kumoai 2.13.0.dev202511191731__cp310-cp310-macosx_11_0_arm64.whl → 2.14.0rc2__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. kumoai/__init__.py +35 -26
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +6 -0
  4. kumoai/client/jobs.py +26 -0
  5. kumoai/client/pquery.py +6 -2
  6. kumoai/connector/utils.py +44 -9
  7. kumoai/experimental/rfm/__init__.py +70 -68
  8. kumoai/experimental/rfm/authenticate.py +3 -4
  9. kumoai/experimental/rfm/backend/__init__.py +0 -0
  10. kumoai/experimental/rfm/backend/local/__init__.py +42 -0
  11. kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +65 -127
  12. kumoai/experimental/rfm/backend/local/sampler.py +312 -0
  13. kumoai/experimental/rfm/backend/local/table.py +113 -0
  14. kumoai/experimental/rfm/backend/snow/__init__.py +37 -0
  15. kumoai/experimental/rfm/backend/snow/sampler.py +366 -0
  16. kumoai/experimental/rfm/backend/snow/table.py +242 -0
  17. kumoai/experimental/rfm/backend/sqlite/__init__.py +32 -0
  18. kumoai/experimental/rfm/backend/sqlite/sampler.py +454 -0
  19. kumoai/experimental/rfm/backend/sqlite/table.py +184 -0
  20. kumoai/experimental/rfm/base/__init__.py +30 -0
  21. kumoai/experimental/rfm/base/column.py +152 -0
  22. kumoai/experimental/rfm/base/expression.py +44 -0
  23. kumoai/experimental/rfm/base/mapper.py +67 -0
  24. kumoai/experimental/rfm/base/sampler.py +782 -0
  25. kumoai/experimental/rfm/base/source.py +19 -0
  26. kumoai/experimental/rfm/base/sql_sampler.py +366 -0
  27. kumoai/experimental/rfm/base/table.py +741 -0
  28. kumoai/experimental/rfm/{local_graph.py → graph.py} +581 -154
  29. kumoai/experimental/rfm/infer/__init__.py +8 -0
  30. kumoai/experimental/rfm/infer/dtype.py +82 -0
  31. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  32. kumoai/experimental/rfm/infer/pkey.py +128 -0
  33. kumoai/experimental/rfm/infer/stype.py +35 -0
  34. kumoai/experimental/rfm/infer/time_col.py +61 -0
  35. kumoai/experimental/rfm/pquery/executor.py +27 -27
  36. kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
  37. kumoai/experimental/rfm/relbench.py +76 -0
  38. kumoai/experimental/rfm/rfm.py +775 -481
  39. kumoai/experimental/rfm/sagemaker.py +15 -7
  40. kumoai/experimental/rfm/task_table.py +292 -0
  41. kumoai/pquery/predictive_query.py +10 -6
  42. kumoai/pquery/training_table.py +16 -2
  43. kumoai/testing/decorators.py +1 -1
  44. kumoai/testing/snow.py +50 -0
  45. kumoai/trainer/distilled_trainer.py +175 -0
  46. kumoai/utils/__init__.py +3 -2
  47. kumoai/utils/display.py +87 -0
  48. kumoai/utils/progress_logger.py +190 -12
  49. kumoai/utils/sql.py +3 -0
  50. {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0rc2.dist-info}/METADATA +10 -8
  51. {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0rc2.dist-info}/RECORD +54 -30
  52. kumoai/experimental/rfm/local_graph_sampler.py +0 -182
  53. kumoai/experimental/rfm/local_pquery_driver.py +0 -689
  54. kumoai/experimental/rfm/local_table.py +0 -545
  55. kumoai/experimental/rfm/utils.py +0 -344
  56. {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0rc2.dist-info}/WHEEL +0 -0
  57. {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0rc2.dist-info}/licenses/LICENSE +0 -0
  58. {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0rc2.dist-info}/top_level.txt +0 -0
@@ -1,14 +1,12 @@
1
- import warnings
2
- from typing import Dict, List, Optional, Tuple, Union
1
+ from typing import TYPE_CHECKING
3
2
 
4
3
  import numpy as np
5
4
  import pandas as pd
6
5
  from kumoapi.rfm.context import Subgraph
7
- from kumoapi.typing import Stype
8
6
 
9
- from kumoai.experimental.rfm import LocalGraph
10
- from kumoai.experimental.rfm.utils import normalize_text
11
- from kumoai.utils import InteractiveProgressLogger, ProgressLogger
7
+ from kumoai.experimental.rfm.backend.local import LocalTable
8
+ from kumoai.experimental.rfm.base import Table
9
+ from kumoai.utils import ProgressLogger
12
10
 
13
11
  try:
14
12
  import torch
@@ -16,43 +14,40 @@ try:
16
14
  except ImportError:
17
15
  WITH_TORCH = False
18
16
 
17
+ if TYPE_CHECKING:
18
+ from kumoai.experimental.rfm import Graph
19
+
19
20
 
20
21
  class LocalGraphStore:
21
22
  def __init__(
22
23
  self,
23
- graph: LocalGraph,
24
- preprocess: bool = False,
25
- verbose: Union[bool, ProgressLogger] = True,
24
+ graph: 'Graph',
25
+ verbose: bool | ProgressLogger = True,
26
26
  ) -> None:
27
27
 
28
28
  if not isinstance(verbose, ProgressLogger):
29
- verbose = InteractiveProgressLogger(
30
- "Materializing graph",
29
+ verbose = ProgressLogger.default(
30
+ msg="Materializing graph",
31
31
  verbose=verbose,
32
32
  )
33
33
 
34
34
  with verbose as logger:
35
- self.df_dict, self.mask_dict = self.sanitize(graph, preprocess)
36
- self.stype_dict = self.get_stype_dict(graph)
35
+ self.df_dict, self.mask_dict = self.sanitize(graph)
37
36
  logger.log("Sanitized input data")
38
37
 
39
- self.pkey_name_dict, self.pkey_map_dict = self.get_pkey_data(graph)
38
+ self.pkey_map_dict = self.get_pkey_map_dict(graph)
40
39
  num_pkeys = sum(t.has_primary_key() for t in graph.tables.values())
41
40
  if num_pkeys > 1:
42
41
  logger.log(f"Collected primary keys from {num_pkeys} tables")
43
42
  else:
44
43
  logger.log(f"Collected primary key from {num_pkeys} table")
45
44
 
46
- (
47
- self.time_column_dict,
48
- self.end_time_column_dict,
49
- self.time_dict,
50
- self.min_time,
51
- self.max_time,
52
- ) = self.get_time_data(graph)
53
- if self.max_time != pd.Timestamp.min:
45
+ self.time_dict, self.min_max_time_dict = self.get_time_data(graph)
46
+ if len(self.min_max_time_dict) > 0:
47
+ min_time = min(t for t, _ in self.min_max_time_dict.values())
48
+ max_time = max(t for _, t in self.min_max_time_dict.values())
54
49
  logger.log(f"Identified temporal graph from "
55
- f"{self.min_time.date()} to {self.max_time.date()}")
50
+ f"{min_time.date()} to {max_time.date()}")
56
51
  else:
57
52
  logger.log("Identified static graph without timestamps")
58
53
 
@@ -62,14 +57,6 @@ class LocalGraphStore:
62
57
  logger.log(f"Created graph with {num_nodes:,} nodes and "
63
58
  f"{num_edges:,} edges")
64
59
 
65
- @property
66
- def node_types(self) -> List[str]:
67
- return list(self.df_dict.keys())
68
-
69
- @property
70
- def edge_types(self) -> List[Tuple[str, str, str]]:
71
- return list(self.row_dict.keys())
72
-
73
60
  def get_node_id(self, table_name: str, pkey: pd.Series) -> np.ndarray:
74
61
  r"""Returns the node ID given primary keys.
75
62
 
@@ -105,9 +92,8 @@ class LocalGraphStore:
105
92
 
106
93
  def sanitize(
107
94
  self,
108
- graph: LocalGraph,
109
- preprocess: bool = False,
110
- ) -> Tuple[Dict[str, pd.DataFrame], Dict[str, np.ndarray]]:
95
+ graph: 'Graph',
96
+ ) -> tuple[dict[str, pd.DataFrame], dict[str, np.ndarray]]:
111
97
  r"""Sanitizes raw data according to table schema definition:
112
98
 
113
99
  In particular, it:
@@ -115,42 +101,25 @@ class LocalGraphStore:
115
101
  * drops timezone information from timestamps
116
102
  * drops duplicate primary keys
117
103
  * removes rows with missing primary keys or time values
118
-
119
- If ``preprocess`` is set to ``True``, it will additionally pre-process
120
- data for faster model processing. In particular, it:
121
- * tokenizes any text column that is not a foreign key
122
104
  """
123
- df_dict: Dict[str, pd.DataFrame] = {
124
- table_name: table._data.copy(deep=False).reset_index(drop=True)
125
- for table_name, table in graph.tables.items()
126
- }
127
-
128
- foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
105
+ df_dict: dict[str, pd.DataFrame] = {}
106
+ for table_name, table in graph.tables.items():
107
+ assert isinstance(table, LocalTable)
108
+ df_dict[table_name] = Table._sanitize(
109
+ df=table._data.copy(deep=False).reset_index(drop=True),
110
+ dtype_dict={
111
+ column.name: column.dtype
112
+ for column in table.columns
113
+ },
114
+ stype_dict={
115
+ column.name: column.stype
116
+ for column in table.columns
117
+ },
118
+ )
129
119
 
130
- mask_dict: Dict[str, np.ndarray] = {}
120
+ mask_dict: dict[str, np.ndarray] = {}
131
121
  for table in graph.tables.values():
132
- for col in table.columns:
133
- if col.stype == Stype.timestamp:
134
- ser = df_dict[table.name][col.name]
135
- if not pd.api.types.is_datetime64_any_dtype(ser):
136
- with warnings.catch_warnings():
137
- warnings.filterwarnings(
138
- 'ignore',
139
- message='Could not infer format',
140
- )
141
- ser = pd.to_datetime(ser, errors='coerce')
142
- df_dict[table.name][col.name] = ser
143
- if isinstance(ser.dtype, pd.DatetimeTZDtype):
144
- ser = ser.dt.tz_localize(None)
145
- df_dict[table.name][col.name] = ser
146
-
147
- # Normalize text in advance (but exclude foreign keys):
148
- if (preprocess and col.stype == Stype.text
149
- and (table.name, col.name) not in foreign_keys):
150
- ser = df_dict[table.name][col.name]
151
- df_dict[table.name][col.name] = normalize_text(ser)
152
-
153
- mask: Optional[np.ndarray] = None
122
+ mask: np.ndarray | None = None
154
123
  if table._time_column is not None:
155
124
  ser = df_dict[table.name][table._time_column]
156
125
  mask = ser.notna().to_numpy()
@@ -165,34 +134,16 @@ class LocalGraphStore:
165
134
 
166
135
  return df_dict, mask_dict
167
136
 
168
- def get_stype_dict(self, graph: LocalGraph) -> Dict[str, Dict[str, Stype]]:
169
- stype_dict: Dict[str, Dict[str, Stype]] = {}
170
- foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
171
- for table in graph.tables.values():
172
- stype_dict[table.name] = {}
173
- for column in table.columns:
174
- if column == table.primary_key:
175
- continue
176
- if (table.name, column.name) in foreign_keys:
177
- continue
178
- stype_dict[table.name][column.name] = column.stype
179
- return stype_dict
180
-
181
- def get_pkey_data(
137
+ def get_pkey_map_dict(
182
138
  self,
183
- graph: LocalGraph,
184
- ) -> Tuple[
185
- Dict[str, str],
186
- Dict[str, pd.DataFrame],
187
- ]:
188
- pkey_name_dict: Dict[str, str] = {}
189
- pkey_map_dict: Dict[str, pd.DataFrame] = {}
139
+ graph: 'Graph',
140
+ ) -> dict[str, pd.DataFrame]:
141
+ pkey_map_dict: dict[str, pd.DataFrame] = {}
190
142
 
191
143
  for table in graph.tables.values():
192
144
  if table._primary_key is None:
193
145
  continue
194
146
 
195
- pkey_name_dict[table.name] = table._primary_key
196
147
  pkey = self.df_dict[table.name][table._primary_key]
197
148
  pkey_map = pd.DataFrame(
198
149
  dict(arange=range(len(pkey))),
@@ -214,61 +165,48 @@ class LocalGraphStore:
214
165
 
215
166
  pkey_map_dict[table.name] = pkey_map
216
167
 
217
- return pkey_name_dict, pkey_map_dict
168
+ return pkey_map_dict
218
169
 
219
170
  def get_time_data(
220
171
  self,
221
- graph: LocalGraph,
222
- ) -> Tuple[
223
- Dict[str, str],
224
- Dict[str, str],
225
- Dict[str, np.ndarray],
226
- pd.Timestamp,
227
- pd.Timestamp,
172
+ graph: 'Graph',
173
+ ) -> tuple[
174
+ dict[str, np.ndarray],
175
+ dict[str, tuple[pd.Timestamp, pd.Timestamp]],
228
176
  ]:
229
- time_column_dict: Dict[str, str] = {}
230
- end_time_column_dict: Dict[str, str] = {}
231
- time_dict: Dict[str, np.ndarray] = {}
232
- min_time = pd.Timestamp.max
233
- max_time = pd.Timestamp.min
177
+ time_dict: dict[str, np.ndarray] = {}
178
+ min_max_time_dict: dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
234
179
  for table in graph.tables.values():
235
- if table._end_time_column is not None:
236
- end_time_column_dict[table.name] = table._end_time_column
237
-
238
180
  if table._time_column is None:
239
181
  continue
240
182
 
241
183
  time = self.df_dict[table.name][table._time_column]
242
- time_dict[table.name] = time.astype('datetime64[ns]').astype(
243
- int).to_numpy() // 1000**3
244
- time_column_dict[table.name] = table._time_column
184
+ time_dict[table.name] = time.astype(int).to_numpy() // 1000**3
245
185
 
246
186
  if table.name in self.mask_dict.keys():
247
187
  time = time[self.mask_dict[table.name]]
248
188
  if len(time) > 0:
249
- min_time = min(min_time, time.min())
250
- max_time = max(max_time, time.max())
189
+ min_max_time_dict[table.name] = (time.min(), time.max())
190
+ else:
191
+ min_max_time_dict[table.name] = (
192
+ pd.Timestamp.max,
193
+ pd.Timestamp.min,
194
+ )
251
195
 
252
- return (
253
- time_column_dict,
254
- end_time_column_dict,
255
- time_dict,
256
- min_time,
257
- max_time,
258
- )
196
+ return time_dict, min_max_time_dict
259
197
 
260
198
  def get_csc(
261
199
  self,
262
- graph: LocalGraph,
263
- ) -> Tuple[
264
- Dict[Tuple[str, str, str], np.ndarray],
265
- Dict[Tuple[str, str, str], np.ndarray],
200
+ graph: 'Graph',
201
+ ) -> tuple[
202
+ dict[tuple[str, str, str], np.ndarray],
203
+ dict[tuple[str, str, str], np.ndarray],
266
204
  ]:
267
205
  # A mapping from raw primary keys to node indices (0 to N-1):
268
- map_dict: Dict[str, pd.CategoricalDtype] = {}
206
+ map_dict: dict[str, pd.CategoricalDtype] = {}
269
207
  # A dictionary to manage offsets of node indices for invalid rows:
270
- offset_dict: Dict[str, np.ndarray] = {}
271
- for table_name in set(edge.dst_table for edge in graph.edges):
208
+ offset_dict: dict[str, np.ndarray] = {}
209
+ for table_name in {edge.dst_table for edge in graph.edges}:
272
210
  ser = self.df_dict[table_name][graph[table_name]._primary_key]
273
211
  if table_name in self.mask_dict.keys():
274
212
  mask = self.mask_dict[table_name]
@@ -277,8 +215,8 @@ class LocalGraphStore:
277
215
  map_dict[table_name] = pd.CategoricalDtype(ser, ordered=True)
278
216
 
279
217
  # Build CSC graph representation:
280
- row_dict: Dict[Tuple[str, str, str], np.ndarray] = {}
281
- colptr_dict: Dict[Tuple[str, str, str], np.ndarray] = {}
218
+ row_dict: dict[tuple[str, str, str], np.ndarray] = {}
219
+ colptr_dict: dict[tuple[str, str, str], np.ndarray] = {}
282
220
  for src_table, fkey, dst_table in graph.edges:
283
221
  src_df = self.df_dict[src_table]
284
222
  dst_df = self.df_dict[dst_table]
@@ -340,7 +278,7 @@ def _argsort(input: np.ndarray) -> np.ndarray:
340
278
  return torch.from_numpy(input).argsort().numpy()
341
279
 
342
280
 
343
- def _lexsort(inputs: List[np.ndarray]) -> np.ndarray:
281
+ def _lexsort(inputs: list[np.ndarray]) -> np.ndarray:
344
282
  assert len(inputs) >= 1
345
283
 
346
284
  if not WITH_TORCH:
@@ -0,0 +1,312 @@
1
+ from typing import TYPE_CHECKING, Literal
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ from kumoapi.pquery import ValidatedPredictiveQuery
6
+
7
+ from kumoai.experimental.rfm.backend.local import LocalGraphStore
8
+ from kumoai.experimental.rfm.base import Sampler, SamplerOutput
9
+ from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
10
+ from kumoai.utils import ProgressLogger
11
+
12
+ if TYPE_CHECKING:
13
+ from kumoai.experimental.rfm import Graph
14
+
15
+
16
+ class LocalSampler(Sampler):
17
+ def __init__(
18
+ self,
19
+ graph: 'Graph',
20
+ verbose: bool | ProgressLogger = True,
21
+ ) -> None:
22
+ super().__init__(graph=graph, verbose=verbose)
23
+
24
+ import kumoai.kumolib as kumolib
25
+
26
+ self._graph_store = LocalGraphStore(graph, verbose)
27
+ self._graph_sampler = kumolib.NeighborSampler(
28
+ list(self.table_stype_dict.keys()),
29
+ self.edge_types,
30
+ {
31
+ '__'.join(edge_type): colptr
32
+ for edge_type, colptr in self._graph_store.colptr_dict.items()
33
+ },
34
+ {
35
+ '__'.join(edge_type): row
36
+ for edge_type, row in self._graph_store.row_dict.items()
37
+ },
38
+ self._graph_store.time_dict,
39
+ )
40
+
41
+ def _get_min_max_time_dict(
42
+ self,
43
+ table_names: list[str],
44
+ ) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
45
+ return {
46
+ key: value
47
+ for key, value in self._graph_store.min_max_time_dict.items()
48
+ if key in table_names
49
+ }
50
+
51
+ def _sample_subgraph(
52
+ self,
53
+ entity_table_name: str,
54
+ entity_pkey: pd.Series,
55
+ anchor_time: pd.Series | Literal['entity'],
56
+ columns_dict: dict[str, set[str]],
57
+ num_neighbors: list[int],
58
+ ) -> SamplerOutput:
59
+
60
+ index = self._graph_store.get_node_id(entity_table_name, entity_pkey)
61
+
62
+ if isinstance(anchor_time, pd.Series):
63
+ time = anchor_time.astype(int).to_numpy() // 1000**3 # to seconds
64
+ else:
65
+ assert anchor_time == 'entity'
66
+ time = self._graph_store.time_dict[entity_table_name][index]
67
+
68
+ (
69
+ row_dict,
70
+ col_dict,
71
+ node_dict,
72
+ batch_dict,
73
+ num_sampled_nodes_dict,
74
+ num_sampled_edges_dict,
75
+ ) = self._graph_sampler.sample(
76
+ {
77
+ '__'.join(edge_type): num_neighbors
78
+ for edge_type in self.edge_types
79
+ },
80
+ {},
81
+ entity_table_name,
82
+ index,
83
+ time,
84
+ )
85
+
86
+ df_dict: dict[str, pd.DataFrame] = {}
87
+ inverse_dict: dict[str, np.ndarray] = {}
88
+ for table_name, node in node_dict.items():
89
+ df = self._graph_store.df_dict[table_name]
90
+ columns = columns_dict[table_name]
91
+ if self.end_time_column_dict.get(table_name, None) in columns:
92
+ df = df.iloc[node]
93
+ elif len(columns) == 0:
94
+ df = df.iloc[node]
95
+ else:
96
+ # Only store unique rows in `df` above a certain threshold:
97
+ unique_node, inverse = np.unique(node, return_inverse=True)
98
+ if len(node) > 1.05 * len(unique_node):
99
+ df = df.iloc[unique_node]
100
+ inverse_dict[table_name] = inverse
101
+ else:
102
+ df = df.iloc[node]
103
+ df = df.reset_index(drop=True)
104
+ df = df[list(columns)]
105
+ df_dict[table_name] = df
106
+
107
+ num_sampled_nodes_dict = {
108
+ table_name: num_sampled_nodes.tolist()
109
+ for table_name, num_sampled_nodes in
110
+ num_sampled_nodes_dict.items()
111
+ }
112
+
113
+ row_dict = {
114
+ edge_type: row_dict['__'.join(edge_type)]
115
+ for edge_type in self.edge_types
116
+ }
117
+ col_dict = {
118
+ edge_type: col_dict['__'.join(edge_type)]
119
+ for edge_type in self.edge_types
120
+ }
121
+ num_sampled_edges_dict = {
122
+ edge_type: num_sampled_edges_dict['__'.join(edge_type)].tolist()
123
+ for edge_type in self.edge_types
124
+ }
125
+
126
+ return SamplerOutput(
127
+ anchor_time=time * 1000**3, # to nanoseconds
128
+ df_dict=df_dict,
129
+ inverse_dict=inverse_dict,
130
+ batch_dict=batch_dict,
131
+ num_sampled_nodes_dict=num_sampled_nodes_dict,
132
+ row_dict=row_dict,
133
+ col_dict=col_dict,
134
+ num_sampled_edges_dict=num_sampled_edges_dict,
135
+ )
136
+
137
+ def _sample_entity_table(
138
+ self,
139
+ table_name: str,
140
+ columns: set[str],
141
+ num_rows: int,
142
+ random_seed: int | None = None,
143
+ ) -> pd.DataFrame:
144
+ pkey_map = self._graph_store.pkey_map_dict[table_name]
145
+ if len(pkey_map) > num_rows:
146
+ pkey_map = pkey_map.sample(
147
+ n=num_rows,
148
+ random_state=random_seed,
149
+ ignore_index=True,
150
+ )
151
+ df = self._graph_store.df_dict[table_name]
152
+ df = df.iloc[pkey_map['arange']][list(columns)]
153
+ return df
154
+
155
+ def _sample_target(
156
+ self,
157
+ query: ValidatedPredictiveQuery,
158
+ entity_df: pd.DataFrame,
159
+ train_index: np.ndarray,
160
+ train_time: pd.Series,
161
+ num_train_examples: int,
162
+ test_index: np.ndarray,
163
+ test_time: pd.Series,
164
+ num_test_examples: int,
165
+ columns_dict: dict[str, set[str]],
166
+ time_offset_dict: dict[
167
+ tuple[str, str, str],
168
+ tuple[pd.DateOffset | None, pd.DateOffset],
169
+ ],
170
+ ) -> tuple[pd.Series, np.ndarray, pd.Series, np.ndarray]:
171
+
172
+ train_y, train_mask = self._sample_target_set(
173
+ query=query,
174
+ pkey=entity_df[self.primary_key_dict[query.entity_table]],
175
+ index=train_index,
176
+ anchor_time=train_time,
177
+ num_examples=num_train_examples,
178
+ columns_dict=columns_dict,
179
+ time_offset_dict=time_offset_dict,
180
+ )
181
+
182
+ test_y, test_mask = self._sample_target_set(
183
+ query=query,
184
+ pkey=entity_df[self.primary_key_dict[query.entity_table]],
185
+ index=test_index,
186
+ anchor_time=test_time,
187
+ num_examples=num_test_examples,
188
+ columns_dict=columns_dict,
189
+ time_offset_dict=time_offset_dict,
190
+ )
191
+
192
+ return train_y, train_mask, test_y, test_mask
193
+
194
+ # Helper Methods ##########################################################
195
+
196
+ def _sample_target_set(
197
+ self,
198
+ query: ValidatedPredictiveQuery,
199
+ pkey: pd.Series,
200
+ index: np.ndarray,
201
+ anchor_time: pd.Series,
202
+ num_examples: int,
203
+ columns_dict: dict[str, set[str]],
204
+ time_offset_dict: dict[
205
+ tuple[str, str, str],
206
+ tuple[pd.DateOffset | None, pd.DateOffset],
207
+ ],
208
+ batch_size: int = 10_000,
209
+ ) -> tuple[pd.Series, np.ndarray]:
210
+
211
+ num_hops = 1 if len(time_offset_dict) > 0 else 0
212
+ num_neighbors_dict: dict[str, list[int]] = {}
213
+ unix_time_offset_dict: dict[str, list[list[int | None]]] = {}
214
+ for edge_type, (start, end) in time_offset_dict.items():
215
+ unix_time_offset_dict['__'.join(edge_type)] = [[
216
+ date_offset_to_seconds(start) if start is not None else None,
217
+ date_offset_to_seconds(end),
218
+ ]]
219
+ for edge_type in set(self.edge_types) - set(time_offset_dict.keys()):
220
+ num_neighbors_dict['__'.join(edge_type)] = [0] * num_hops
221
+
222
+ count = 0
223
+ ys: list[pd.Series] = []
224
+ mask = np.full(len(index), False, dtype=bool)
225
+ for start in range(0, len(index), batch_size):
226
+ subset = pkey.iloc[index[start:start + batch_size]]
227
+ time = anchor_time.iloc[start:start + batch_size]
228
+
229
+ _, _, node_dict, batch_dict, _, _ = self._graph_sampler.sample(
230
+ num_neighbors_dict,
231
+ unix_time_offset_dict,
232
+ query.entity_table,
233
+ self._graph_store.get_node_id(query.entity_table, subset),
234
+ time.astype(int).to_numpy() // 1000**3, # to seconds
235
+ )
236
+
237
+ feat_dict: dict[str, pd.DataFrame] = {}
238
+ time_dict: dict[str, pd.Series] = {}
239
+ for table_name, columns in columns_dict.items():
240
+ df = self._graph_store.df_dict[table_name]
241
+ df = df.iloc[node_dict[table_name]].reset_index(drop=True)
242
+ df = df[list(columns)]
243
+ feat_dict[table_name] = df
244
+
245
+ time_column = self.time_column_dict.get(table_name)
246
+ if time_column in columns:
247
+ time_dict[table_name] = df[time_column]
248
+
249
+ y, _mask = PQueryPandasExecutor().execute(
250
+ query=query,
251
+ feat_dict=feat_dict,
252
+ time_dict=time_dict,
253
+ batch_dict=batch_dict,
254
+ anchor_time=time,
255
+ num_forecasts=query.num_forecasts,
256
+ )
257
+ ys.append(y)
258
+ mask[start:start + batch_size] = _mask
259
+
260
+ count += len(y)
261
+ if count >= num_examples:
262
+ break
263
+
264
+ if len(ys) == 0:
265
+ y = pd.Series([], dtype=float)
266
+ elif len(ys) == 1:
267
+ y = ys[0]
268
+ else:
269
+ y = pd.concat(ys, axis=0, ignore_index=True)
270
+
271
+ return y, mask
272
+
273
+
274
+ # Helper Functions ############################################################
275
+
276
+
277
+ def date_offset_to_seconds(offset: pd.DateOffset) -> int:
278
+ r"""Convert a :class:`pandas.DateOffset` into a number of seconds.
279
+
280
+ .. note::
281
+ We are conservative and take months and years as their maximum value.
282
+ Additional values are then dropped in label computation where we know
283
+ the actual dates.
284
+ """
285
+ MAX_DAYS_IN_MONTH = 31
286
+ MAX_DAYS_IN_YEAR = 366
287
+
288
+ SECONDS_IN_MINUTE = 60
289
+ SECONDS_IN_HOUR = 60 * SECONDS_IN_MINUTE
290
+ SECONDS_IN_DAY = 24 * SECONDS_IN_HOUR
291
+
292
+ total_sec = 0
293
+ multiplier = getattr(offset, 'n', 1) # The multiplier (if present).
294
+
295
+ for attr, value in offset.__dict__.items():
296
+ if value is None or value == 0:
297
+ continue
298
+ scaled_value = value * multiplier
299
+ if attr == 'years':
300
+ total_sec += scaled_value * MAX_DAYS_IN_YEAR * SECONDS_IN_DAY
301
+ elif attr == 'months':
302
+ total_sec += scaled_value * MAX_DAYS_IN_MONTH * SECONDS_IN_DAY
303
+ elif attr == 'days':
304
+ total_sec += scaled_value * SECONDS_IN_DAY
305
+ elif attr == 'hours':
306
+ total_sec += scaled_value * SECONDS_IN_HOUR
307
+ elif attr == 'minutes':
308
+ total_sec += scaled_value * SECONDS_IN_MINUTE
309
+ elif attr == 'seconds':
310
+ total_sec += scaled_value
311
+
312
+ return total_sec