cursor.execute(f"PRAGMA table_info({self.name})")
49
+ rows = cursor.fetchall()
50
+
51
+ if len(rows) == 0:
52
+ raise ValueError(f"Table '{self.name}' does not exist")
53
+
54
+ for _, column, type, _, _, is_pkey in rows:
55
+ # Determine column affinity:
56
+ type = type.strip().upper()
57
+ if re.search('INT', type):
58
+ dtype = Dtype.int
59
+ elif re.search('TEXT|CHAR|CLOB', type):
60
+ dtype = Dtype.string
61
+ elif re.search('REAL|FLOA|DOUB', type):
62
+ dtype = Dtype.float
63
+ else: # NUMERIC affinity.
64
+ ser = self._sample_df[column]
65
+ try:
66
+ dtype = infer_dtype(ser)
67
+ except Exception:
68
+ warnings.warn(
69
+ f"Data type inference for column '{column}' in "
70
+ f"table '{self.name}' failed. Consider changing "
71
+ f"the data type of the column to use it within "
72
+ f"this table.")
73
+ continue
74
+
75
+ source_column = SourceColumn(
76
+ name=column,
77
+ dtype=dtype,
78
+ is_primary_key=bool(is_pkey),
79
+ is_unique_key=False,
80
+ )
81
+ source_columns.append(source_column)
82
+
83
+ return source_columns
84
+
85
+ def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
86
+ source_fkeys: List[SourceForeignKey] = []
87
+ with self._connection.cursor() as cursor:
88
+ cursor.execute(f"PRAGMA foreign_key_list({self.name})")
89
+ for _, _, dst_table, fkey, pkey, _, _, _ in cursor.fetchall():
90
+ source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
91
+ return source_fkeys
92
+
93
+ def _get_sample_df(self) -> pd.DataFrame:
94
+ with self._connection.cursor() as cursor:
95
+ cursor.execute(f"SELECT * FROM {self.name} "
96
+ f"ORDER BY rowid LIMIT 1000")
97
+ table = cursor.fetch_arrow_table()
98
+ return table.to_pandas(types_mapper=pd.ArrowDtype)
99
+
100
+ def _get_num_rows(self) -> Optional[int]:
101
+ return None
@@ -0,0 +1,10 @@
1
+ from .source import SourceColumn, SourceForeignKey
2
+ from .column import Column
3
+ from .table import Table
4
+
5
+ __all__ = [
6
+ 'SourceColumn',
7
+ 'SourceForeignKey',
8
+ 'Column',
9
+ 'Table',
10
+ ]
@@ -0,0 +1,66 @@
1
+ from dataclasses import dataclass
2
+ from typing import Any
3
+
4
+ from kumoapi.typing import Dtype, Stype
5
+
6
+
7
+ @dataclass(init=False, repr=False, eq=False)
8
+ class Column:
9
+ stype: Stype
10
+
11
+ def __init__(
12
+ self,
13
+ name: str,
14
+ dtype: Dtype,
15
+ stype: Stype,
16
+ is_primary_key: bool = False,
17
+ is_time_column: bool = False,
18
+ is_end_time_column: bool = False,
19
+ ) -> None:
20
+ self._name = name
21
+ self._dtype = Dtype(dtype)
22
+ self._is_primary_key = is_primary_key
23
+ self._is_time_column = is_time_column
24
+ self._is_end_time_column = is_end_time_column
25
+ self.stype = Stype(stype)
26
+
27
+ @property
28
+ def name(self) -> str:
29
+ return self._name
30
+
31
+ @property
32
+ def dtype(self) -> Dtype:
33
+ return self._dtype
34
+
35
+ def __setattr__(self, key: str, val: Any) -> None:
36
+ if key == 'stype':
37
+ if isinstance(val, str):
38
+ val = Stype(val)
39
+ assert isinstance(val, Stype)
40
+ if not val.supports_dtype(self.dtype):
41
+ raise ValueError(f"Column '{self.name}' received an "
42
+ f"incompatible semantic type (got "
43
+ f"dtype='{self.dtype}' and stype='{val}')")
44
+ if self._is_primary_key and val != Stype.ID:
45
+ raise ValueError(f"Primary key '{self.name}' must have 'ID' "
46
+ f"semantic type (got '{val}')")
47
+ if self._is_time_column and val != Stype.timestamp:
48
+ raise ValueError(f"Time column '{self.name}' must have "
49
+ f"'timestamp' semantic type (got '{val}')")
50
+ if self._is_end_time_column and val != Stype.timestamp:
51
+ raise ValueError(f"End time column '{self.name}' must have "
52
+ f"'timestamp' semantic type (got '{val}')")
53
+
54
+ super().__setattr__(key, val)
55
+
56
+ def __hash__(self) -> int:
57
+ return hash((self.name, self.stype, self.dtype))
58
+
59
+ def __eq__(self, other: Any) -> bool:
60
+ if not isinstance(other, Column):
61
+ return False
62
+ return hash(self) == hash(other)
63
+
64
+ def __repr__(self) -> str:
65
+ return (f'{self.__class__.__name__}(name={self.name}, '
66
+ f'stype={self.stype}, dtype={self.dtype})')
@@ -0,0 +1,18 @@
1
+ from dataclasses import dataclass
2
+
3
+ from kumoapi.typing import Dtype
4
+
5
+
6
+ @dataclass
7
+ class SourceColumn:
8
+ name: str
9
+ dtype: Dtype
10
+ is_primary_key: bool
11
+ is_unique_key: bool
12
+
13
+
14
+ @dataclass
15
+ class SourceForeignKey:
16
+ name: str
17
+ dst_table: str
18
+ primary_key: str