kumoai 2.13.0.dev202511191731__cp310-cp310-macosx_11_0_arm64.whl → 2.14.0.dev202512271732__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +12 -0
- kumoai/_version.py +1 -1
- kumoai/client/client.py +6 -0
- kumoai/client/jobs.py +24 -0
- kumoai/client/pquery.py +6 -2
- kumoai/connector/utils.py +23 -2
- kumoai/experimental/rfm/__init__.py +52 -52
- kumoai/experimental/rfm/authenticate.py +3 -4
- kumoai/experimental/rfm/backend/__init__.py +0 -0
- kumoai/experimental/rfm/backend/local/__init__.py +42 -0
- kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +65 -127
- kumoai/experimental/rfm/backend/local/sampler.py +312 -0
- kumoai/experimental/rfm/backend/local/table.py +113 -0
- kumoai/experimental/rfm/backend/snow/__init__.py +37 -0
- kumoai/experimental/rfm/backend/snow/sampler.py +297 -0
- kumoai/experimental/rfm/backend/snow/table.py +242 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +32 -0
- kumoai/experimental/rfm/backend/sqlite/sampler.py +398 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +184 -0
- kumoai/experimental/rfm/base/__init__.py +30 -0
- kumoai/experimental/rfm/base/column.py +152 -0
- kumoai/experimental/rfm/base/expression.py +44 -0
- kumoai/experimental/rfm/base/sampler.py +761 -0
- kumoai/experimental/rfm/base/source.py +19 -0
- kumoai/experimental/rfm/base/sql_sampler.py +143 -0
- kumoai/experimental/rfm/base/table.py +753 -0
- kumoai/experimental/rfm/{local_graph.py → graph.py} +546 -116
- kumoai/experimental/rfm/infer/__init__.py +8 -0
- kumoai/experimental/rfm/infer/dtype.py +81 -0
- kumoai/experimental/rfm/infer/multicategorical.py +1 -1
- kumoai/experimental/rfm/infer/pkey.py +128 -0
- kumoai/experimental/rfm/infer/stype.py +35 -0
- kumoai/experimental/rfm/infer/time_col.py +61 -0
- kumoai/experimental/rfm/pquery/executor.py +27 -27
- kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
- kumoai/experimental/rfm/rfm.py +313 -245
- kumoai/experimental/rfm/sagemaker.py +15 -7
- kumoai/pquery/predictive_query.py +10 -6
- kumoai/testing/decorators.py +1 -1
- kumoai/testing/snow.py +50 -0
- kumoai/trainer/distilled_trainer.py +175 -0
- kumoai/utils/__init__.py +3 -2
- kumoai/utils/progress_logger.py +178 -12
- kumoai/utils/sql.py +3 -0
- {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/METADATA +10 -8
- {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/RECORD +49 -29
- kumoai/experimental/rfm/local_graph_sampler.py +0 -182
- kumoai/experimental/rfm/local_pquery_driver.py +0 -689
- kumoai/experimental/rfm/local_table.py +0 -545
- kumoai/experimental/rfm/utils.py +0 -344
- {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/WHEEL +0 -0
- {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.13.0.dev202511191731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/top_level.txt +0 -0
kumoai/__init__.py
CHANGED
|
@@ -280,7 +280,19 @@ __all__ = [
|
|
|
280
280
|
]
|
|
281
281
|
|
|
282
282
|
|
|
283
|
+
def in_snowflake_notebook() -> bool:
|
|
284
|
+
try:
|
|
285
|
+
from snowflake.snowpark.context import get_active_session
|
|
286
|
+
import streamlit # noqa: F401
|
|
287
|
+
get_active_session()
|
|
288
|
+
return True
|
|
289
|
+
except Exception:
|
|
290
|
+
return False
|
|
291
|
+
|
|
292
|
+
|
|
283
293
|
def in_notebook() -> bool:
|
|
294
|
+
if in_snowflake_notebook():
|
|
295
|
+
return True
|
|
284
296
|
try:
|
|
285
297
|
from IPython import get_ipython
|
|
286
298
|
shell = get_ipython()
|
kumoai/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = '2.
|
|
1
|
+
__version__ = '2.14.0.dev202512271732'
|
kumoai/client/client.py
CHANGED
|
@@ -13,6 +13,7 @@ if TYPE_CHECKING:
|
|
|
13
13
|
ArtifactExportJobAPI,
|
|
14
14
|
BaselineJobAPI,
|
|
15
15
|
BatchPredictionJobAPI,
|
|
16
|
+
DistillationJobAPI,
|
|
16
17
|
GeneratePredictionTableJobAPI,
|
|
17
18
|
GenerateTrainTableJobAPI,
|
|
18
19
|
LLMJobAPI,
|
|
@@ -132,6 +133,11 @@ class KumoClient:
|
|
|
132
133
|
from kumoai.client.jobs import TrainingJobAPI
|
|
133
134
|
return TrainingJobAPI(self)
|
|
134
135
|
|
|
136
|
+
@property
|
|
137
|
+
def distillation_job_api(self) -> 'DistillationJobAPI':
|
|
138
|
+
from kumoai.client.jobs import DistillationJobAPI
|
|
139
|
+
return DistillationJobAPI(self)
|
|
140
|
+
|
|
135
141
|
@property
|
|
136
142
|
def batch_prediction_job_api(self) -> 'BatchPredictionJobAPI':
|
|
137
143
|
from kumoai.client.jobs import BatchPredictionJobAPI
|
kumoai/client/jobs.py
CHANGED
|
@@ -22,6 +22,8 @@ from kumoapi.jobs import (
|
|
|
22
22
|
BatchPredictionRequest,
|
|
23
23
|
CancelBatchPredictionJobResponse,
|
|
24
24
|
CancelTrainingJobResponse,
|
|
25
|
+
DistillationJobRequest,
|
|
26
|
+
DistillationJobResource,
|
|
25
27
|
ErrorDetails,
|
|
26
28
|
GeneratePredictionTableJobResource,
|
|
27
29
|
GeneratePredictionTableRequest,
|
|
@@ -171,6 +173,28 @@ class TrainingJobAPI(CommonJobAPI[TrainingJobRequest, TrainingJobResource]):
|
|
|
171
173
|
return resource.config
|
|
172
174
|
|
|
173
175
|
|
|
176
|
+
class DistillationJobAPI(CommonJobAPI[DistillationJobRequest,
|
|
177
|
+
DistillationJobResource]):
|
|
178
|
+
r"""Typed API definition for the distillation job resource."""
|
|
179
|
+
def __init__(self, client: KumoClient) -> None:
|
|
180
|
+
super().__init__(client, '/training_jobs/distilled_training_job',
|
|
181
|
+
DistillationJobResource)
|
|
182
|
+
|
|
183
|
+
def get_config(self, job_id: str) -> DistillationJobRequest:
|
|
184
|
+
raise NotImplementedError(
|
|
185
|
+
"Getting the configuration for a distillation job is "
|
|
186
|
+
"not implemented yet.")
|
|
187
|
+
|
|
188
|
+
def get_progress(self, id: str) -> AutoTrainerProgress:
|
|
189
|
+
raise NotImplementedError(
|
|
190
|
+
"Getting the progress for a distillation job is not "
|
|
191
|
+
"implemented yet.")
|
|
192
|
+
|
|
193
|
+
def cancel(self, id: str) -> CancelTrainingJobResponse:
|
|
194
|
+
raise NotImplementedError(
|
|
195
|
+
"Cancelling a distillation job is not implemented yet.")
|
|
196
|
+
|
|
197
|
+
|
|
174
198
|
class BatchPredictionJobAPI(CommonJobAPI[BatchPredictionRequest,
|
|
175
199
|
BatchPredictionJobResource]):
|
|
176
200
|
r"""Typed API definition for the prediction job resource."""
|
kumoai/client/pquery.py
CHANGED
|
@@ -176,8 +176,12 @@ def filter_model_plan(
|
|
|
176
176
|
# Undefined
|
|
177
177
|
pass
|
|
178
178
|
|
|
179
|
-
|
|
180
|
-
|
|
179
|
+
# Forward compatibility - Remove any newly introduced arguments not
|
|
180
|
+
# returned yet by the backend:
|
|
181
|
+
value = getattr(section, field.name)
|
|
182
|
+
if value != MissingType.VALUE:
|
|
183
|
+
new_opt_fields.append((field.name, _type, default))
|
|
184
|
+
new_opts.append(value)
|
|
181
185
|
|
|
182
186
|
Section = dataclass(
|
|
183
187
|
config=dict(validate_assignment=True),
|
kumoai/connector/utils.py
CHANGED
|
@@ -381,8 +381,29 @@ def _handle_duplicate_names(names: List[str]) -> List[str]:
|
|
|
381
381
|
|
|
382
382
|
|
|
383
383
|
def _sanitize_columns(names: List[str]) -> Tuple[List[str], bool]:
|
|
384
|
-
|
|
384
|
+
"""Normalize column names in a CSV or Parquet file.
|
|
385
|
+
|
|
386
|
+
Rules:
|
|
387
|
+
- Replace any non-alphanumeric character with "_"
|
|
388
|
+
- Strip leading/trailing underscores
|
|
389
|
+
- Ensure uniqueness by appending suffixes: _1, _2, ...
|
|
390
|
+
- Auto-name empty columns as auto_named_<n>
|
|
391
|
+
|
|
392
|
+
Returns:
|
|
393
|
+
(new_column_names, changed)
|
|
394
|
+
"""
|
|
395
|
+
_SAN_RE = re.compile(r"[^0-9A-Za-z,\t]")
|
|
396
|
+
# 1) Replace non-alphanumeric sequences with underscore
|
|
385
397
|
new = [_SAN_RE.sub("_", n).strip("_") for n in names]
|
|
398
|
+
|
|
399
|
+
# 2) Auto-name any empty column names to match UI behavior
|
|
400
|
+
unnamed_counter = 0
|
|
401
|
+
for i, n in enumerate(new):
|
|
402
|
+
if not n:
|
|
403
|
+
new[i] = f"auto_named_{unnamed_counter}"
|
|
404
|
+
unnamed_counter += 1
|
|
405
|
+
|
|
406
|
+
# 3) Ensure uniqueness (append suffixes where needed)
|
|
386
407
|
new = _handle_duplicate_names(new)
|
|
387
408
|
return new, new != names
|
|
388
409
|
|
|
@@ -1168,7 +1189,7 @@ def _detect_and_validate_csv(head_bytes: bytes) -> str:
|
|
|
1168
1189
|
- Re-serializes those rows and validates with pandas (small nrows) to catch
|
|
1169
1190
|
malformed inputs.
|
|
1170
1191
|
- Raises ValueError on empty input or if parsing fails with the chosen
|
|
1171
|
-
|
|
1192
|
+
delimiter.
|
|
1172
1193
|
"""
|
|
1173
1194
|
if not head_bytes:
|
|
1174
1195
|
raise ValueError("Could not auto-detect a delimiter: file is empty.")
|
|
@@ -1,54 +1,26 @@
|
|
|
1
|
-
try:
|
|
2
|
-
import kumoai.kumolib # noqa: F401
|
|
3
|
-
except Exception as e:
|
|
4
|
-
import platform
|
|
5
|
-
|
|
6
|
-
_msg = f"""RFM is not supported in your environment.
|
|
7
|
-
|
|
8
|
-
💻 Your Environment:
|
|
9
|
-
Python version: {platform.python_version()}
|
|
10
|
-
Operating system: {platform.system()}
|
|
11
|
-
CPU architecture: {platform.machine()}
|
|
12
|
-
glibc version: {platform.libc_ver()[1]}
|
|
13
|
-
|
|
14
|
-
✅ Supported Environments:
|
|
15
|
-
* Python versions: 3.10, 3.11, 3.12, 3.13
|
|
16
|
-
* Operating systems and CPU architectures:
|
|
17
|
-
* Linux (x86_64)
|
|
18
|
-
* macOS (arm64)
|
|
19
|
-
* Windows (x86_64)
|
|
20
|
-
* glibc versions: >=2.28
|
|
21
|
-
|
|
22
|
-
❌ Unsupported Environments:
|
|
23
|
-
* Python versions: 3.8, 3.9, 3.14
|
|
24
|
-
* Operating systems and CPU architectures:
|
|
25
|
-
* Linux (arm64)
|
|
26
|
-
* macOS (x86_64)
|
|
27
|
-
* Windows (arm64)
|
|
28
|
-
* glibc versions: <2.28
|
|
29
|
-
|
|
30
|
-
Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
|
|
31
|
-
|
|
32
|
-
raise RuntimeError(_msg) from e
|
|
33
|
-
|
|
34
|
-
from dataclasses import dataclass
|
|
35
|
-
from enum import Enum
|
|
36
1
|
import ipaddress
|
|
37
2
|
import logging
|
|
3
|
+
import os
|
|
38
4
|
import re
|
|
39
5
|
import socket
|
|
40
6
|
import threading
|
|
41
|
-
from
|
|
42
|
-
import
|
|
7
|
+
from dataclasses import dataclass
|
|
8
|
+
from enum import Enum
|
|
43
9
|
from urllib.parse import urlparse
|
|
10
|
+
|
|
44
11
|
import kumoai
|
|
45
12
|
from kumoai.client.client import KumoClient
|
|
46
|
-
from .
|
|
47
|
-
|
|
48
|
-
from .local_table import LocalTable
|
|
49
|
-
from .local_graph import LocalGraph
|
|
50
|
-
from .rfm import ExplainConfig, Explanation, KumoRFM
|
|
13
|
+
from kumoai.spcs import _get_active_session
|
|
14
|
+
|
|
51
15
|
from .authenticate import authenticate
|
|
16
|
+
from .sagemaker import (
|
|
17
|
+
KumoClient_SageMakerAdapter,
|
|
18
|
+
KumoClient_SageMakerProxy_Local,
|
|
19
|
+
)
|
|
20
|
+
from .base import Table
|
|
21
|
+
from .backend.local import LocalTable
|
|
22
|
+
from .graph import Graph
|
|
23
|
+
from .rfm import ExplainConfig, Explanation, KumoRFM
|
|
52
24
|
|
|
53
25
|
logger = logging.getLogger('kumoai_rfm')
|
|
54
26
|
|
|
@@ -77,7 +49,8 @@ class InferenceBackend(str, Enum):
|
|
|
77
49
|
|
|
78
50
|
|
|
79
51
|
def _detect_backend(
|
|
80
|
-
url: str
|
|
52
|
+
url: str, #
|
|
53
|
+
) -> tuple[InferenceBackend, str | None, str | None]:
|
|
81
54
|
parsed = urlparse(url)
|
|
82
55
|
|
|
83
56
|
# Remote SageMaker
|
|
@@ -101,12 +74,27 @@ def _detect_backend(
|
|
|
101
74
|
return InferenceBackend.REST, None, None
|
|
102
75
|
|
|
103
76
|
|
|
77
|
+
def _get_snowflake_url(snowflake_application: str) -> str:
|
|
78
|
+
snowpark_session = _get_active_session()
|
|
79
|
+
if not snowpark_session:
|
|
80
|
+
raise ValueError(
|
|
81
|
+
"Client creation failed: snowflake_application is specified "
|
|
82
|
+
"without an active snowpark session. If running outside "
|
|
83
|
+
"a snowflake notebook, specify a URL and credentials.")
|
|
84
|
+
with snowpark_session.connection.cursor() as cur:
|
|
85
|
+
cur.execute(
|
|
86
|
+
f"DESCRIBE SERVICE {snowflake_application}.user_schema.rfm_service"
|
|
87
|
+
f" ->> SELECT \"dns_name\" from $1")
|
|
88
|
+
dns_name: str = cur.fetchone()[0]
|
|
89
|
+
return f"http://{dns_name}:8000/api"
|
|
90
|
+
|
|
91
|
+
|
|
104
92
|
@dataclass
|
|
105
93
|
class RfmGlobalState:
|
|
106
94
|
_url: str = '__url_not_provided__'
|
|
107
95
|
_backend: InferenceBackend = InferenceBackend.UNKNOWN
|
|
108
|
-
_region:
|
|
109
|
-
_endpoint_name:
|
|
96
|
+
_region: str | None = None
|
|
97
|
+
_endpoint_name: str | None = None
|
|
110
98
|
_thread_local = threading.local()
|
|
111
99
|
|
|
112
100
|
# Thread-safe init-once.
|
|
@@ -149,10 +137,10 @@ global_state = RfmGlobalState()
|
|
|
149
137
|
|
|
150
138
|
|
|
151
139
|
def init(
|
|
152
|
-
url:
|
|
153
|
-
api_key:
|
|
154
|
-
snowflake_credentials:
|
|
155
|
-
snowflake_application:
|
|
140
|
+
url: str | None = None,
|
|
141
|
+
api_key: str | None = None,
|
|
142
|
+
snowflake_credentials: dict[str, str] | None = None,
|
|
143
|
+
snowflake_application: str | None = None,
|
|
156
144
|
log_level: str = "INFO",
|
|
157
145
|
) -> None:
|
|
158
146
|
with global_state._lock:
|
|
@@ -164,6 +152,15 @@ def init(
|
|
|
164
152
|
"supported.")
|
|
165
153
|
return
|
|
166
154
|
|
|
155
|
+
if snowflake_application:
|
|
156
|
+
if url is not None:
|
|
157
|
+
raise ValueError(
|
|
158
|
+
"Client creation failed: both snowflake_application and "
|
|
159
|
+
"url are specified. If running from a snowflake notebook, "
|
|
160
|
+
"specify only snowflake_application.")
|
|
161
|
+
url = _get_snowflake_url(snowflake_application)
|
|
162
|
+
api_key = "test:DISABLED"
|
|
163
|
+
|
|
167
164
|
if url is None:
|
|
168
165
|
url = os.getenv("RFM_API_URL", "https://kumorfm.ai/api")
|
|
169
166
|
|
|
@@ -197,12 +194,15 @@ def init(
|
|
|
197
194
|
url)
|
|
198
195
|
|
|
199
196
|
|
|
197
|
+
LocalGraph = Graph # NOTE Backward compatibility - do not use anymore.
|
|
198
|
+
|
|
200
199
|
__all__ = [
|
|
200
|
+
'authenticate',
|
|
201
|
+
'init',
|
|
202
|
+
'Table',
|
|
201
203
|
'LocalTable',
|
|
202
|
-
'
|
|
204
|
+
'Graph',
|
|
203
205
|
'KumoRFM',
|
|
204
206
|
'ExplainConfig',
|
|
205
207
|
'Explanation',
|
|
206
|
-
'authenticate',
|
|
207
|
-
'init',
|
|
208
208
|
]
|
|
@@ -2,12 +2,11 @@ import logging
|
|
|
2
2
|
import os
|
|
3
3
|
import platform
|
|
4
4
|
from datetime import datetime
|
|
5
|
-
from typing import Optional
|
|
6
5
|
|
|
7
6
|
from kumoai import in_notebook
|
|
8
7
|
|
|
9
8
|
|
|
10
|
-
def authenticate(api_url:
|
|
9
|
+
def authenticate(api_url: str | None = None) -> None:
|
|
11
10
|
"""Authenticates the user and sets the Kumo API key for the SDK.
|
|
12
11
|
|
|
13
12
|
This function detects the current environment and launches the appropriate
|
|
@@ -65,11 +64,11 @@ def _authenticate_local(api_url: str, redirect_port: int = 8765) -> None:
|
|
|
65
64
|
import webbrowser
|
|
66
65
|
from getpass import getpass
|
|
67
66
|
from socketserver import TCPServer
|
|
68
|
-
from typing import Any
|
|
67
|
+
from typing import Any
|
|
69
68
|
|
|
70
69
|
logger = logging.getLogger('kumoai')
|
|
71
70
|
|
|
72
|
-
token_status:
|
|
71
|
+
token_status: dict[str, Any] = {
|
|
73
72
|
'token': None,
|
|
74
73
|
'token_name': None,
|
|
75
74
|
'failed': False
|
|
File without changes
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
try:
|
|
2
|
+
import kumoai.kumolib # noqa: F401
|
|
3
|
+
except Exception as e:
|
|
4
|
+
import platform
|
|
5
|
+
|
|
6
|
+
_msg = f"""RFM is not supported in your environment.
|
|
7
|
+
|
|
8
|
+
💻 Your Environment:
|
|
9
|
+
Python version: {platform.python_version()}
|
|
10
|
+
Operating system: {platform.system()}
|
|
11
|
+
CPU architecture: {platform.machine()}
|
|
12
|
+
glibc version: {platform.libc_ver()[1]}
|
|
13
|
+
|
|
14
|
+
✅ Supported Environments:
|
|
15
|
+
* Python versions: 3.10, 3.11, 3.12, 3.13
|
|
16
|
+
* Operating systems and CPU architectures:
|
|
17
|
+
* Linux (x86_64)
|
|
18
|
+
* macOS (arm64)
|
|
19
|
+
* Windows (x86_64)
|
|
20
|
+
* glibc versions: >=2.28
|
|
21
|
+
|
|
22
|
+
❌ Unsupported Environments:
|
|
23
|
+
* Python versions: 3.8, 3.9, 3.14
|
|
24
|
+
* Operating systems and CPU architectures:
|
|
25
|
+
* Linux (arm64)
|
|
26
|
+
* macOS (x86_64)
|
|
27
|
+
* Windows (arm64)
|
|
28
|
+
* glibc versions: <2.28
|
|
29
|
+
|
|
30
|
+
Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
|
|
31
|
+
|
|
32
|
+
raise RuntimeError(_msg) from e
|
|
33
|
+
|
|
34
|
+
from .table import LocalTable
|
|
35
|
+
from .graph_store import LocalGraphStore
|
|
36
|
+
from .sampler import LocalSampler
|
|
37
|
+
|
|
38
|
+
__all__ = [
|
|
39
|
+
'LocalTable',
|
|
40
|
+
'LocalGraphStore',
|
|
41
|
+
'LocalSampler',
|
|
42
|
+
]
|
|
@@ -1,14 +1,12 @@
|
|
|
1
|
-
import
|
|
2
|
-
from typing import Dict, List, Optional, Tuple, Union
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
3
2
|
|
|
4
3
|
import numpy as np
|
|
5
4
|
import pandas as pd
|
|
6
5
|
from kumoapi.rfm.context import Subgraph
|
|
7
|
-
from kumoapi.typing import Stype
|
|
8
6
|
|
|
9
|
-
from kumoai.experimental.rfm import
|
|
10
|
-
from kumoai.experimental.rfm.
|
|
11
|
-
from kumoai.utils import
|
|
7
|
+
from kumoai.experimental.rfm.backend.local import LocalTable
|
|
8
|
+
from kumoai.experimental.rfm.base import Table
|
|
9
|
+
from kumoai.utils import ProgressLogger
|
|
12
10
|
|
|
13
11
|
try:
|
|
14
12
|
import torch
|
|
@@ -16,43 +14,40 @@ try:
|
|
|
16
14
|
except ImportError:
|
|
17
15
|
WITH_TORCH = False
|
|
18
16
|
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
from kumoai.experimental.rfm import Graph
|
|
19
|
+
|
|
19
20
|
|
|
20
21
|
class LocalGraphStore:
|
|
21
22
|
def __init__(
|
|
22
23
|
self,
|
|
23
|
-
graph:
|
|
24
|
-
|
|
25
|
-
verbose: Union[bool, ProgressLogger] = True,
|
|
24
|
+
graph: 'Graph',
|
|
25
|
+
verbose: bool | ProgressLogger = True,
|
|
26
26
|
) -> None:
|
|
27
27
|
|
|
28
28
|
if not isinstance(verbose, ProgressLogger):
|
|
29
|
-
verbose =
|
|
30
|
-
"Materializing graph",
|
|
29
|
+
verbose = ProgressLogger.default(
|
|
30
|
+
msg="Materializing graph",
|
|
31
31
|
verbose=verbose,
|
|
32
32
|
)
|
|
33
33
|
|
|
34
34
|
with verbose as logger:
|
|
35
|
-
self.df_dict, self.mask_dict = self.sanitize(graph
|
|
36
|
-
self.stype_dict = self.get_stype_dict(graph)
|
|
35
|
+
self.df_dict, self.mask_dict = self.sanitize(graph)
|
|
37
36
|
logger.log("Sanitized input data")
|
|
38
37
|
|
|
39
|
-
self.
|
|
38
|
+
self.pkey_map_dict = self.get_pkey_map_dict(graph)
|
|
40
39
|
num_pkeys = sum(t.has_primary_key() for t in graph.tables.values())
|
|
41
40
|
if num_pkeys > 1:
|
|
42
41
|
logger.log(f"Collected primary keys from {num_pkeys} tables")
|
|
43
42
|
else:
|
|
44
43
|
logger.log(f"Collected primary key from {num_pkeys} table")
|
|
45
44
|
|
|
46
|
-
(
|
|
47
|
-
|
|
48
|
-
self.
|
|
49
|
-
self.
|
|
50
|
-
self.min_time,
|
|
51
|
-
self.max_time,
|
|
52
|
-
) = self.get_time_data(graph)
|
|
53
|
-
if self.max_time != pd.Timestamp.min:
|
|
45
|
+
self.time_dict, self.min_max_time_dict = self.get_time_data(graph)
|
|
46
|
+
if len(self.min_max_time_dict) > 0:
|
|
47
|
+
min_time = min(t for t, _ in self.min_max_time_dict.values())
|
|
48
|
+
max_time = max(t for _, t in self.min_max_time_dict.values())
|
|
54
49
|
logger.log(f"Identified temporal graph from "
|
|
55
|
-
f"{
|
|
50
|
+
f"{min_time.date()} to {max_time.date()}")
|
|
56
51
|
else:
|
|
57
52
|
logger.log("Identified static graph without timestamps")
|
|
58
53
|
|
|
@@ -62,14 +57,6 @@ class LocalGraphStore:
|
|
|
62
57
|
logger.log(f"Created graph with {num_nodes:,} nodes and "
|
|
63
58
|
f"{num_edges:,} edges")
|
|
64
59
|
|
|
65
|
-
@property
|
|
66
|
-
def node_types(self) -> List[str]:
|
|
67
|
-
return list(self.df_dict.keys())
|
|
68
|
-
|
|
69
|
-
@property
|
|
70
|
-
def edge_types(self) -> List[Tuple[str, str, str]]:
|
|
71
|
-
return list(self.row_dict.keys())
|
|
72
|
-
|
|
73
60
|
def get_node_id(self, table_name: str, pkey: pd.Series) -> np.ndarray:
|
|
74
61
|
r"""Returns the node ID given primary keys.
|
|
75
62
|
|
|
@@ -105,9 +92,8 @@ class LocalGraphStore:
|
|
|
105
92
|
|
|
106
93
|
def sanitize(
|
|
107
94
|
self,
|
|
108
|
-
graph:
|
|
109
|
-
|
|
110
|
-
) -> Tuple[Dict[str, pd.DataFrame], Dict[str, np.ndarray]]:
|
|
95
|
+
graph: 'Graph',
|
|
96
|
+
) -> tuple[dict[str, pd.DataFrame], dict[str, np.ndarray]]:
|
|
111
97
|
r"""Sanitizes raw data according to table schema definition:
|
|
112
98
|
|
|
113
99
|
In particular, it:
|
|
@@ -115,42 +101,25 @@ class LocalGraphStore:
|
|
|
115
101
|
* drops timezone information from timestamps
|
|
116
102
|
* drops duplicate primary keys
|
|
117
103
|
* removes rows with missing primary keys or time values
|
|
118
|
-
|
|
119
|
-
If ``preprocess`` is set to ``True``, it will additionally pre-process
|
|
120
|
-
data for faster model processing. In particular, it:
|
|
121
|
-
* tokenizes any text column that is not a foreign key
|
|
122
104
|
"""
|
|
123
|
-
df_dict:
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
105
|
+
df_dict: dict[str, pd.DataFrame] = {}
|
|
106
|
+
for table_name, table in graph.tables.items():
|
|
107
|
+
assert isinstance(table, LocalTable)
|
|
108
|
+
df_dict[table_name] = Table._sanitize(
|
|
109
|
+
df=table._data.copy(deep=False).reset_index(drop=True),
|
|
110
|
+
dtype_dict={
|
|
111
|
+
column.name: column.dtype
|
|
112
|
+
for column in table.columns
|
|
113
|
+
},
|
|
114
|
+
stype_dict={
|
|
115
|
+
column.name: column.stype
|
|
116
|
+
for column in table.columns
|
|
117
|
+
},
|
|
118
|
+
)
|
|
129
119
|
|
|
130
|
-
mask_dict:
|
|
120
|
+
mask_dict: dict[str, np.ndarray] = {}
|
|
131
121
|
for table in graph.tables.values():
|
|
132
|
-
|
|
133
|
-
if col.stype == Stype.timestamp:
|
|
134
|
-
ser = df_dict[table.name][col.name]
|
|
135
|
-
if not pd.api.types.is_datetime64_any_dtype(ser):
|
|
136
|
-
with warnings.catch_warnings():
|
|
137
|
-
warnings.filterwarnings(
|
|
138
|
-
'ignore',
|
|
139
|
-
message='Could not infer format',
|
|
140
|
-
)
|
|
141
|
-
ser = pd.to_datetime(ser, errors='coerce')
|
|
142
|
-
df_dict[table.name][col.name] = ser
|
|
143
|
-
if isinstance(ser.dtype, pd.DatetimeTZDtype):
|
|
144
|
-
ser = ser.dt.tz_localize(None)
|
|
145
|
-
df_dict[table.name][col.name] = ser
|
|
146
|
-
|
|
147
|
-
# Normalize text in advance (but exclude foreign keys):
|
|
148
|
-
if (preprocess and col.stype == Stype.text
|
|
149
|
-
and (table.name, col.name) not in foreign_keys):
|
|
150
|
-
ser = df_dict[table.name][col.name]
|
|
151
|
-
df_dict[table.name][col.name] = normalize_text(ser)
|
|
152
|
-
|
|
153
|
-
mask: Optional[np.ndarray] = None
|
|
122
|
+
mask: np.ndarray | None = None
|
|
154
123
|
if table._time_column is not None:
|
|
155
124
|
ser = df_dict[table.name][table._time_column]
|
|
156
125
|
mask = ser.notna().to_numpy()
|
|
@@ -165,34 +134,16 @@ class LocalGraphStore:
|
|
|
165
134
|
|
|
166
135
|
return df_dict, mask_dict
|
|
167
136
|
|
|
168
|
-
def
|
|
169
|
-
stype_dict: Dict[str, Dict[str, Stype]] = {}
|
|
170
|
-
foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
|
|
171
|
-
for table in graph.tables.values():
|
|
172
|
-
stype_dict[table.name] = {}
|
|
173
|
-
for column in table.columns:
|
|
174
|
-
if column == table.primary_key:
|
|
175
|
-
continue
|
|
176
|
-
if (table.name, column.name) in foreign_keys:
|
|
177
|
-
continue
|
|
178
|
-
stype_dict[table.name][column.name] = column.stype
|
|
179
|
-
return stype_dict
|
|
180
|
-
|
|
181
|
-
def get_pkey_data(
|
|
137
|
+
def get_pkey_map_dict(
|
|
182
138
|
self,
|
|
183
|
-
graph:
|
|
184
|
-
) ->
|
|
185
|
-
|
|
186
|
-
Dict[str, pd.DataFrame],
|
|
187
|
-
]:
|
|
188
|
-
pkey_name_dict: Dict[str, str] = {}
|
|
189
|
-
pkey_map_dict: Dict[str, pd.DataFrame] = {}
|
|
139
|
+
graph: 'Graph',
|
|
140
|
+
) -> dict[str, pd.DataFrame]:
|
|
141
|
+
pkey_map_dict: dict[str, pd.DataFrame] = {}
|
|
190
142
|
|
|
191
143
|
for table in graph.tables.values():
|
|
192
144
|
if table._primary_key is None:
|
|
193
145
|
continue
|
|
194
146
|
|
|
195
|
-
pkey_name_dict[table.name] = table._primary_key
|
|
196
147
|
pkey = self.df_dict[table.name][table._primary_key]
|
|
197
148
|
pkey_map = pd.DataFrame(
|
|
198
149
|
dict(arange=range(len(pkey))),
|
|
@@ -214,61 +165,48 @@ class LocalGraphStore:
|
|
|
214
165
|
|
|
215
166
|
pkey_map_dict[table.name] = pkey_map
|
|
216
167
|
|
|
217
|
-
return
|
|
168
|
+
return pkey_map_dict
|
|
218
169
|
|
|
219
170
|
def get_time_data(
|
|
220
171
|
self,
|
|
221
|
-
graph:
|
|
222
|
-
) ->
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
Dict[str, np.ndarray],
|
|
226
|
-
pd.Timestamp,
|
|
227
|
-
pd.Timestamp,
|
|
172
|
+
graph: 'Graph',
|
|
173
|
+
) -> tuple[
|
|
174
|
+
dict[str, np.ndarray],
|
|
175
|
+
dict[str, tuple[pd.Timestamp, pd.Timestamp]],
|
|
228
176
|
]:
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
time_dict: Dict[str, np.ndarray] = {}
|
|
232
|
-
min_time = pd.Timestamp.max
|
|
233
|
-
max_time = pd.Timestamp.min
|
|
177
|
+
time_dict: dict[str, np.ndarray] = {}
|
|
178
|
+
min_max_time_dict: dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
|
|
234
179
|
for table in graph.tables.values():
|
|
235
|
-
if table._end_time_column is not None:
|
|
236
|
-
end_time_column_dict[table.name] = table._end_time_column
|
|
237
|
-
|
|
238
180
|
if table._time_column is None:
|
|
239
181
|
continue
|
|
240
182
|
|
|
241
183
|
time = self.df_dict[table.name][table._time_column]
|
|
242
|
-
time_dict[table.name] = time.astype(
|
|
243
|
-
int).to_numpy() // 1000**3
|
|
244
|
-
time_column_dict[table.name] = table._time_column
|
|
184
|
+
time_dict[table.name] = time.astype(int).to_numpy() // 1000**3
|
|
245
185
|
|
|
246
186
|
if table.name in self.mask_dict.keys():
|
|
247
187
|
time = time[self.mask_dict[table.name]]
|
|
248
188
|
if len(time) > 0:
|
|
249
|
-
|
|
250
|
-
|
|
189
|
+
min_max_time_dict[table.name] = (time.min(), time.max())
|
|
190
|
+
else:
|
|
191
|
+
min_max_time_dict[table.name] = (
|
|
192
|
+
pd.Timestamp.max,
|
|
193
|
+
pd.Timestamp.min,
|
|
194
|
+
)
|
|
251
195
|
|
|
252
|
-
return
|
|
253
|
-
time_column_dict,
|
|
254
|
-
end_time_column_dict,
|
|
255
|
-
time_dict,
|
|
256
|
-
min_time,
|
|
257
|
-
max_time,
|
|
258
|
-
)
|
|
196
|
+
return time_dict, min_max_time_dict
|
|
259
197
|
|
|
260
198
|
def get_csc(
|
|
261
199
|
self,
|
|
262
|
-
graph:
|
|
263
|
-
) ->
|
|
264
|
-
|
|
265
|
-
|
|
200
|
+
graph: 'Graph',
|
|
201
|
+
) -> tuple[
|
|
202
|
+
dict[tuple[str, str, str], np.ndarray],
|
|
203
|
+
dict[tuple[str, str, str], np.ndarray],
|
|
266
204
|
]:
|
|
267
205
|
# A mapping from raw primary keys to node indices (0 to N-1):
|
|
268
|
-
map_dict:
|
|
206
|
+
map_dict: dict[str, pd.CategoricalDtype] = {}
|
|
269
207
|
# A dictionary to manage offsets of node indices for invalid rows:
|
|
270
|
-
offset_dict:
|
|
271
|
-
for table_name in
|
|
208
|
+
offset_dict: dict[str, np.ndarray] = {}
|
|
209
|
+
for table_name in {edge.dst_table for edge in graph.edges}:
|
|
272
210
|
ser = self.df_dict[table_name][graph[table_name]._primary_key]
|
|
273
211
|
if table_name in self.mask_dict.keys():
|
|
274
212
|
mask = self.mask_dict[table_name]
|
|
@@ -277,8 +215,8 @@ class LocalGraphStore:
|
|
|
277
215
|
map_dict[table_name] = pd.CategoricalDtype(ser, ordered=True)
|
|
278
216
|
|
|
279
217
|
# Build CSC graph representation:
|
|
280
|
-
row_dict:
|
|
281
|
-
colptr_dict:
|
|
218
|
+
row_dict: dict[tuple[str, str, str], np.ndarray] = {}
|
|
219
|
+
colptr_dict: dict[tuple[str, str, str], np.ndarray] = {}
|
|
282
220
|
for src_table, fkey, dst_table in graph.edges:
|
|
283
221
|
src_df = self.df_dict[src_table]
|
|
284
222
|
dst_df = self.df_dict[dst_table]
|
|
@@ -340,7 +278,7 @@ def _argsort(input: np.ndarray) -> np.ndarray:
|
|
|
340
278
|
return torch.from_numpy(input).argsort().numpy()
|
|
341
279
|
|
|
342
280
|
|
|
343
|
-
def _lexsort(inputs:
|
|
281
|
+
def _lexsort(inputs: list[np.ndarray]) -> np.ndarray:
|
|
344
282
|
assert len(inputs) >= 1
|
|
345
283
|
|
|
346
284
|
if not WITH_TORCH:
|